2022新高考数学高频考点题型归纳50二项分布与超几何分布(学生版)
第9节 二项分布、超几何分布与正态分布

A
[解析]由题意可知,P(X>2)=0.5,故P(X>2.5)=P(X>2)-P(2<X≤2.5)=0.14.
5. (2022年新高考全国Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)= .
0.14
考点一 二项分布
【例 1】某大厦的一部电梯从底层出发后只能在第17,18,19,20层停靠,若该电梯在底层有5个乘客,且每位乘客在这四层的每一层下电梯的概率为,用ξ表示5位乘客在第20层下电梯的人数,则P(ξ=4)= .
D
(2)科研人员在另一个实验中发现,疫苗可多次连续注射,白兔多次注射疫苗后,每次注射的疫苗对白兔是否有效互相不影响,相互独立,试问:如果将实验一中未被感染新冠病毒的白兔的频率当作疫苗的有效率,那么一只白兔注射两次疫苗能否保证有效率达到96%?若能,请说明理由;若不能,请问每支疫苗的有效率至少要达到多少才能满足以上要求.
[解析]每一位乘客是在第20层下电梯为一次试验,且每一位乘客在第20层下电梯的概率都是,因此这是5次独立重复试验,故ξ~B(5,) ,所以P(ξ=4)=() 4×=.
二项分布满足的条件1.每次试验中,同一事件发生的概率是相同的;2.各次试验中的事件是相互独立的;3.每次试验只有两种结果,即事件要么发生,要么不发生;4.随机变量是这n次独立重复试验中事件发生的次数.解此类题时常用互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.
一批产品的一等品率为0.9,从这批产品中每次随机抽取一件,有放回地抽取100次,Χ表示抽到的一等品件数,则D(X)= .
2022届高考数学二轮专题:二项分布超几何分布和正态分布

二项分布、超几何分布和正态分布1.正态分布1.已知随机变量 6,X B p ,2,Y N :,且 122P Y, E X E Y ,则p ()A.12B.13C.14D.16【答案】B【解析】因为随机变量 6,X B p ,所以 6E X p ,因为2,Y N :, 122P Y,所以2 ,即 2E Y ,又 E X E Y ,所以62p ,即13p .2.(多选)已知三个正态分布密度函数22()2i i x i x(x ∈R,i =1,2,3)的图象如图所示,下列关于μ1,μ2,μ3,σ1,σ2,σ3的大小关系正确的是()A.123 B.123 C.123 D.123【答案】AB【解析】正态分布关于x 对称,且 越大图象的对称轴越靠近右边,故第一个曲线的均值比第二和第三的均值小,且二,三两个的均值相等,故123 .越小,曲线越瘦高,则第二个图象 要比第三个的 要小,故123 .故选AB.3.某篮球队在某赛季已结束的8场比赛中,队员甲得分分别为7,8,10,15,17,19,21,23.(1)根据这8场比赛,估计甲每场比赛中得分的均值 和标准差 ;(2)假设甲在每场比赛的得分服从正态分布2(,)N ,且各场比赛间相互没有影响,依此估计甲在82场比赛中得分在不低于26分的平均场数(结果保留整数).5.66 , 5.68 5.70 .正态总体2(,)N 在区间(2,2) 内取值的概率约为95.4%.【答案】(1)估计甲每场比赛中得分的均值 为15,标准差 为5.68;(2)估计甲在82场比赛中得分在不低于26分的平均场数为2.【解析】(1)由题意可得1(78101517192123)158,2222222221[(8)(7)(5)02468]32.258,所以 5.68 ,所以估计甲每场比赛中得分的均值 为15,标准差 为5.68.(2)设甲每场比赛中的得分为随机变量X ,由(1)得甲在每场比赛中得分不低于26分的概率1126[1(22)]10.9540.02322P X P X ,设在82场比赛中,甲得分不低于26分的次数为Y ,则(82,0.023)Y B :,Y 的均值()820.0232E Y ,由此估计甲在82场比赛中得分在不低于26分的平均场数为2.4.5G 网络是第五代移动通信网络的简称,是新一轮科技革命最具代表性的技术之一.2020年初以来,我国5G 网络正在大面积铺开.A 市某调查机构为了解市民对该市5G 网络服务质量的满意程度,从使用了5G 手机的市民中随机选取了200人进行问卷调查,并将这200人根据其满意度得分分成以下6组: 40,50、 50,60、 60,70、…, 90,100,统计结果如图所示:(1)由直方图可认为A 市市民对5G 网络满意度得分Z (单位:分)近似地服从正态分布 2,N ,其中 近似为样本平均数x , 近似为样本的标准差s ,并已求得14.31s .若A 市恰有2万名5G 手机用户,试估计这些5G 手机用户中满意度得分位于区间41.88,84.81的人数(每组数据以区间的中点值为代表);(2)该调查机构为参与本次调查的5G 手机用户举行了抽奖活动,每人最多有3轮抽奖活动,每一轮抽奖相互独立,中奖率均为13.每一轮抽奖,奖金为100元话费且继续参加下一轮抽奖;若未中奖,则抽奖活动结束.现小王参与了此次抽奖活动,求小王所获话费总额X 的数学期望.参考数据:若随机变量Z 服从正态分布2,N ,即2~,Z N ,则0.6827P Z , 220.9545P Z .【答案】(1)16372(人);(2)130027(元).【解析】(1)由题意知样本平均数为450.1550.15650.2750.3850.15950.170.5x ,∴70.5x ,∵14.31s ,所以, 2,41.88,84.81s s ,而 1122222P x Z s P Z Z0.8186 ,故2万名5G 手机用户中满意度得分位于区间 41.88,84.81的人数约为200000.818616372 (人).(2)由题意可知X 的可能取值有0、100、200、300,203p X, 122100339p X , 112220033327p X, 111130033327p X ,∴ 22211300010020030039272727E X(元).2.二项分布1.足球运动是一项在学校广泛开展、深受学生喜爱的体育项目,对提高学生的身心健康具有重要的作用.某中学为了推广足球运动,成立了足球社团,该社团中的成员分为A ,B ,C三个层次,其中A ,B ,C 三个层次的球员在1次射门测试中踢进球的概率如表所示,A ,B ,C 三个层次的球员所占比例如图所示.层次A B C概率231214(1)若从该社团中随机选1名球员进行1次射门测试,求该球员踢进球的概率;(2)若从该社团中随机选1名球员,连续进行5次射门测试,每次踢进球与否相互独立,记踢进球的次数为X ,求X 的分布列及数学期望.【答案】(1)12;(2)分布列见解析,数学期望为2.5.【解析】(1)从该社团随机选1人进行一次射门测试,选自层次A ,B ,C 的成员踢进球的事件分别记为事件A ,B ,C ,则321111111(),(),()10352245420P A P B P C.因为事件A ,B ,C 为互斥事件,所以1111()()()()54202P A B C P A P B P CU U .故从该社团中随机选1名球员进行1次射门测试,球员踢进球的概率为12.(2)由(1)可知从该社团中随机选择1人进行1次射门测试,球员踢进球的概率为12,每次踢进球与否相互独立,所以X 服从二项分布,即15,2X B:,5550125551115110(0),(1),(2)232232232P X C P X C P X C,5553455551101511(3),(4),(5)232232232P X C P X C P X C.X 的分布列为X 012345P13253210321032532132故X 的数学期望1()5 2.52E X.2.某厂生产,A B 两种产品,对两种产品的某项指标进行检测,现各抽取100件产品作为样本,其指标值的频率分布直方图如图所示:以该项指标作为衡量产品质量的标准,该项指标划分等级和收益率如下表,其中1154p .(注:收益率利润总投资额)等级一等品二等品三等品指标值m 140m 120140m 120m 产品收益率p24p 2p (1)求a 的值;(2)将频率分布直方图中的频率近似看作概率,用样本估计总体.①从产品B 中随机抽取3件,求其中一等品件数X 的分布列及数学期望;②在总投资额相同的情况下,若全部投资产品A 或产品B ,试分析投资哪种产品收益更大.【答案】(1)0.030a ;(2)①分布列见解析,95;②投资产品A 的收益更大.【解析】(1)由题可得 0.0050.0100.0150.040101a ,解得0.030a .(2)①由直方图知:产品B 为一等品的概率是35,二等品概率是310,三等品概率是110,由题知随机抽取3件是一等品的件数X 可能的取值是0,1,2,3,且5~33,X B,3003238055125P X C , 21132336155125P X C, 12235412523255P X C, 03332712523355P X C,则X 的分布列为:X 0123P8125361255412527125∴ 8365427901231251251251255E X.②由题可得,产品A 为一等品的概率为710,二等品的概率为14,三等品的概率为120,产品B 为一等品的概率为35,二等品的概率为310,三等品的概率为110,产品A 的收益:22217112174104202010E p p p p p ,产品B 的收益:2222331133451010105E p p p p p ,∴ 22151152201020E E p p p p ,因为1154p ,所以210E E ,即21E E ,故投资产品A 的收益更大.3.印刷行业的印刷任务是由印张数(单位:千张)来衡量的.某印刷企业有甲,乙两种印刷设备,每年的各单印刷任务在180~240千张;当一单任务的印张数不大于210千张时,由甲种印刷设备来完成,当一单任务的印张数大于210千张时,由乙种印刷设备来完成.资料显示1000单印制任务的印张数的频率分布直方图如图所示,现有4单印刷任务,印张数未知,只知道印张数在180~240千张,以相关印张数的频率视为相应事件发生的概率.(1)求a 的值,并求这1000单印刷任务的印张数(单位:千张)的中位数;(2)用X 、Y 分别表示这4单印刷任务中由甲、乙两个印刷设备来完成的个数,记||X Y ,求随机变量 的分布列与数学期望.【答案】(1)0.005a ,中位数为214;(2)分布列见解析,数学期望为1012625.【解析】(1)由频率分布直方图知:(0.01520.02020.025)101a ,解得0.005a .设这1000单印刷任务的印张数(单位:千张)的中位数为x ,由0.005100.015100.02100.4 ,得(210)0.0250.50.4x ,解得214x .(2)由频率分布直方图知,一个任务由甲种印刷机器来完成的概率为:20.005100.015100.02100.45,所以由乙种印刷机器来完成的概率为35,由题意||X Y ,则 的可能取值为0,2,4;0 表示甲乙分别完成两个任务,概率为222423216(0)55625P C;2 表示甲完成1个任务而乙完成3个任务或甲完成3个任务而乙完成1个任务,概率为1331134********(2)C C 5555625P;4 表示任务全部由甲完成或乙完成,其概率442397(4)55625P,则随机变量 的分布列为:024p21662531262597625所以随机变量 的数学期望为216312971012()024625625625625E.4.某学习网按学生数学成绩的水平由高到低分成甲、乙两档,进行研究分析,假设学生做对每道题相互独立,其中甲、乙档学生做对每道题的概率分别为p ,58p ,现从甲、乙两档各抽取一名学生成为一个学习互助组合.(1)现从甲档中选取一名学生,该生5道题做对4道题的概率为 f p ,求出 f p 的最大值点0p ;(2)若以0p 作为p 的值,①求每一个互助组合做对题的概率;②现选取n 个组合,记做对题的组数为随机变量X ,当90X 时, P X 取得最大值,求相应的n 和 E X .【答案】(1)045p;(2)①0.9;②答案见解析.【解析】(1)由题可知 4445151f p C p p p p , 3545f p p p ,令 0f p ,得45p .当40,5p 时, 0f p , f p 在40,5上单调递增;当4,15p时, 0f p , f p 在4,15上单调递减,所以 f p 的最大值点045p.(2)①记事件A 为一个互助组合做对题,事件B 为一个互助组合中甲档中的学生做对题,事件C 为一个互助组合中乙档中的学生做对题,则4()5P B, 451582P C , 11110.952P A P B P C .②由题意知随机变量 ,0.9X B n :, 0.90.10,1,2,,k k n kn P X k C k n ,因为 90P X 最大,所以9090909191919090908989890.90.10.90.10.90.10.90.1n n n n n n n n C C C C ,解得901999n ,因为n 是整数,所以99n 或100n ,当99n 时, 990.989.1E X np ;当100n 时, 1000.990E X np .3.超几何分布1.2021年8月8日,东京奥运会落下帷幕.400多名中国奥运健儿在比赛中积极弘扬奥林匹克精神,敢于挑战极限、超越自我,展现了精湛的竞技水平和顽强的拼搏精神.为了鼓励更多的市民参与体育锻炼,某城市随机抽取了100名市民对其每月(按30天)的运动天数进行了统计:平均每月运动的天数x5x 515x 1525x 25x 人数20403010我们把每月运动超过15天称为热衷运动,不超过15天称为一般运动,为了了解运动是否与性别有关,得到了以下22 列联表:一般运动热衷运动合计男性22女性1250合计100(1)完成22 列联表,并判断是否有99%的把握认为运动与性别有关?(2)依据统计表,用分层抽样的方法从这100个人中抽取10个,再从抽取的10个人中随机抽取3个,用X 表示抽取的是“热衷运动”的人数,求X 的分布列及数学期望 E X .附:20P K k 0.1000.0500.0100.0010k 2.7063.8416.63510.82822n ad bc K a b c d a c b d,n a b c d .【答案】(1)列联表见解析,有99%的把握认为运动与性别有关;(2)分布列见解析,数学期望 65E X.【解析】(1)完善22 列联表如下表所示:一般运动热衷运动合计男性222850女性381250合计604010022100221238283210.667 6.635604050503K,所以有99%的把握认为运动与性别有关.(2)根据分层抽样,10个人中抽取的热衷运动的人数为4人,一般运动的人数为6人,从抽取的10个人中随机抽取3个,X 表示抽取的是“热衷运动”的人数,X 的可能取值为0、1、2、3,则 36310C 10C 6P X , 2164310C C 11C 2P X , 1264310C C 32C 10P X , 34310C 13C 30P X,所以X 的分布列为:X 0123P1612310130所以X 的数学期望 1131601236210305E X.2.第24届冬季奥运会将于2022年2月在北京和张家口举办.为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从高一年级(共六个班)答题优秀的学生中随机抽查了20名,得到这20名优秀学生的统计如下:高一班级一(1)一(2)一(3)一(4)一(5)一(6)人数454331(1)从这20名学生中随机抽取两名学生参加区里冬奥知识比赛.(i)恰好这2名学生都来自同一班级的概率是多少?(ii)设这2名学生中来自高一(2)的人数为 ,求 的分布列及数学期望;(2)如果该校高中生的优秀率为0.1,从该校中随机抽取2人,这两人中优秀的人数为 ,求 的期望.【答案】(1)(i)1495;(ii)分布列见解析,12;(2)0.2.【解析】(1)(i )20名学生中随机抽取两名学生共有220190C ,设恰好2名学生都来自同一班级共有222224543328C C C C C ,2814()191095P A .(ii ) 可取0,1,2,215220105(0)190C P C ,1115522075(1)190C C P C ,2522010(2)190C P C , 的分布列为:012P 1051907519010190的期望 75110211901902E .(2) 可取0,1,2,(2,0.1)B :,所以 0.120.2E .3.为缓解城市垃圾带来的问题,许多城市实行了生活垃圾强制分类.为了加强学生对垃圾分类意义的认识以及养成良好的垃圾分类的习惯,某学校团委组织了垃圾分类知识竞赛活动.设置了四个箱子,分别标有“厨余垃圾”“有害垃圾”“可回收物”“其他垃圾”;另有写有垃圾名称的卡片若干张.每位参赛选手从所有写有垃圾名称的卡片中随机抽取20张,按照自己的判断,将每张卡片放入对应的箱子中.规定每正确投放一张卡片得5分,投放错误得0分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子得5分,放入其他箱子得0分.从所有参赛选手中随机抽取40人,将他们的得分分成以下5组:[0,20],(20,40],(40,60],(60,80],(80,100],绘成如下频率分布直方图:(1)求得分的平均数(每组数据以中点值代表);(2)学校规定得分在80分以上的为“垃圾分类知识达人”.为促进社区的垃圾分类,学校决定从抽取的40人中的“知识达人”(其中含A ,B 两位同学)中选出两人利用节假日到社区进行垃圾分类知识宣讲,求A ,B 两人至少有1人被选中的概率;(3)从所抽取的40人中得分落在组[0,40]的选手中随机选取3名选手,用X 表示这3名选手中得分不超过20分的人数,求X 的分布列和数学期望.【答案】(1)56;(2)1328;(3)分布列见解析,65.【解析】(1)由频率分布直方图可求得各组的频率自左到右依次为:0.1,0.15,0.3,0.25,0.2,所以得分的平均数100.1300.15500.3700.25900.256x .(2)所抽取的40人中,得分在80分以上的有400.28 人,故所求概率为2628C 151311C 2828.(3)由题可知X 的所有可能取值为0,1,2,3,得分在[0,20]的人数400.14 ,得分在(20,40]的人数为400.156 人.36310C 1(0)C 6P X ,1246310C C 1(1)C 2P X ,2146310C C3(2)C 10P X ,34310C 1(3)C 30P X ,所以X 的分布列为X 0123P 1612310130所以X 的数学期望11316()01236210305E X .。
高考数学一轮复习考点知识与题型讲解20 超几何分布与二项分布(含解析)

高考数学一轮复习考点知识与题型讲解 考点20 超几何分布与二项分布一.分布列1.离散型随机变量的分布列(1)随着试验结果变化而变化的变量叫做随机变量.所有取值可以一一列出的随机变量叫做离散型随机变量.(2)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表为离散型随机变量X 的概率分布列,简称为X 的分布列,具有如下性质: ①p i ≥0,i =1,2,…,n ;②p 1+p 2+…+p i +…+p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 二.两点分布如果随机变量X 的分布列为其中0<p <1,则称离散型随机变量X P (X =1)称为成功概率. 三.超几何分布1.概念:一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =k )=C k M C n -kN -MC n N(k =0,1,2,…,m ).即X 01…mP C0M C n-0N-MC n NC1M C n-1N-MC n N…C m M C n-mN-MC n N其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.如果一个随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布.2.特征(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数(2)考察对象分两类(3)已知各类对象的个数(4)从中抽取若干个个体,考查某类个体数X的概率分布.,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型四.独立重复试验与二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n次独立重复试验中,用X表示事件A发生的次数.设每次试验中事件A发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记为X~B(n,p),并称p为成功概率.五.条件概率及其性质(1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示,其公式为P(B|A)=P ABP A(P(A)>0).在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n ABn A.(2)条件概率具有的性质①0≤P(B|A)≤1;②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).考点题型分析考点题型一 离散型随机变量的分布列的性质【例1】(1)(2022·全国高三专题练习)随机变量X 的分布列如表:若()2E X =,则()D X =( ) A .32B .43C .54D .65(2)(2022·浙江高三)已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .236【答案】(1)A(2)C【解析】(1)由分布列的性质以及期望公式可得()1242212E X a b a b ⎧=++=⎪⎪⎨⎪+=⎪⎩,解得14a b ==.()()()()22211131222422442D X =-+-+-=.故选:A. (2)由分布列的性质可得11123a ++=,得16a =,所以,()11151232363E X =⨯+⨯+⨯=,因此,()()11517222266362E X a E X E X ⎛⎫+=+=+=⨯+= ⎪⎝⎭.故选:C.【举一反三】1.(2022·全国高三专题练习)随机变量X的分布列如下,()14P X≤<的值为( )A.0.6 B.0.7 C.0.8 D.0.9【答案】C【解析】随机变量X的分布列知:10.10.20.30.10.3x=----=,()()()()14123P X P P P≤<=++0.20.30.3=++0.8=.故选:C.【方法总结】1.随机变量是否服从超几何分布的判断若随机变量X服从超几何分布,则满足如下条件:(1)该试验是不放回地抽取n次;(2)随机变量X表示抽取到的次品件数(或类似事件),反之亦然.2.离散型随机变量分布列的求解步骤三.若Y=aX+b,其中a,b是常数,X是随机变量,则(1)E(k)=k,D(k)=0,其中k为常数;(2)E(aX+b)=aE(X)+b,D(aX+b)=a2D(X);(3)E(X1+X2)=E(X1)+E(X2);(4)D(X)=E(X2)-(E(X))2;(5)若X1,X2相互独立,则E(X1·X2)=E(X1)·E(X2);(6)若X~N(μ,σ2),则X的均值与方差分别为:E(X)=μ,D(X)=σ2.2.(2022·全国高三专题练习)随机变量ξ的分布列如表所示,若1()E X =-,则(31)D X +=( )A .4B .5C .6D .7【答案】B【解析】根据题意,可知:112a b ++=,则12a b +=,()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=,∴5(31)D X +=.故选:B. 3.(2022·全国高三专题练习)若随机变量X 的分布列为则a 的值为( ) A .0.1 B .0.2C .0.3D .0.4【答案】B【解析】由题意可得,0.231a a ++=,解得0.2a =.故选:B.4.(2022·浙江高三其他模拟)随机变量X 的分布列如下表,已知()122P x ≤=,则当b 在10,2⎛⎫ ⎪⎝⎭内增大时( )A .()E X 递减,()D X 递减B .()E X 递增,()D X 递减C .()E X 递减,()D X 递增 D .()E X 递增,()D X 递增【答案】B【解析】因为()122P x ≤=,所以12a b +=,12c =, 所以()232E X a b c b =++=+,所以当b 在10,2⎛⎫ ⎪⎝⎭内增大时,()E X 递增;所以()()()()2222115122232224D X a b b b b b ⎛⎫=-++-++-+=-++⎡⎤⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎣⎦⎝⎭, 所以当b 在10,2⎛⎫⎪⎝⎭内增大时,()D X 递减.故选:B.考点题型二 超几何分布【例2】(2022·全国高三)“花开疫散,山河无恙,心怀感恩,学子归来,行而不缀,未来可期”,为感谢全国人民对武汉的支持,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者参与网络云直播.将这20名志愿者的身高编成如下茎叶图(单位:厘米).若身高在175cm 及其以上定义为“高个子”,否则定义为“非高个子”,且只有文学院的“高个子”才能担任兼职主持人.(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数.(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则从这5人中选2人,那么至少有一人是“高个子”的概率是多少;(3)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职主持人”的人数,试写出ξ的分布列,并求ξ的数学期望.【答案】(1)168.5cm ;(2)710;(3)分布列见解析,98. 【解析】(1)根据志愿者的身高茎叶图知文学院志愿者身高为:158,159,161,162,165,168,169,173,174,176,180,181,其升高的中位数为:168169168.52+=cm ; (2)由茎叶图可知,“高个子”有8人,“非高个子”有12人, ∴按照分层抽样抽取的5人中“高个子”为85220⨯=人,“非高个子”为125320⨯=人, 则从这5人中选2人,至少有1人为高个子的概率23257110C P C =-=;(3)由题可知:文学院的高个子只有3人,则ξ的可能取值为0、1、2、3,故305338105(0)5628C C P C ξ⋅====,2153383015(1)5628C C P C ξ⋅====, 12533815(2)56C C P C ξ⋅===,0353381(3)56C C P C ξ⋅===, 即ξ的分布列为:所以19()0123282856568E ξ=⨯+⨯+⨯+⨯=. 【举一反三】1.(2022·全国高三专题练习)为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数;(2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 【答案】(1)240人;(2)分布列见解析,2;(3)2212s s .【解析】(1)由折线图可得共抽取了20人,其中男生中学习时间不足4小时的有8人,女生中学习时间不足4小时的有4人.故可估计全校学生中每天学习时间不足4小时的人数为400×1220=240. (2)学习时间不少于4小时的学生共8人,其中男生人数为4, 故X 的所有可能取值为0,1,2,3,4. 由题意可得P (X=0)=4448170C C =,P (X=1)=1344481687035C C C ==, P (X=2)=22444836187035C C C ==, P (X=3)=3144481687035C C C ==, P (X=4)=4448170C C =.所以随机变量X 的分布列为∴均值E (X )=0×170+1×835+2×1835+3×835+4×170=2.(3)由折线图可得2212s s >.2.(2022·全国高三专题练习)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名五年级学生进行了问卷调查得到如下列联表(平均每天喝500mL 以上为常喝,体重超过50kg 为肥胖):已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为415.(1)请将上面的列联表补充完整;(2)是否在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关?请说明你的理由;(3)若常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,设正好抽到的女生为X名,求随机变量X的分布列与期望.参考数据:(参考公式:22()()()()()n ad bcKa b a c c d b d-=++++,其中n a b c d=+++)【答案】(1)答案见解析;(2)在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关;理由见解析;(3)答案见解析.【解析】(1)设常喝碳酸饮料肥胖的学生有x人,则243015x+=,解得6x=,填表如下:(2)由已知数据可求得:2230(61824)8.5237.8791020822K⨯⨯-⨯=≈>⨯⨯⨯,因此在犯错误概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关;(3)依题意,常喝碳酸饮料的肥胖者男生有4名,女生有2名,随机变量X的取值分别为0、1、2,∴0224262(0)5C C P X C ⋅===, 1124268(1)15C C P X C ⋅===, 2024261(2)15C C P X C ⋅===, 则随机变量X 的分布列为:因此随机变量X 的期望2812()0121515153E X =⨯+⨯+⨯=. 3.(2022·全国高三)巴西世界杯足球赛正在如火如荼进行.某人为了了解我校学生“通过电视收看世界杯”是否与性别有关,从全校学生中随机抽取30名学生进行了问卷调查,得到了如下列联表:已知在这30名同学中随机抽取1人,抽到“通过电视收看世界杯”的学生的概率是815. (1)请将上面的列联表补充完整,并据此资料分析“通过电视收看世界杯”与性别是否有关? (2)若从这30名同学中的男同学中随机抽取2人参加一活动,记“通过电视收看世界杯”人数为X ,求X 的分布列和均值.附:参考公式:22()()()()()n ad bc K a b a c c d b d -=++++,n a b c d =+++.【答案】(1)填表见解析;没有充足的理由认为“通过电视收看世界杯”与性别有关;(2)分布列见解析;均值为54. 【解析】(1)设“通过电视收看世界杯”的女生为x 人,则1083015x +=,解得6x =,由已知数据得:2230(10866) 1.158 3.84116141614K ⨯⨯-⨯=≈<⨯⨯⨯,∴没有充足的理由认为“通过电视收看世界杯”与性别有关; (2)X 可能取值为0、1、2,则:262161(0)8C P X C ===,116102161(1)2C C P X C ===, 2102163(2)8C P X C ===,∴X 的分布列为:X 的均值为:1135()0128284E X =⨯+⨯+⨯=.考点题型三 条件概率【例3】(2022·四川省新津中学高三开学考试)长春气象台统计,7月15日净月区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设事件A 为下雨,事件B 为刮风,那么()|P A B =( )A .12B .34C .25D .38【答案】B【解析】由题意,可知421(),(),()151510P A P B P AB ===, 利用条件概率的计算公式,可得1()310(|)2()415P AB P A B P B ===,故选B.【举一反三】1.(2022·江苏省溧阳中学高三开学考试)甲、乙、丙、丁四名同学分别从篮球、足球、排球、羽毛球四种球类项目中选择一项进行活动,记事件A 为“四名同学所选项目各不相同”,事件B 为“只有甲同学选羽毛球”,则()|P A B =( )A .89B .29C .38D .34【答案】B【解析】事件AB :甲选羽毛球且四名同学所选项目各不相同,所以其它3名同学排列在其它3个项目,且互不相同为33A ,事件B :甲选羽毛球,所以其它3名同学排列在其它3个项目,可以安排在相同项目为33,()()()3343424|394A P AB P A B P B ===.故选:B(2)(2022·四川眉山市·仁寿一中高三月考)现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A 表示事件“抽到的两名医生性别相同”,B 表示事件“抽到的两名医生都是女医生”,则()P B A =( )A .13B .47C .23D .34【答案】A【解析】由已知得22432793()217C C P A C +===,232731()217C P AB C ===, 则()P B A =1()173()37P AB P A ==,故选:A 3.(2022·黑龙江大庆市·大庆实验中学高三开学考试)2022年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A =“4个医疗小组去的国家各不相同”,事件B =“小组甲独自去一个国家”,则P (A |B )=( ) A .29B .13C .49D .59【答案】A【解析】由题意444()4A P A =,()()P AB P A =,3443()4P B ⨯=,∴44434()24(|)43()94A P AB P A B P B ===⨯.故选:A . 4.(2022·黑龙江牡丹江市·牡丹江一中高三开学考试)一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球,如果不放回的依次取出2个球.在第一次取出的是黑球的条件下,第二次取出的是白球的概率是( ) A .12B .310C .35D .25【答案】A【解析】第一次取出黑球后,剩余4个球,其中2个白球,所以第二次取出的是白球的概率是2142=.故选:A.考点题型四 二项分布【例4】(2022·全国高三专题练习)某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.【答案】(1)甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大,乙同学做解答题相对稳定些;(2)分布列见解析,38. 【解析】(1)1=8x 甲(7+9+11+13+13+16+23+28)=15,1=8x 乙(7+8+10+15+17+19+21+23)=15,21=8s 甲 [(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,21=8s 乙[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12, 两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2.依题意,32,16XB ⎛⎫ ⎪⎝⎭, ()22313,0,1,21616kkk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则X 的分布列为X 的均值E (X )=2168⨯=. 【举一反三】1.(2022·全国高三专题练习)为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h 的有40人,不超过100km/h 的有15人;在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h 的有25人.(1)在被调查的驾驶员中,从平均车速不超过100km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100km/h 且为男性驾驶员的车辆为X ,求X 的分布列. 【答案】(1)2552;(2)分布列答案见解析. 【解析】(1)平均车速不超过100km/h 的驾驶员有40人,从中随机抽取2人的方法总数为240C ,记“这2人恰好有1名男性驾驶员和1名女性驾驶员”为事件A ,则事件A 所包含的基本事件数为111525C C ⋅,所以所求的概率()1115252402552C C P A C ==. (2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100km/h 且为男性驾驶员的概率为4021005=,故2(3,)5X B .所以()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()12132354155125P X C ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭, ()2232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()3033238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 所以X 的分布列为2.(2022·全国高三专题练习)某学校用“10分制”调查本校学生对教师教学的满意度,现从学生中随机抽取16名,以茎叶图记录了他们对该校教师教学满意度的分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)若教学满意度不低于9.5分,则称该生对教师的教学满意度为“极满意”.求从这16人中随机选取3人,至少有1人是“极满意”的概率;(2)以这16人的样本数据来估计整个学校的总体数据,若从该校所有学生中(学生人数很多)任选3人,记X 表示抽到“极满意”的人数,求X 的分布列及数学期望. 【答案】(1)1728;(2)分布列见解析,()34E X =.【解析】(1)16人中满意的有4人,不满意的有12人,设i A 表示所抽取的3人中有i 个人是“极满意”,至少有1人是“极满意”记为事件A ,则抽出的3人都不满意的概率为()31203161128C P A C ==,所以()()01117112828P A P A =-=-=, (2)X 的所有可能取值为0,1,2,316人中满意的有4人,不满意的有12人,随机抽取一人极满意的概率为41164=, 所以13,4X B ⎛⎫~ ⎪⎝⎭,所以()33270464P X ⎛⎫===⎪⎝⎭,()213132714464P X C ⎛⎫==⨯⨯=⎪⎝⎭,()22313924464P X C ⎛⎫==⨯⨯= ⎪⎝⎭,()333113464P X C ⎛⎫==⨯= ⎪⎝⎭.所以X 的分布列为所以()1236464644E X =⨯+⨯+⨯=.3.(2022·凯里市第三中学高三月考)北京是历史悠久的千年古都,现在是中国的政治、经济、文化等多领域的中心,历史文化积淀深厚,自然人文景观丰富,科学技术发达,教育资源众多,成为当代绝大多数人的理想向往之地.凯里市为了将来更好的推进“研学游学”项目来丰富中学生的课余生活,帮助中学生树立崇高理想,更好地实现人生价值.为了更好了解学生的喜好情况,某组织负责人把项目分为历史人文游、科技体验游、自然风光游三种类型,并在全市中学中随机抽取10所学校学生意向选择喜好类型,统计如下:在这10所中小学中,随机抽取了3所学校,并以统计的频率代替学校选择研学游学意向类型的概率(假设每所学校在选择研学游学类型时仅能选择其中一类,且不受其他学校选择结果的影响). (1)若这3所学校选择的研学游学类型是历史人文游、自然风光游,求这两种都有学校选择的概率; (2)设这3所学校中选择科技体验游学校的随机数X ,求X 的分布列与数学期望. 【答案】(1)18125;(2)分布列见解析,6()5E X =.【解析】(1)由题设学校选择历史人文游、科技体验游、自然风光游的概率分别为()P A 、()P B 、(C)P ,则易知2()5P A =,2()5P B =,1()5P C =, 所以这3所学校选择的研学游学类型是历史人文游、自然风光游的概率为1222133()()()()P C P A P C C P A P C =⋅+⋅1222332121()()5555C C =+61218125125125=+=; (2)由题知这3所学校中选择科技体验游学校的概率为2()5P B =, 选择非科技体验游学校的概率为2213()()555P P A P C =+=+=,所以X 的所有可能值有:0,1,2,3, 则03033232327(0)()()()55125P X C P B P C ====,1121123232354(1)()()()55125P X C P B P C ====,2212213232336(2)()()()55125P X C P B P C ====,330330323238(3)()()()55125P X C P B P C ====,所以X 的分布列如下:所以X 的数学期望为86()01231251251251255E X =⨯+⨯+⨯+⨯=.。
高考数学专题复习:二项分布与超几何分布

高考数学专题复习:二项分布与超几何分布一、单选题1.盒中有10只螺丝钉,其中有2只是坏的,现从盒中随机地抽取4只,那么恰好有2只是坏的的概率为( ) A .1210B .145C .215D .1152.已知某运动员每次射击击中目标的概率是p ,假设每次射击击中目标与否互不影响,设ξ为该运动员n 次射击练习中击中目标的次数,且()8E ξ=,() 1.6ξ=D ,则p 值为( ) A .0.6 B .0.8 C .0.9D .0.923.已知随机变量X 服从二项分布1(3)3B ,,当{}0123k ∈,,,时,()P X k =的最大值是( ).A .827 B .49C .19D .1274.12人的兴趣小组中有5人是“三好学生”,现从中任选6人参加竞赛.若随机变量X 表示参加竞赛的“三好学生”的人数,则3357612C C C 为( )A .P (X =6)B .P (X =5)C .P (X =3)D .P (X =7)5.袋中共有10个除了颜色外完全相同的球,其中有6个白球,4个红球.从袋中任取3个球,所取的3个球中至少有1个红球的概率为( ) A .12125 B .16C .98125D .566.某批零件的尺寸X 服从正态分布()210,N σ,且满足()196P x <=,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n 件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n 的最小值为( ) A .7B .6C .5D .47.若随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=,则p =( ) A .15B .25C .35D .458.已知随机变量~(4,)X B p ,若8()3E X =,则(2)P X ==( )A .29B .49C .89D .827二、填空题9.学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X ,求(1)P X ≤=__________.10.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得2分,取到1只黑球得3分,设得分为随机变量ξ,则(9)P ξ≤=__________.11.若随机变量X 服从二项分布1(5,)2B ,那么(1)P X ≤=__________.12.从一批含有13件正品,2件次品的产品中,不放回地任取3件,则取得次品数为1的概率为__________(结果用最简分数表示).13.10名同学中有a 名女生,若从中抽取2个人作为学生代表,恰好抽取1名女生的概率为1645,则a =__________. 14.已知随机变量~(2,),~01X B p Y -,若()()10.64,1P X P Y p ≥===,则(0)P Y =的值等于__________. 三、解答题15.一个盒子中有10个小球,其中3个红球,7个白球.从这10个球中任取3个. (1)若采用无放回抽取,求取出的3个球中红球的个数X 的分布列; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 的分布列.16.小明和小林做游戏,每人连续投掷一枚均匀的硬币5次,谁投掷出的结果的概率小,谁就获胜,概率相等则为平局.(1)小明连续5次都是正面朝上,小林前3次是反面朝上,后2次是正面朝上,两人都认为自己赢了,你认为小明和小林谁赢了(通过计算两人的概率说明); (2)如果用X 表示小明5次投掷中正面朝上的次数,求X 的分布列及期望; (3)已知在某局中小林先投,5次中出现2次正面朝上,问小明赢的概率有多大?17.某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果,某采购商从采购的一批水果中随机抽取100个,利用水果的等级分类标准得到的数据如下:(1)若将频率视为概率,从这100个水果中有放回地随机抽取3个,求恰好有2个水果是礼品果的概率;(结果用分数表示)(2)用分层抽样的方法从这100个水果中抽取10个,再从抽取的10个水果中随机抽取2个,若X 表示抽到的精品果的数量,求X 的分布列和期望.18.甲盒中装有3个红球和2个黄球,乙盒中装1红球和4个黄球.(Ⅰ)从甲盒有放回地摸球,每次摸出一个球,摸到红球记1分,摸到黄球记2分.某人摸球4次,求该人得分ξ的分布列以及数学期望()E ξ;(Ⅱ)若同时从甲、乙两盒中各取出2个球进行交换,记交换后甲、乙两盒中红球的个数分别为1ξ、2ξ,求数学期望()1E ξ,()2E ξ.19.一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分). (1)设每盘游戏中出现“6点”的次数为X ,求X 的分布列和数学期望()E X ; (2)玩两盘游戏,求两盘中至少有一盘获得15分的概率;(3)玩过这款游戏的许多人发现,若干次游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象.20.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列.参考答案1.C 【分析】利用超几何分布概率公式计算概率. 【详解】解: 设X k =表示取出的螺丝钉恰有k 只是坏的,则()()428410C C 0,1,2C k k P X k k -===. ∴()2228410C C 22C 15P X ===.故选:C . 2.B 【分析】由ξ服从(,)B n p ,根据二项分布的均值和方差公式列式求解. 【详解】 由题意(,)B n p ξ,所以()8()(1) 1.6E np D np p ξξ==⎧⎨=-=⎩,解得0.810p n =⎧⎨=⎩.故选:B . 3.B 【分析】由二项分布的概率公式依次求解可得答案 【详解】解:因为随机变量X 服从二项分布1(3)3B ,,所以3312()()()33kk k P X k C -==⋅⋅,{}0123k ∈,,, 所以0033128(0)()()3327P X C ==⋅⋅=,1123124(1)()()339P X C ==⋅⋅=,2213122(2)()()339P X C ==⋅⋅=,3303121(3)()()3327P X C ==⋅⋅=,∴max 4()(1)9P X k P X ====, 故选:B . 4.C 【分析】根据题意得到变量X 服从参数为12,5,6N M n ===的超几何分布,结合概率的计算的公式,即可求解. 【详解】由题意知,随机变量X 服从参数为12,5,6N M n ===的超几何分布,由概率的计算公式()k n k M N M nN C C P X k C ---=,可得3357612C C C 表示的是3X =的取值概率. 故选:C. 5.D 【分析】根据题意,该问题符合超几何分布,利用超几何分布概率公式计算所取的3个球中没有1个红球的概率,进而可得答案. 【详解】根据题意,该问题符合超几何分布,其基本事件总数为310C , 其中所取的3个球中没有1个红球的基本事件为36C ,所求概率为36310C 1511C 66-=-=.故选:D. 6.C 【分析】由正态分布解得每个零件合格的概率为23,由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13nn +⋅<,令1()(21)()(*)3n f n n n N =+⋅∈,由()f n 的单调性可解得结果.【详解】X 服从正态分布2(10,)N σ,且1(9)6P X <=, 2(911)3P X ∴≤≤=,即每个零件合格的概率为2.3合格零件不少于2件的对立事件是合格零件个数为零个或一个. 合格零件个数为零个或一个的概率为01111()()3323n n n n C C -⋅+⋅⋅, 由011121()()0.1333nn n n C C -⋅+⋅⋅<,得1(21)()0.13n n +⋅<, 令1()(21)()(*)3nf n n n N =+⋅∈,(1)231()63f n n f n n ++=<+,()f n ∴单调递减,又(5)0.1f <,(4)0.1f >, ∴不等式1(21)()0.13n n +⋅<的解集为{|5,*}.n nn N ∈n ∴的最小值为5.故选:C. 【点睛】关键点点睛:本题的关键点是:由对立事件得011121()()0.1333n n n n C C -⋅+⋅⋅<,即1(21)()0.13n n +⋅<.7.A 【分析】利用二项分布的期望公式和方差公式列方程组求解即可 【详解】解:因为随机变量~(,)B n p ξ,且()2E ξ=,8()5D ξ=, 所以28(1)5np np p =⎧⎪⎨-=⎪⎩,解得1015n p =⎧⎪⎨=⎪⎩,故选:A 8.D 【分析】根据数学期望值求出p ,再利用公式计算概率(2)P X =的值. 【详解】解:由随机变量~(4,)X B p , 且8()3E X =,即843np p ==,解得23p =; 2224228(2)()(1)3327P X C ∴==-=.故选:D . 9.67【分析】本题主要考查了超几何分步的概率计算,属于基础题.根据题意,X 的取值为0或1,代入超几何分布公式求出对应概率,再相加即可. 【详解】 解:由题意可得()305237C C 1020C 357P X ====,()215237C C 2041C 357P X ====,所以()()()246101777P X P X P X ≤==+==+=. 故答案为:67.10.1335【分析】由题知取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,进而根据超几何分布求概率即可. 【详解】解:由题知,取得红球的个数为1,2,3,4,对应的黑球个数为3,2,1,0,所以3144344713(9)35C C C P C ξ+≤== 故答案为:133511.316【分析】首先根据二项分布的概率公式求出(1)P X =,(0)P X =,再根据()()(1)01P X P X P X ≤==+=计算可得;【详解】解:因为随机变量X 服从二项分布1(5,)2B所以415115(1)12232P X C ⎛⎫==⋅-= ⎪⎝⎭,50511(0)1232P X C ⎛⎫==-= ⎪⎝⎭,所以()()153(1)01323216P X P X P X ≤==+==+= 故答案为:31612.1235【分析】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,根据超几何分布的概率计算公式直接求解即可. 【详解】设随机变量X 表示取出次品的个数,则X 服从超几何分布,其中15N =.2M =.3n =,它的可能的取值为0,1,2,相应的概率为1221331512(1)35C C P X C ⋅===. 故答案为:1235. 13.2或8 【分析】利用超几何分布概率公式计算即可. 【详解】根据题意,得1645=1110-210a aC C C ,解得a =2或a =8. 故答案为:2或8. 14.0.6 【分析】根据二项分布的概率性质计算求解. 【详解】12222(1)(1)(2)(1)0.64P X P X P X C p p C p ≥==+==-+=,解得0.4p =( 1.6p =舍去),(0)1(1)110.40.6P Y P Y p ==-==-=-=.故答案为:0.6.15.(1)答案见解析;(2)答案见解析. 【分析】(1)若采用无放回抽取,求取出的3个球中红球的个数X 服从超几何分布337310()k kC C P X k C -==,计算即可; (2)若采用有放回抽取,求取出的3个球中红球的个数Y 服从二项分布33()0.3(10.3)kk k P Y k C -==⨯⨯-,计算即可.【详解】解:(1)由题意知,随机变量X 的所有可能取值为0,1,2,3, 且X 服从参数为10N =,3M =,3n =的超几何分布,因此337310()k kC C P X k C -==,0,1,2,3k =, 所以03373107(0)24C C P X C ===,123731021(1)40C C P X C ===,21373107(2)40C C P X C ===,30373101(3)120C C P X C ===;所以X 的分布列为:(2)随机变量Y 的所有可能取值为0,1,2,3,且()~3,0.3Y B ,所以0033(0)0.3(10.3)0.343P Y C ==⨯⨯-=,1123(1)0.3(10.3)0.441P Y C ==⨯⨯-=,223(2)0.3(10.3)0.189P Y C ==⨯⨯-=,3303(3)0.3(10.3)0.027P Y C ==⨯⨯-=,所以Y 的分布列为:16.(1)两人为平局;(2)分布列见解析;期望为52;(3)38.【分析】(1)分别计算两者出现的概率,通过比较大小,即可求解;(2)由题意可得,X 的所有可能取值为0,1,2,3,4,5,分别求出对应的概率,即可得X 的分布列,并结合期望公式,即可求解;(3)由(2)知,小林投掷5次出现2次正面朝上的概率为516,故小明要赢,必须在投掷5次中出现0,1,4,5次正面朝上,将对应的概率求和,即可求解. 【详解】解:(1)结论:两人为平局 小明11111112222232P =⨯⨯⨯⨯= 小林211111112222232P P =⨯⨯⨯⨯==(2)由题知:0,1,2,3,4,5X =()0505111=02232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1415115=12232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()232511105=2223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()323511105=3223216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()4145115=42232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()5055111=52232P X C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()1555515012+3453232161632322E X =⨯+⨯+⨯⨯+⨯+⨯=(3)由(2)知,小林投掷5次出现2次正面朝上的概率516, 故小明要赢,必须在投掷5次中出现0、1、4、5次正面朝上, 即小明赢的概率15513+++=323232328P = 17.(1)12125;(2)分布列见解析,45.【分析】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,求出()P A ,抽到礼品果的个数1~3,5X B ⎛⎫⎪⎝⎭,由概率公式()2P X =可得答案;(2)用分层抽样得到精品果和非精品果个数,精品果的数量()~10,2,4X H ,所有可能的取值为0,1,2,计算出相应的概率可得答案. 【详解】(1)设从这100个水果中随机抽取1个,其为礼品果的事件为A ,则()2011005P A ==, 现有放回地随机抽取3个,设抽到礼品果的个数为X ,则1~3,5X B ⎛⎫⎪⎝⎭,∴恰好有2个水果是礼品果的概率为()2231412255125P X C ⎛⎫===⎪⎝⎭. (2)用分层抽样的方法从这100个水果中抽取10个,其中精品果有4个, 非精品果有6个,再从中随机抽取2个,则精品果的数量()~10,2,4X H , 所有可能的取值为0,1,2,则()26210103C P X C ===,()11642108115C C P X C ===,()242102215C P X C ===.∴X 的分布列为所以,()424105E X ⨯==. 18.(Ⅰ)分布列见解析,5.6;(Ⅱ)()1 2.2E ξ=,()2 1.8E ξ=. 【分析】(Ⅰ)利用二项分布的概率公式,求出概率,列出分布列,由数学期望的计算公式求解即可; (Ⅱ) 先求出随机变量1ξ的可能取值,然后求出其对应的概率,由数学期望的计算公式求解()1E ξ,再利用()1E ξ与()2E ξ之间的关系求解()2E ξ即可. 【详解】解:(Ⅰ)()()443280,1,2,3,455k kk P k C k ξ-⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,所以ξ的分布列为:()8121621696162845678 5.66256256256256255E ξ=⨯+⨯+⨯+⨯+⨯== (或()3288455E ξ=-⨯=)(Ⅱ)()223412255189110050C C P C C ξ⋅====⋅; ()211112314324122554812210025C C C C C C P C C ξ⋅+⋅====⋅;()221111343214122556243310010C C C C C C P C C ξ⋅+⋅+====⋅;()2112141225541410025C C C P C C ξ⋅====⋅;()191231111234 2.2502510255E ξ=⋅+⋅+⋅+⋅==, ()()214 1.8E E ξξ=-=.19.(1)答案见解析;(2)95144;(3)答案见解析. 【分析】(1)X 的取值范围为{}0,1,2,3,再依次求出对应的概率,从而可得X 的分布列和数学期望;(2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则由(1)可得()()12(1)(2)P A P A P X P X ===+=,所以可求出所求概率()()121P A P A -;(3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-,结合(1)可得Y 的分布列,从而可求出Y 的期望,当期望为负时,说明分数在减少 【详解】解:(1)X 的取值范围为{}0,1,2,3,每次抛掷骰子,出现“6点”的概率为16p =,1(3,)6X B ~,3031125(0)16216P X C ⎛⎫==-= ⎪⎝⎭,2131175(1)166216P X C ⎛⎫==⋅-=⎪⎝⎭, 2231115(2)166216P X C ⎛⎫⎛⎫==⋅-= ⎪⎪⎝⎭⎝⎭,33311(3)6216P X C ⎛⎫=== ⎪⎝⎭, 所以X 的分布列为:所以12525511()012321672722162E X =⨯+⨯+⨯+⨯=. (2)设“第i 盘游戏获得15分”为事件()1,2i A i =,则 ()()12905(1)(2)21612P A P A P X P X ===+===. 所以“两盘游戏中至少有一次获得15分”的概率为 ()()12951144P A P A -=, 因此,玩两盘游戏至少有一次获得15分的概率为95144. (3)设每盘游戏得分为Y ,则Y 的取值范围为{}12,15,120-, 由(1)知,Y 的分布列为:Y 的数学期望为12551512151202161221636EY =-⨯+⨯+⨯=-. 这表明,获得分数Y 的期望为负.因此,多次游戏之后分数减少的可能性更大. 20.(1)见解析(2)见解析 【分析】(1)由1~5,3B ξ⎛⎫⎪⎝⎭,求出这名学生在途中遇到红灯的次数ξ的分布列;(2)求出η的可能取值,再求出对应的概率,进而得出分布列. 【详解】(1)1~5,3B ξ⎛⎫ ⎪⎝⎭,ξ的分布列为5512()C ,0,1,2,3,4,533k kk P k k ξ-⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故ξ的分布列为(2)η的分布列为()P k P η==(前k 个是绿灯,第1k +个是红灯)21,0,1,2,3,433kk ⎛⎫=⋅= ⎪⎝⎭ (5)P P η==(5个均为绿灯)523⎛⎫= ⎪⎝⎭故η的分布列为。
超几何分布与二项分布辨析

超几何分布与二项分布辨析对于离散型随机变量的这两种分布列,学生经常分不清楚,特别是对于同一个具体问题错误的使用另一种分布列模型时所求的期望又是正确的,这更加使学生感到困惑。
下面从两个方面来区分这两种分布列。
一、基本概念1.独立重复试验与二项分布(1)一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.各次试验的结果不受其它试验的影响.(2)一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率都为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 则称随机变量X 服从参数为n 、p 的二项分布,记作X ~B (n ,p ),并称p 为成功概率.2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =k )=nNkn MN k M C C C --,k =0,1,2,…,m ,(其中m 是M ,n 中的最小值,n ≤N ,M ≤N ,n 、M 、N ∈N *). 则称分布列为超几何分布列,如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布记作X ~H(N 、M 、n).3.二项分布、超几何分布的均值、方差(1)若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). (2)若X ~H (N 、M 、n ),则E (X )=nMN.二、两种分布列的区别(一)从抽样方法来区分例1、盒子中有大小相同的4个红球和6个黑球.(1)从中每次取出1个球然后放回,连续抽取三次,求取到红球次数X 的分布列。
解:由已知X~N(3,0.4),()())3,2,1,0(,4.014.033=-⋅⋅==-k C k X P kk k所以,X 的分布列为:()2.14.03=⨯=X E(2)从中逐个不放回的抽取出3个球(效果等同于一次同时取出3个球),求取到红球个数Y 的分布列。
新高考数学一轮复习考点知识专题讲解与练习 55 二项分布与超几何分布、正态分布

新高考数学一轮复习考点知识专题讲解与练习考点知识总结55 二项分布与超几何分布、正态分布高考 概览 高考在本考点的常考题型为选择题、填空题、解答题,分值为5分、12分,中等难度考纲研读1.理解n 次独立重复试验的模型及二项分布2.理解超几何分布及其导出过程,并能进行简单应用3.借助直方图认识正态分布曲线的特点及曲线所表示的意义4.能解决一些简单的实际问题一、基础小题1.设随机变量X ~N (1,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为() A .4 B .6 C.8 D .10答案 A解析 x =0与x =a -2关于x =1对称,则a -2=2,a =4.故选A.2.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)=( )A.516 B .316 C.58 D .38答案 A解析 X ~B ⎝ ⎛⎭⎪⎫6,12,由二项分布可得,P (X =3)=C 36×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-123=516. 3.15个村庄中有7个交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( ) A .P (X =2) B .P (X ≤2) C .P (X =4) D .P (X ≤4) 答案 C解析 X 服从超几何分布,故P (X =k )=C k 7C 10-k 8C 1015,k =4. 4.一试验田某种作物一株生长果实个数x 服从正态分布N (90,σ2),且P (x <70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1 C.0.3 D .0.21答案 B解析 ∵x ~N (90,σ2),且P (x <70)=0.2,∴P (x >110)=0.2,∴P (90≤x ≤110)=0.5-0.2=0.3,∴X ~B (10,0.3),则X 的方差为10×0.3×(1-0.3)=2.1.故选B.5.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25 B .35 C.18125 D .54125答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次抽到黄球的概率为P 1=35,所以3次中恰有2次抽到黄球的概率是P =C 23×⎝ ⎛⎭⎪⎫352×⎝ ⎛⎭⎪⎫1-35=54125.6.(多选)抛掷一枚质地均匀的硬币三次,若记出现“三个正面”“三个反面”“二正一反”“一正二反”的概率分别为P 1,P 2,P 3,P 4,则下列结论中正确的是( )A .P 1=P 2=P 3=P 4B .P 3=2P 1C .P 1+P 2+P 3+P 4=1D .P 4=3P 2答案 CD解析 根据伯努利试验的概率计算公式,可得P 1=⎝ ⎛⎭⎪⎫123=18,P 2=⎝ ⎛⎭⎪⎫123=18,P 3=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-12=38,P 4=C 13×12×⎝ ⎛⎭⎪⎫1-122=38,P 1=P 2<P 3=P 4,故A 错误;P 3=3P 1,故B 错误;P 1+P 2+P 3+P 4=1,故C 正确;P 4=3P 2,故D 正确.故选CD.7.某市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80≤ξ≤100)=0.40,若按成绩采用分层随机抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取的份数为________.答案 10解析 P (ξ>120)=12[1-2P (80≤ξ≤100)]=0.10,所以应从120分以上的试卷中抽取100×0.10=10份.8.甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45;乙第一次射击的命中率为78,若第一次未射中,则乙进行第二次射击,射击的命中率为34,如果又未中,则乙进行第三次射击,射击的命中率为12.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为________,乙射中的概率为________.答案 1256364解析 甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45,则甲击中的次数X ~B ⎝ ⎛⎭⎪⎫3,45,∴甲三次射击命中次数的期望为E (X )=3×45=125.由题意可得乙射中的概率为P =78+18×34+18×14×12=6364.二、高考小题9.(2022·新高考Ⅱ卷)某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等答案 D解析 对于A ,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量在一次测量中大于10的概率为0.5,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量在一次测量中小于9.99的概率与大于10.01的概率相等,故C正确;对于D,因为该物理量在一次测量中落在(9.9,10)的概率与落在(10.2,10.3)的概率不同,所以在一次测量中落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.10.(2022·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X =4)<P(X=6),则p=()A.0.7 B.0.6C.0.4 D.0.3答案B解析∵D(X)=np(1-p),∴p=0.4或p=0.6.∵P(X=4)=C410p4(1-p)6<P(X=6)=C610p6(1-p)4,∴(1-p)2<p2,可知p>0.5.∴p=0.6.故选B.三、模拟小题11.(2022·广东惠州第二次模拟)已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-σ≤X≤μ+σ)≈0.6827,若μ=4,σ=1,则P(5<X≤6)≈()A.0.1359 B.0.1859 C.0.2718 D.0.6827答案A解析由P(3≤X≤5)≈0.6827,得P(4≤X≤5)≈0.68272=0.34135,由P(2≤X≤6)≈0.9545,得P(4≤X≤6)≈0.95452=0.47725,所以P(5<X≤6)=P(4≤X≤6)-P (4≤X ≤5)≈0.47725-0.34135=0.1359.故选A.12.(2022·宁夏吴忠市青铜峡市高级中学月考)有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则P (X ≤2)=( )A.38 B .1314 C.45 D .78答案 D解析 因为是有放回地取产品,所以每次取产品取到次品的概率为48=12.从中取3次,X 为取得次品的次数,则X ~B ⎝ ⎛⎭⎪⎫3,12,P (X ≤2)=P (X =2)+P (X =1)+P (X =0)=C 23×⎝ ⎛⎭⎪⎫122×12+C 13×12×⎝ ⎛⎭⎪⎫122+C 03×⎝ ⎛⎭⎪⎫123=78.故选D. 13.(2022·浙江省杭州市高级中学高考仿真模拟)已知在盒中有红色、黄色、白色的球各4个,现从中任意摸出4个球,则摸出白球个数的期望是( )A.13 B .23 C.43 D .53答案 C解析 设摸出的白球的个数为X ,则X =0,1,2,3,4,所以P (X =0)=C 48C 412=1499,P (X =1)=C 14C 38C 412=224495,P (X =2)=C 24C 28C 412=168495,P (X =3)=C 34C 18C 412=32495,P (X =4)=C 44C 08C 412=1495.所以摸出白球的期望是E (X )=0×1499+1×224495+2×168495+3×32495+4×1495=43.14.(多选)(2022·广东肇庆第二次统一检测)已知两种不同型号的电子元件(分别记为X ,Y )的使用寿命均服从正态分布,X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()参考数据:若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.6827,P(μ-2σ≤Z≤μ+2σ)≈0.9545.A.P(μ1-σ1≤X≤μ1+2σ1)≈0.8186B.P(Y≥μ2)<P(Y≥μ1)C.P(X≤σ2)<P(X≤σ1)D.对于任意的正数t,有P(X≤t)>P(Y≤t)答案ABD解析对于A,P(μ1-σ1≤X≤μ1+2σ1)≈(0.6827+0.9545)×12=0.8186,故A正确;对于B,由正态分布密度曲线,可知μ1<μ2,所以P(Y≥μ2)<P(Y≥μ1),故B正确;对于C,由正态分布密度曲线,可知σ1<σ2,所以P(X≤σ2)>P(X≤σ1),故C错误;对于D,对于任意的正数t,有P(X≤t)>P(Y≤t),故D正确.故选ABD.15.(多选)(2022·辽宁名校联盟高三联考)在3n(n∈N*)次独立重复试验中,每次试验的结果只有A,B,C三种,且A,B,C三个事件之间两两互斥.已知在每一次试验中,事件A,B发生的概率均为25,事件C发生的概率为15.则()A.事件A发生次数的数学期望为6n 5B .A ,B ,C 三个事件发生次数的数学期望之和为3nC .事件B ,C 发生次数的方差之比为43D .A ,B ,C 三个事件各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n 答案 ABD解析 由题意可知,事件B ∪C =∁U A ,A ∪C =∁U B ,A ∪B =∁U C ,所以事件A ,B ,C 均看作二项分布.对于A ,期望值E =3np A =6n 5,即A 正确;对于B ,期望值之和E总=3np A +3np B +3np C =6n 5+6n 5+3n 5=3n ,即B 正确;对于C ,事件B 发生次数的方差D 1=3np B (1-p B )=18n 25,事件C 发生次数的方差D 2=3np C (1-p C )=12n 25,则D 1D 2=1812=32,即C 不正确;对于D ,从3n 次中选择n 次为事件A ,则为C n 3n ,从余下的2n 次中选择n 次为事件B ,则为C n 2n ,所以各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n ,即D 正确. 16.(2022·新高考八省联考)对一个物理量做n 次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差εn ~N ⎝ ⎛⎭⎪⎫0,2n ,为使误差εn 在(-0.5,0.5)内的概率不小于0.9545,至少要测量________次(若X ~N (μ,σ2),则P (|X -μ|<2σ)≈0.9545).答案 32解析 根据正态曲线的对称性知,要使误差εn 在(-0.5,0.5)内的概率不小于0.9545,则(μ-2σ,μ+2σ)⊆(-0.5,0.5),又μ=0,σ=2n ,所以0.5≥22n ,解得n ≥32.17.(2022·福建省宁化第一中学高三9月第二次月考)已知随机变量X ~B (4,p ),方差D (X )的最大值为________,当方差D (X )最大时,⎝⎛⎭⎪⎫4px -1x 6的展开式中1x 2的系数为________.答案 1 60解析 因为随机变量X ~B (4,p ),D (X )=4p (1-p )≤4⎣⎢⎡⎦⎥⎤p +(1-p )22=1,当且仅当p =12时取等号.由题意知⎝ ⎛⎭⎪⎫4px -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,其展开式的通项公式为T r +1=C r 6(2x )6-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r 26-r C r 6x 6-2r ,令6-2r =-2,则r =4,所以展开式中1x 2的系数为(-1)4×22×C 46=60.一、高考大题1.(2022·天津高考)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X ~B ⎝ ⎛⎭⎪⎫3,23,从而P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫133-k ,k =0,1,2,3. 所以随机变量X 的分布列为随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B ⎝ ⎛⎭⎪⎫3,23,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y =1},事件{X =2}与{Y =0}均相互独立,从而由(1)知P (M )=P ({X =3,Y =1}∪{X =2,Y =0})=P (X =3,Y =1)+P (X =2,Y =0)=P (X =3)P (Y =1)+P (X =2)P (Y =0)=827×29+49×127=20243.2.(2022·全国Ⅰ卷)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于E(X)>400,故应该对余下的产品作检验.3.(2022·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x-作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, 0.008≈0.09.解(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望E(X)=16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x -=9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.i =116x 2i ≈16×0.2122+16×9.972≈1591.134, 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09. 二、模拟大题4.(2022·江苏省百校联考高三第一次考试)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届,第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1,在指导后的考核中,甲同学总考核成绩为“优”,能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解(1)记“选出的两所学校参与旱地冰壶人数在30以下”为事件A.参与旱地冰壶人数在30以下的学校共6所,随机选择2所学校共C26=15种,所以P(A)=C26C210=1 3.因此选出的2所学校参与旱地冰壶人数在30以下的概率为13.(2)答案不唯一.示例一:可以认为甲同学在指导后总考核达到“优”的概率发生了变化,理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,一旦发生,就有理由认为甲同学在指导后总考核达到“优”的概率发生了变化.示例二:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定甲同学在指导后总考核达到“优”的概率发生了变化.5.(2022·山东省潍坊市五县市高三联考)2022年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟[155,165)[165,175)[175,185)[185,215]跳绳个数得分17181920(1)(2)若该校初三年级所有学生的跳绳个数X服从正态分布N(μ,σ2),用样本数据的平均值和方差估计总体的数学期望和方差,已知样本方差s2≈169(各组数据用中点值代替),根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步,假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10,现利用所得正态分布模型:①预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为ξ,求随机变量ξ的分布列和数学期望.附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.解(1)由频率分布直方图得,得分为17,18的人数分别为100×0.006×10=6,100×0.012×10=12,由题意知两人得分之和不大于35分,即为两人得分均为17分,或两人中1人得分为17分,1人得分为18分.故两人得分之和不大于35分的概率为P=C 26+C16C112C2100=291650.(2)x-=160×0.06+170×0.12+180×0.34+190×0.30+200×0.1+210×0.08=185(个),又σ2≈s2≈169,∴σ≈13,∴正式测试时,μ=195,σ≈13,∴μ-σ≈182.=0.84135,①P(X>182)≈1-1-0.682720.84135×2000=1682.7≈1683(人).∴预估正式测试每分钟跳182个以上的人数为1683.②在全年级所有学生中任取1人,每分钟跳绳个数在195以上的概率约为0.5,即ξ~B(3,0.5),∴P(ξ=0)≈C03×(1-0.5)3=0.125,P(ξ=1)≈C13×0.5×(1-0.5)2=0.375,P(ξ=2)≈C23×0.52×(1-0.5)=0.375,P(ξ=3)≈C33×0.53=0.125,∴ξ的分布列为E(ξ)≈3×0.5=1.5.6.(2022·辽宁省渤海大学附属高级中学高三上学期第一次考试)随着我国国民消费水平的不断提升,进口水果也受到了人们的喜爱,世界各地鲜果纷纷从空中、海上汇聚中国:泰国的榴莲、山竹、椰青,厄瓜多尔的香蕉,智利的车厘子,新西兰的金果猕猴桃等水果走进了千家万户.某种水果按照果径大小可分为五个等级:特等、一等、二等、三等和等外,某水果进口商从采购的一批水果中随机抽取500个,利用水果的等级分类标准得到的数据如下:(1)求恰好有3个水果是二等级别的概率;(2)若水果进口商进口时,将特等级别与一等级别的水果标注为优级水果,则用分层随机抽样的方法从这500个水果中抽取10个,再从抽取的10个水果中随机抽取3个,Y 表示抽取的优级水果的数量,求Y 的分布列及数学期望E (Y ).解 (1)设从500个水果中随机抽取一个,抽到二等级别水果的事件为A , 则P (A )=250500=12,有放回地随机抽取6个,设抽到二等级别水果的个数为X ,则X ~B ⎝ ⎛⎭⎪⎫6,12,所以恰好抽到3个二等级别水果的概率为P (X =3)=C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫1-123=516. (2)用分层随机抽样的方法从500个水果中抽取10个,则其中优级水果有3个,非优级水果有7个.现从中抽取3个,则优级水果的数量Y 服从超几何分布,所有可能的取值为0,1,2,3. 则P (Y =0)=C 37C 310=724,P (Y =1)=C 27C 13C 310=2140,P (Y =2)=C 17C 23C 310=740,P (Y =3)=C 33C 310=1120.所以Y的分布列如下:所以E(Y)=0×724+1×2140+2×740+3×1120=910.。
高考数学一轮复习 第11章 概率 5 二项分布与超几何分布课件 新人教版

例4 某超市在节日期间进行有奖促销,凡在该超市购物满500元的顾客,
可以获得一次抽奖机会,有两种方案.方案一:在抽奖的盒子中有除颜色外
完全相同的2个黑球,3个白球,顾客一次性摸出2个球,规定摸到2个黑球奖
励50元,1个黑球奖励20元,没有摸到黑球奖励15元.方案二:在抽奖的盒子中
有除颜色外完全相同的2个黑球,3个白球,顾客不放回地每次摸出一个球,
②依题意,该顾客参加了12次答题返现.
设答对题目的次数为Y,则Y~B(12,0.4).
设该顾客答对k次题目的概率最大,
-1
C12
0.4 (1-0.4)12- ≥ C12 0.4-1 (1-0.4)13- ,
则
12-
11-
+1
+1
C12 0.4 (1-0.4)
≥ C12 0.4 (1-0.4)
1
口遇到红灯的概率均为 3 ,用X表示他遇到红灯的次数,则E(X)=
由题意可知这 2 次红灯的不同的分布情形共有C52 =10(种).
1
因为他在每个路口遇到红灯的概率均为 ,
3
1
1
5
所以 X~B 5, ,所以 E(X)=5× = .
3
3
3
5
3
.
第二环节
关键能力形成
能力形成点1
n重伯努利试验与二项分布
1 4
的概率分别为 2 和 5.
(1)求该装置正常工作超过10 000小时的概率;
(2)某城市5G基站建设需购进1 200台该装置,估计该批装置能正常工作
超过10 000小时的台数.
解 (1)依题意,元件 A 至少有一个正常工作超过 10 000 小时的概率为
2023年高考数学一轮总复习第51讲:二项分布超几何分布正态分布

第1页共13页2023年高考数学一轮总复习第51讲:二项分布、超几何分布、正态分布【教材回扣】1.二项分布:(1)概念:一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=________________,k =0,1,2,…,n .如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从____________________,记作______________.(2)均值与方差:如果X ~B (n ,p ),那么E (X )=________,D (X )=________.2.超几何分布(1)概念:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=____________,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.(2)均值:E (X )=np .3.正态分布:(1)有关概念:对任意的x ∈R ,f (x )=1σ2πe -(x -μ)22σ2>0(μ∈R ,σ>0为参数),我们称f (x )为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,若随机变量X 的概率分布密度函数为f (x ),则称随机变量X 服从正态分布,记作__________________.特别地,当μ=__________,σ=________时称随机变量X 服从标准正态分布.(2)正态曲线的特点:①它的图象在□10________上方;②x 轴和曲线之间的区域的面积为□11________;③曲线是单峰的,它关于直线□12________对称;④曲线在x =μ处,达到峰值1σ2π;⑤当|x |无限增大时,曲线无限接近□13________.(3)均值与方差:若x ~N (μ,σ2),则E (X )=□14________,D (X )=□15________.【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.()2.二项分布和超几何分布都是放回抽样.()3.正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()4.一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()题组二教材改编。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题50二项分布与超几何分布 一、关键能力了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,理解两点分布及超几何分布,并能解决一些简单的实际问题.二、教学建议(1)考查两点分布、n 次独立重复试验的模型及其应用.(2)离散型随机变量的分布列及其概率分布是高考命题的热点,与离散型随机变量的数字特征结合命题是主要命题方式.三、必备知识1.条件概率及其性质(1)条件概率的定义对于两个事件A 和B ,在已知事件B 发生的条件下事件A 发生的概率,称为事件B 发生的条件下事件A 的条件概率.(2)条件概率的求法求条件概率除了可借助定义中的公式,还可以借助古典概率公式,即P (B |A )=P (AB )P (A ). 2.相互独立事件(1)对于事件A ,B ,若A 的发生与B 的发生互不影响,则称A ,B 相互独立.(2)若A 与B 相互独立,则P (AB )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(4)若P (AB )=P (A )P (B ),则A ,B 相互独立.3.二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ).4.二项分布的均值、方差(1)若随机变量X 服从两点分布,则E (X )=p ,V (X )=p (1-p ).(2)若X ~B (n ,p ),则E (X )=np ,V (X )=np (1-p ).5.两点分布:若随机变量服从两点分布,即其分布列为0 1其中,则称离散型随机变量服从参数为的两点分布.其中称为成功概率.X 01p <<X p ()1p P X ==6.超几何分布一般地,设有N 件产品,其中有M (M ≤N )件次品.从中任取n (n ≤N )件产品,用X 表示取出的n 件产品中次品的件数,那么P (X =r )=C r M C n -r N -M C n N (r =0,1,2,…,l ). 即X0 1 … lP … 其中l =min(M ,n ),且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果一个随机变量X 的概率分布具有上表的形式,则称随机变量X 服从超几何分布.四、高频考点+重点题型考点一.条件概率例1.(1)(2019·合肥模拟)将三颗骰子各掷一次,记事件A 为“三个点数都不同”,B 为“至少出现一个6点”,则条件概率P (A |B )=__________,P (B |A )=________. (2)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=________.对点练1. 将外形相同的球分做装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则试验成功.求试验成功的概率.对点练2. 一道考题有4个答案,要求学生将其中的一个正确答案选择出来.某考生知道正确答案的概率为13,在乱猜时,4个答案都有机会被他选择,若他答对了,则他确实知道正确答案的概率是( )A .13B .23C .34D .14对点练3. 一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取一支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为( )A.23B.512C.59D.79对点练4. 在100件产品中有95件合格品,5件不合格品,现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次取到不合格品的概率为________. 考点二.相互独立事件的概率(1)该选手恰好回答了4个问题就晋级下一轮的概率为________.(2)该选手恰好回答了5个问题就晋级下一轮的概率为________.(3)该选手回答了5个问题(5个问题必须全部回答)就结束的概率为________.对点练1. 某社区举办“环保我参与”有奖问答比赛活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.对点练2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.考点三.独立重复实验考点四.二项分布及应用例4-1.九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.例4-2. 某社区组织开展“扫黑除恶”宣传活动,为鼓励更多的人积极参与到宣传活动中来,宣传活动现场设置了抽奖环节.在盒中装有9张大小相同的精美卡片,卡片上分别印有“扫黑除恶利国利民”或“普法宣传人人参与”图案.抽奖规则:参加者从盒中抽取卡片两张,若抽到两张分别是“普法宣传人人参与”和“扫黑除恶利国利民”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.活动开始后,一位参加者问:“盒中有几张‘普法宣传人人参与’卡?”主持人答:“我只知道,从盒中抽取两张都是‘扫黑除恶利国利民’卡的概率是16.” (1)求抽奖者获奖的概率;(2)为了增加抽奖的趣味性,规定每个抽奖者先从装有9张卡片的盒中随机抽出1张不放回,再用剩下8张卡片按照之前的抽奖规则进行抽奖,现有甲、乙、丙三人依次抽奖,用X 表示获奖的人数,求X 的概率分布和均值.例4-3.(2019·天津高考真题(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. 23(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.例4-4.(2020·浙江)2020年五一期间,银泰百货举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球其中奖规则为:若摸到2个红球和1个白球,享受免单优惠;若摸出2个红球和1个黑球则打5折;若摸出1个白球2个黑球,则打7折;其余情况不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率角度比较该顾客选择哪一种抽奖方案更合算? 例4-5.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率为多少?考点五. 超几何分布的应用例5-1.某项大型赛事需要从高校选拔青年志愿者,某大学学生实践中心积极参与,在8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动.若所选3名学生中的女生人数为X ,求X 的概率分布及均值.(2)例5-3.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和均值.X X M M例5-4.(2018年理数天津卷选)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列;(ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.巩固训练一. 单选题1.(2019·石家庄模拟)袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取两个球,已知第一次摸到的是红球,则第二次摸到白球的概率为( )A.13B.23C.12D.1523. 在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14B.89C.116D.5324. 箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球,那么在第4次取球之后停止的概率为( )A.C 35C 14C 45B.⎝⎛⎭⎫593×49C.35×14 D .C 14×⎝⎛⎭⎫593×495.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小明和小华两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小华获胜的概率是( )A.127B.227C.881D.1781612,且是相互独立的,则灯亮的概率为( ) A.316B.34C.1316D.14二.多选题7.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( )A .P (B )=25B .P (B |A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件8.已知X +Y =8,若X ~BA .E (Y )=2B .E (Y )=6C .D (YD .D (Y9.下列命题中,正确的命题的是( )A .已知随机变量服从二项分布B (n ,p ),若E (X )=30,D (X )=20,则p =23B .将一组数据中的每个数据都加上同一个常数后,方差恒不变C .设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ≤0)=12-p D .某人在10次射击中,击中目标的次数为X ,X ~BX =8时概率最大10.“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大.假设李某智商较高,他独自一人解决项目M 的概率为P 1n 个水平相同的人也在研究项目M ,他们各自独立地解决项目MM ,且这n 个人组成的团队也同时研究项目M ,且这n 个人研究项目M 的结果相互独立.设这个n 人团队解决项目M 的概率为P 2,若P 2≥P 1,则n 的可能取值是( )A .2B .3C .4D .5 三.填空题11.(2020·江苏模拟)有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则E (X )=________.12.学校从3名男同学和2名女同学中任选2人参加志愿者服务活动,则选出的2人中至少有1名女同学的概率为________(结果用数值表示).13.一射击测试每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为23,则此人得分的数学期望为________;方差为________. 14.投掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.15.设随机变量X ~B ⎝⎛⎭⎫5,13,则P (2<X ≤4)=________. 1617.一个口袋内有n (n >3)个大小相同的球,其中3个红球和(n -3)个白球,已知从口袋中随机取出1个球是红球的概率为p,6p ∈N ,若有放回地从口袋中连续4次取球(每次只取1个球),在4次取球中恰好2次取到红球的概率大于827,则n =________. 18.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的最小值为________.19.为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别各不相同的概率是________.四.解答题20.甲、乙、丙三名射击运动员射中目标的概率分别为12,a ,a (0<a <1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的概率分布列及数学期望;(2)在概率P (ξ=i )(i =0,1,2,3)中,若P (ξ=1)的值最大,求实数a 的取值范围.21.(2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.∈用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列;∈设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.22.某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位):(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.。