人教版七年级数学下册教案 6-2 立方根
人教版数学七年级下册6.2立方根教学设计

2.能力提升题:
-计算√27、√64、√125的值,并说明它们分别对应哪个整数的立方。
-如果一个立方体的体积是1000立方厘米,求其表面积。
3.实践应用题:
-生活中有哪些物体的体积可以用立方根来表示?请举例说明。
-利用立方根的概念,设计一个实际问题的解决方案,并解释其原理。
2.提高题:计算带分数的立方根,如√2.5、√4.5等。
3.应用题:解决实际问题,如已知一个立方体的体积,求其边长。
4.拓展题:研究立方根的性质,如证明一个数的立方根唯一性。
(五)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,并进行以下归纳:
1.立方根的定义:一个数的立方根,就是使得这个数等于其立方的那个数。
(二)过程与方法
1.通过引入生活中的实际例子,激发学生学习立方根的兴趣,引导学生主动探究立方根的性质和计算方法。
2.采用小组合作、讨论交流等形式,培养学生独立思考、合作解决问题的能力。
3.设计丰富的练习题,巩固学生对立方根知识的掌握,提高学生的运算速度和准确率。
4.引导学生运用类比、联想等方法,将立方根与已学的平方根、算术平方根等知识进行联系,形成知识体系。
1.请举例说明立方根在生活中的应用。
2.请思考立方根与平方根的联系和区别。
3.如何计算一个数的立方根?请给出具体步骤。
要求学生在规定时间内进行讨论,并选派代表进行汇报。我在此过程中进行巡回指导,解答学生的疑问。
(四)课堂练习
在课堂练习环节,我会设计以下四类题目,帮助学生巩固所学知识:
1.基础题:计算简单立方根,如√8、√27等。
4.拓展探究题:
-研究立方根的性质,例如:证明一个数的立方根唯一性,讨论立方根的有界性。
人教版数学七年级下册6.2立方根说课稿

为了促进学生的参与和合作,我计划设计以下互动环节:
1.师生互动:在讲解立方根概念和性质时,我会提出问题并邀请学生回答,鼓励他们表达自己的理解和疑问。在讲解计算方法时,我会让学生尝试解题,并给予即时反馈。
2.生生互动:我会组织小组讨论,让学生在小组内共同探讨立方根的应用问题,并分享解题策略。此外,还会安排学生进行同伴教学,互相解释立方根的概念和计算方法。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点,引导学生深入理解:
1.首先,我会介绍立方根的定义,通过举例说明一个数的立方根是一个数的三次方等于这个数。
2.然后,我会展示立方根的性质,如正数的立方根是正数,负数的立方根是负数,0的立方根是0。在此过程中,我会使用PPT和立方体模型来辅助讲解,帮助学生直观地理解这些性质。
4.学习过程中可能缺乏足够的练习和巩固,导致概念记忆不牢固。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.通过引入生活中的实际例子,如建筑、音乐等领域的应用,让学生感受到立方根的实用性和重要性。
2.设计有趣的游戏和竞赛活动,如“立方根接龙”游戏,让学生在轻松愉快的氛围中学习立方根。
(2)掌握立方根的性质,如正数的立方根是正数,负数的立方根是负数,0的立方根是0。
(3)学会计算一个的立方根,包括正数、负数和0的立方根。
2.过程与方法目标:培养学生的逻辑思维能力、观察能力和解决问题的能力。
具体目标:
(1)通过观察和思考,发现立方根的性质。
(2)运用所学知识,解决实际问题,提高解决问题的能力。
4.提醒学生课后复习所学内容,巩固立方根的知识。
(五)作业布置
课后作业将包括以下内容,目的是巩固学生的知识,提高他们的应用能力和自我学习能力:
人教版数学七年级下册6.2立方根(教案)

1.理论介绍:首先,我们要了解立方根的基本概念。立方根是一个数的三次方等于另一个数时,这个数叫做这个三次方的立方根。它是解决一些特定数学问题和实际问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了立方根在求解体积问题中的实际应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了立方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对立方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-立方根与平方根混淆:学生可能会混淆立方根与平方根的概念,误用计算方法。
-立方根在实际问题中的运用:将立方根应用于实际问题解决时,学生可能会忽略立方根的特性,导致解题错误。
举例解释:
-对于难点“立方根的符号理解”,教师可以通过数轴或具体例子解释,如-2的立方是-8,因此-2是-8的立方根。
-在“复合数的立方根计算”中,教师可以通过分解因数或使用计算器等方式,帮助学生理解如何求解。
五、教学反思
在今天的教学过程中,我发现学生们对于立方根的概念和计算方法掌握得还算不错。在导入新课的时候,通过提出与生活相关的问题,学生们表现出了很高的兴趣,这也为后续的教学打下了良好的基础。
课堂上,我注意到有些学生在理论介绍环节听得非常认真,能够跟上我的讲解思路。然而,在案例分析时,部分学生对于如何将立方根应用于实际问题还显得有些迷茫。这让我意识到,在以后的教学中,需要更多地将理论知识与实际案例相结合,让学生在理解概念的同时,能够直观地看到其应用。
人教版数学七年级下册第20课时《6.2立方根(2)》教学设计

人教版数学七年级下册第20课时《6.2立方根(2)》教学设计一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的教学内容,这部分内容是在学生已经掌握了立方根的定义和求法的基础上进行进一步的拓展。
本节课主要让学生进一步了解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析学生在进入七年级下学期之前,已经学习了一定的数学知识,对于基本的算术运算和几何概念有一定的了解。
但是,由于学生的学习背景和学习能力各不相同,对于立方根的理解和应用可能存在差异。
因此,在教学过程中,需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学。
三. 教学目标1.知识与技能:让学生掌握立方根的概念,学会求立方根的方法,并能运用立方根解决实际问题。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 教学重难点1.重点:立方根的概念和求法,以及运用立方根解决实际问题。
2.难点:立方根在实际问题中的应用,以及与其他数学概念的关联。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,让学生在实际情境中理解立方根的意义。
2.自主学习法:鼓励学生自主探究立方根的求法,培养学生的独立思考能力。
3.合作交流法:学生进行小组讨论,分享学习心得,互相学习,共同进步。
4.案例教学法:通过分析实际问题,引导学生运用立方根解决问题,提高学生的应用能力。
六. 教学准备1.教学课件:制作精美的课件,辅助教学,提高学生的学习兴趣。
2.练习题:准备一定数量的练习题,用于巩固所学知识,提高学生的解题能力。
3.教学资源:收集与立方根相关的教学资源,如视频、文章等,丰富教学内容。
七. 教学过程1.导入(5分钟)利用生活中的实例,如冰雪融化、肥料稀释等,引导学生思考立方根的实际意义,激发学生的学习兴趣。
人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。
本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。
但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。
三. 教学目标1.了解立方根的概念,掌握求立方根的方法。
2.能够应用立方根解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.立方根的概念和求法。
2.负数的立方根的理解。
3.应用立方根解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。
六. 教学准备1.PPT课件。
2.练习题和实际问题。
3.教学工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。
”引导学生思考和讨论,引出立方根的概念。
2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。
同时,讲解如何求一个数的立方根,以及负数的立方根。
3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。
练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。
4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。
如“一个立方体的体积是-8立方米,求这个立方体的棱长。
”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。
引导学生思考和讨论,培养学生的数学思维能力。
人教版数学七年级下6.2《立方根》同步教学设计

3.学生在解决实际问题时,可能难以将立方根知识与其他数学知识相结合。教师应通过丰富多样的教学活动,帮助学生建立知识间的联系,提高解决问题的能力。
4.学生的学习兴趣和动机对立方根的学习效果有重要影响。教师应关注学生的情感需求,激发学生的学习兴趣,提高学习积极性。
2.知识传授,重点突破
-使用直观教具,如立方体模型,帮助学生建立立方根的直观形象。
-通过数学推导,引导学生理解立方根的性质,并掌握计算方法。
-对计算过程中常见的错误进行归纳和讲解,帮助学生规避误区。
3.实践应用,难点攻克
-设计具有挑战性的练习题,让学生在解决问题中深化对立方根的理解。
-结合实际问题,如科学实验中的密度计算,指导学生运用立方根知识,提高应用能力。
人教版数学七年级下6.2《立方根》同步教学设计
一、教学目标
(一)知识与技能
1.理解立方根的概念,知道立方根与平方根的区别与联系,能够准确地区分和运用。
2.学会计算立方根,掌握利用计算器求解立方根的方法,提高解题速度和准确性。
3.能够运用立方根解决实际问题,如体积、密度等计算,培养学以致用的能力。
4.掌握立方根的性质,如正数的立方根为正数,负数的立方根为负数,0的立方根为0等,并能灵活运用。
-立方根性质的推导和证明。
-立方根计算过程中的错误理解和操作。
-将立方根知识应用于解决实际问题。
(二)教学设想
针对上述重难点,我提出以下教学设想:
1.创设情境,引入新课
-通过生活实例,如体积的计算,让学生感受到立方根的实际意义。
-利用数学问题,如求解一个立方体的体积,激发学生对立方根的好奇心和探究欲望。
人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。
通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。
二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。
但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。
因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。
三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。
2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。
2.难点:立方根与平方根的联系与区别。
五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。
3.小组合作学习:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。
2.黑板:准备黑板,用于板书重要知识点和示例。
3.练习题:准备一定数量的练习题,用于巩固所学知识。
七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。
例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。
引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。
2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。
通过PPT展示立方根的性质,让学生观察、思考、归纳。
3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。
教师在旁边巡回指导,解答学生的疑问。
人教版七年级数学下册6.2《立方根》教学设计

人教版七年级数学下册6.2《立方根》教学设计一. 教材分析人教版七年级数学下册6.2《立方根》是学生在掌握了有理数的乘方、平方根的基础上,进一步研究立方根的概念和性质。
本节内容主要让学生了解立方根的定义,掌握求一个数的立方根的方法,以及会运用立方根解决实际问题。
教材通过引入立方根的概念,引导学生探究立方根的性质,培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的乘方、平方根的概念和性质,具备了一定的数学基础。
但部分学生对平方根的概念还不是很清晰,可能在理解立方根时会受到干扰。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生建立清晰的概念。
三. 教学目标1.知识与技能:让学生掌握立方根的概念和性质,学会求一个数的立方根,会用立方根解决实际问题。
2.过程与方法:通过观察、探究、总结,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根的方法。
2.难点:立方根在实际问题中的应用。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生建立概念。
2.互动法:教师与学生相互交流,共同探讨问题,提高学生的参与度。
3.实例法:教师运用实际例子,让学生更好地理解立方根的应用。
六. 教学准备1.课件:制作与立方根相关的课件,包括图片、动画、实例等。
2.练习题:准备一些有关立方根的练习题,用于巩固所学知识。
3.教学工具:黑板、粉笔、直尺等。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引出立方根的概念,如“一个正方体的体积是27立方厘米,求这个正方体的棱长。
”让学生思考并讨论,激发学生的学习兴趣。
2.呈现(10分钟)教师给出立方根的定义,解释立方根的概念,并通过动画、图片等形式展示立方根的性质。
同时,引导学生回顾平方根的知识,对比二者之间的异同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2 立方根一、教学目标【知识与技能】1.了解立方根的概念,会用开立方运算求一个数的立方根.2.了解立方根的性质,并学会用计算器计算一个数的立方根或立方根的近似值.3.分清一个数的立方根与平方根的区别.【过程与方法】1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.2.在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想.3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.【情感态度与价值观】1.在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神.2.学生通过对实际问题的解决,体会数学的实用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】立方根的概念、求法和性质.【教学难点】立方根的求法,立方根与平方根的联系及区别.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?(二)探索新知1.出示课件4-7,探究立方根的概念和性质教师问:如图所示,二阶魔方由几个小立方体构成呢?学生答:二阶魔方由8个小立方体构成.教师问:三阶魔方由几个小立方体构成呢?学生答:三阶魔方由27个小立方体构成.教师问:四阶魔方由几个小立方体构成呢?学生答:四阶魔方由64个小立方体构成.教师问:如果一个魔方由27个小立方体构成,它应该是几阶魔方?学生答:解:设这个魔方为x 阶,则: x3 =27. 因为33 =27, 所以x =3.即这个魔方为3阶魔方.教师问:因为3的立方等于27,那么3就叫做27的立方根.想一想:什么数的立方等于-27?学生答:(-3)3=-27,因为-3的立方等于-27,那么-3就叫做-27的立方根.总结点拨:(出示课件8)立方根的定义一般地,如果一个数的立方等于a,这个数就叫做a的立方根或三次方根.教师问:如何表示一个数的立方根?师生一起解答:一个数a的立方根可以表示为:根指数被开方数读作:三次根号 a其中a是被开方数,3是根指数,3不能省略.教师出示问题:完成下表:填一填:教师依次展示学生答案:如下表所示:总结点拨:(出示课件10)立方根的性质:一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.教师强调:1.立方根是它本身的数有1, -1, 0;2.平方根是它本身的数只有0.考点1:求一个数的立方根求下列各数的立方根.(出示课件11)(1) 27 (2)-27 (3) 1(4)-0.064 (5) 027师生共同讨论后解答: 教师依次展示学生解答过程:学生1解:(1)∵33=27,∴27的立方根是3,即 √273=3 . 学生2解:(2)∵(-3)3=-27,∴-27的立方根是-3,即 √−273=-3 . 学生3解:(3)∵(13)3=127,∴127的立方根是13,即 √1273=13.学生4解:(4)∵(-0.4)3=-0.064,∴-0.064的立方根是-0.4,即 √−0.0643=-0.4 . 学生5解:(5)∵03=0,∴0的立方根是0,即 √03=0 . 出示课件13,学生自主练习后口答,教师订正. 2.出示课件14-15,探究立方根的性质 教师出示问题:完成下面的问题: 因为√−83= _______;-√83=_________. 学生答:√−83= __-2_____;-√83=____-2_____. 教师问:所以可以得到:√−83和-√83有何关系呢? 学生答:√−83= -√83. 教师问:完成下面的问题:因为√−273= _______;-√273=_________. 所以√−273______ -√273.学生答:因为√−273= __-3_____;-√273=___-3______. 所以√−273___=___ -√273.教师问:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗? 学生答:互为相反数的数的立方根也互为相反数.即:√−a 3= -√a 3. 教师问:完成下面的问题:√233= _______;√(−2)33=_________. √433= _______;√(−3)33=_________.√033= _______.教师依次展示学生答案: 学生1答:√233= ___2____;√(−2)33=___-2______. 学生2答:√433= ___4____;√(−3)33=___-3______.学生3答:√033= ___0____.教师总结如下:√233= ___2____;√(−2)33=___-2______.√433= ___4____;√(−3)33=___-3______. √033= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有√a 33=a. 教师出示问题:完成下面的问题:(√83)3= _______;(√−83)3==_________. (√273)3= _______;(√−273)3==_________. (√03)3= _______. 教师依次展示学生答案:学生1答:(√83)3= ___8____;(√−83)3=___-8______. 学生2答:(√273)3= __27_____;(√−273)3==___-27____. 学生3答:(√03)3= ___0____. 教师总结如下:解答如下:(√83)3= ___8____;(√−83)3=___-8______. (√273)3= __27_____;(√−273)3==___-27______. (√03)3= ___0____.教师问:观察上边的问题,你得到了什么规律? 学生答:规律:对于任何数a 都有(√a 3)3=a. 3.出示课件16,探究立方根的有关计算教师问:类似开平方运算,求一个数的立方根的运算叫作“开立方”.观察下面的问题,开立方和立方是什么关系呢?学生答:“开立方”与“立方”互为逆运算. 考点2:立方根的计算求下列各式的值:(出示课件17) (1)√643;(2)-√183;(3)√−27643学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程: 学生1解:(1)√643=4; 学生2解:(2)-√183 =-12; 学生3解:(3)√−27643=-34.出示课件18,学生自主练习后口答,教师订正.教师总结:平方根与立方根的区别和联系(出示课件19)4.出示课件20,探究利用计算器求立方根教师问:由于一个数的立方根可能是无限不循环小数,所以我们可以利用计算器求一个数的立方根或它的近似值.请同学们完成下面的题目:用计算器求下列各数的立方根:343,-1.331.教师依次展示学生解答过程: 学生1显示:7所以:√3433=7.学生1显示:-1.1所以:√−1.3313=-1.1.教师强调:不同的计算器的按键方式可能有所差别! 出示课件21,学生自主练习,教师给出答案。
5.出示课件22,探究立方根的规律教师问:用计算器计算...,√0.0002163,√0.2163,√2163, √2160003…, 学生答:√0.0002163=0.06,√0.2163 =0.6,√2163=6, √2160003=60.教师问:用计算器计算√1003(精确到0.001),并利用你发现的规律求√0.13,√0.00013,√1000003的近似值.教师依次展示学生答案: 学生1答:√1003≈4.642. 学生2答:√0.13 ≈0.4642. 学生3答:√0.00013 ≈0.04642. 学生4答:√1000003≈46.42.教师问:通过上边的计算,你能发现什么规律?学生答:被开方数的小数点向左或向右移动3n 位时,立方根的小数点就相应的向左或向右移动n 位(n 为正整数).教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧. (三)课堂练习(出示课件23-27) 练习课件第23-27页题目,约用时20分钟. (四)课堂小结(出示课件28)(五)课前预习预习下节课(6.3第1课时)的相关内容.知道无理数、实数的概念和利用数轴表示实数.七、课后作业教材第51页练习第1,2,3,4题.八、板书设计:1.每个数a都只有一个立方根,记为“3a”,读作“三次根号a”.2.正数的立方根是正数;0的立方根是0;负数的立方根是负数.3.求一个数a的立方根的运算叫做开立方,其中a叫做被开方数.开立方与立方互为逆运算.4.考点讲解考点1 考点2九、教学反思:成功之处:1.在七年级的数学(下)第六章的《实数》中,我们遇到了《立方根》的教学任务.本章前两节的内容“平方根”“立方根”在内容安排上也有很多类似的地方,因此在教学中利用类比方法,让学生通过类比旧知识学习新知识.教学中突出立方根与平方根的对比,分析它们之间的联系与区别,这样新旧知识联系起来,既有利于复习巩固平方根,又有利于立方根的学习与掌握.通过独立思考,小组讨论,合作交流,学生在“自主探索,合作交流”中发挥了他们的主观能动性,感受了立方运算与开立方运算的互逆性,并学会了从开立方与立方是互逆运算中寻找解题信息途径.2.本节课的教学设计是以人教版教材和课程标准为依据,在教学方法上突出体现了“创设情境-----提出问题-----建立模型-----解决问题”的思路,在实际教学中采用了学生自主学习的教学方式.自我反思:通过《立方根》的教学,本人对概念课的教学设计与教学实践有了更深入的了解.在新课程的实施过程中,我们欣喜地看到传统的接受式教学模式已被生动活泼的自主学习、交流合作数学活动所取代.课堂活起来了,学生动起来了,敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲.交流让学生分享快乐和共享资源,从生活出发的教学让学生感受到学习的快乐.。