发光二极管封装结构及技术
LED发光二极管的结构组成

LED发光二极管的结构组成LED(Light Emitting Diode,发光二极管)是一种固态半导体器件,可将电能转化为光能。
它由多个不同材料层的结构组成。
下面将详细介绍LED发光二极管的结构组成。
一、LED结构概述LED主要由一个P型半导体层和一个N型半导体层之间的P-N结组成。
这个结构有助于在LED工作时产生发光。
此外,还有一些必要的附属层和器件用于增强和保护LED的性能。
二、P-N结1. N型半导体层:N型半导体层通常由硒化镓(Gallium Nitride)制成。
它是一种磊晶生长薄膜,具有较高的导电性能。
这一层通常是透明的,以便光能能够在发光时穿过。
2. P型半导体层:P型半导体层通常由掺杂的氮化镓(Gallium Nitride)制成。
它比N型半导体层有更少的自由电子,但具有更多的电子空穴。
这一层与N型半导体层形成P-N结,从而形成发光的基础条件。
三、发光材料层1. 自发光层:LED发光层使其成为发光器件。
它位于P-N结之上。
最常用的材料是砷化镓(Gallium Arsenide),它可以发出可见光。
根据材料的不同,发光可以是不同颜色的。
2.光学层:光学层用于改善光的均匀度和散射效果,以使LED发出更均匀、更明亮的光线。
光学层通常是用透明塑料或玻璃材料制成的。
四、金属电极1.N电极:N电极负责连接N型半导体层,并将电流引入LED结构中。
通常使用金属制成,常见的金属有铝。
2.P电极:P电极负责连接P型半导体层,并将电流引入LED结构中。
同样使用金属制成,常见的金属有银、镍等。
五、辅助层1.胶层:胶层用于固定LED结构中的各个层,并保证它们之间的良好接触。
常用的胶层材料有环氧树脂。
2.焊盘:焊盘是LED发光二极管的引脚。
它们通常用于连接其他电路,以供电和控制LED工作。
六、封装封装是将LED芯片和辅助层进行封装,以保护LED内部结构不受损坏,并提供排热和机械强度。
常见的封装材料有塑料和陶瓷,封装形式有导向型和散热型。
LED发光二极管内部结构详解

LED发光二极管内部结构详解LED即发光二极管(Light Emitting Diode),是一种能够将电能直接转换为光能的电子元件。
它是一种半导体器件,由两个不同材料的半导体结合而成。
下面将详细介绍LED发光二极管的内部结构。
一、PN结构LED的核心部分是一个PN结,它由P型半导体和N型半导体组成。
P型半导体中的正电荷多于负电荷,N型半导体中的负电荷多于正电荷。
当P型半导体与N型半导体通过PN结连接时,形成一个耗尽层,也叫势垒。
这个势垒可以阻止电子和空穴的自由移动,使得电流在正向偏置情况下能够通过。
二、发光层发光二极管的发光层位于PN结的一侧。
发光层是一种特殊的半导体材料,称为蓝宝石(GaN)或碳化硅(SiC)。
在发光层中注入了少量的杂质,这些杂质被称为掺杂剂,可以使其发出不同颜色的光。
三、电极LED的两端有两个电极引出。
其中一个是P型半导体的电极,另一个是N型半导体的电极。
这两个电极通过金属线或银胶连接到半导体片上。
电极起到导电和固定LED的作用。
四、封装LED芯片通常需要封装以保护内部结构和提高发光效果。
封装过程主要包括将LED芯片安装到底壳中,然后用透明的塑料或树脂材料封装。
封装材料透明度高,能够产生高亮度的光源。
五、波长转换层部分LED还包含一个波长转换层,也称为荧光体。
它位于发光层的上方,可以将LED发出的蓝光转换成其他颜色的光,如白光、黄光等。
六、反射杯有些LED还配有一个反射杯,它位于LED芯片上方,可以起到聚光的作用。
反射杯一般是金属或塑料材质,帮助将光线聚焦到一个方向,提高LED的亮度。
七、镀膜层一些LED芯片还会在其表面镀上一层薄膜,以增加反射效果,提高光的输出。
总结:LED发光二极管是由PN结、发光层、电极、封装、波长转换层、反射杯和镀膜层等组成的。
它能够将电能转换为光能,广泛应用于照明、显示、指示等领域。
通过合理的调整内部结构和材料选择,LED可以实现各种颜色和亮度的光效果。
LED发光二极管

光学性能测试
利用积分球、光谱仪等设备对LED进 行光通量、色温、显色指数等光学性 能测试。
可靠性测试
对LED进行高温、低温、湿热等环境 适应性测试,以及开关寿命、抗静电 能力等可靠性测试。
筛选与分档
根据测试结果对LED进行筛选,将性 能相近的LED分在同一档次,以便后 续应用。
04
LED发光二极管应用电路 设计
基本原理
LED的核心部分是由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN 结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来 ,从而把电能直接转换为光能。
发展历程及现状
发展历程
自20世纪60年代初期诞生以来,LED经历了从指示灯、数码 管到显示屏、照明等应用领域的发展过程。随着技术的不断 进步,LED的性能不断提高,应用领域也不断拓宽。
04
推动智能化发展,实现 LED照明系统的远程控 制和智能化管理。
THANK YOU
感谢观看
市场前景
随着全球能源短缺和环保意识的提高,LED作为一种节能环保的照明产品,其市场前景非常广阔。未 来,随着技术的不断进步和应用的不断拓展,LED的市场份额将继续扩大,同时LED也将向着更高亮 度、更低能耗、更长寿命的方向发展。
02
LED发光二极管结构与特 性
基本结构组成
01
02
芯片
LED发光的核心部分,由半导 体材料制成。
LED发光二极管
目录
• LED发光二极管概述 • LED发光二极管结构与特性 • LED发光二极管制造技术 • LED发光二极管应用电路设计 • LED发光二极管性能评价与选型指南 • LED发光二极管市场前景与行业趋势分析
贴片发光二极管的结构

贴片发光二极管的结构贴片发光二极管(Surface Mount LED)是一种发光二极管,也是一种半导体光源元件。
它采用特殊的结构设计,用于电子产品的照明和指示。
本文将介绍贴片发光二极管的结构和工作原理。
1. 元件结构贴片发光二极管由多个不同功能的元件组成,主要包括LED芯片、封装胶和引线。
LED芯片是贴片发光二极管的核心部件,它能够将电能转化为光能。
LED芯片通常由氮化镓等半导体材料制成,可以发出不同颜色的光。
封装胶用于保护LED芯片,同时起到集中光线和散热的作用。
引线连接LED芯片和外部电路,传输电流并提供支撑。
2. 工作原理贴片发光二极管通过施加电压来激发LED芯片,使其发出光线。
正向电压使LED芯片电子与空穴结合,能量级减少,电子发生跃迁,释放出能量的光子,产生光量子。
LED芯片中的半导体材料决定了发光的波长和颜色。
不同元件和结构的贴片发光二极管可以实现多种颜色和光学效果。
3. 应用领域贴片发光二极管被广泛应用于各种电子产品中,如手机、平板电脑、显示屏、照明灯具等。
由于其小巧、坚固耐用、功耗低、寿命长等特点,贴片发光二极管成为现代电子产品中不可或缺的光源元件。
不仅提高了产品的亮度和显示效果,还节约了能源和空间。
4. 发展趋势随着科技的不断进步,贴片发光二极管在尺寸、亮度、可靠性和成本等方面都有了长足的发展。
未来,贴片发光二极管将更加小型化、高效化和智能化,越来越多地应用于汽车、家居、医疗等领域。
同时,人们对LED照明产品的需求也将不断增长,推动着贴片发光二极管技术的进步和创新。
结语贴片发光二极管的结构和工作原理决定了其在现代电子产品中的重要地位和广泛应用。
通过不断的研究和改进,贴片发光二极管将为人们的生活和工作带来更多便利和惊喜。
希望本文能够让读者对贴片发光二极管有更深入的了解,期待未来这一技术的更加美好发展。
LED封装形式完整版

LED封装形式完整版LED(Light-Emitting Diode)是一种发光二极管,具有高效率、高亮度、寿命长等优点,已广泛应用于照明、显示和通信等领域。
LED的封装形式即为将LED芯片与外部封装材料结合在一起,保护芯片并提供灯光发射的外部结构。
下面将介绍LED封装的各种形式。
1. DIP形式(Dual Inline Package):DIP是最常见的LED封装形式之一,它采用双排引线,能够方便地插入电路板的孔中固定。
DIP封装的LED结构简单,便于制造,但其灯珠直径较大,光斑分布不均匀,适用于一般照明和显示应用。
2. SMD形式(Surface Mount Device):SMD是当前LED封装的主流形式之一,它通过焊接方式固定在电路板的表面。
SMD LED封装采用无引线结构,可实现高密度、高可靠性的贴装。
常见的SMD封装有3528和5050两种类型,其中数字代表了封装的尺寸,例如3528表示LED芯片的尺寸为3.5mm×2.8mm。
SMD LED封装具有体积小、灯珠分布均匀、光效高等特点,广泛应用于显示屏、指示灯和装饰照明等领域。
3. CSP形式(Chip Scale Package):CSP是一种新兴的LED封装形式,与传统的封装方式相比,CSP封装将LED芯片尺寸缩小到与芯片本身相当的尺寸,实现了更高的亮度和更小的体积。
CSP封装无需借助附加基板,直接将芯片直接固定在PCB上,可以进一步提高LED显示屏的分辨率和亮度,广泛应用于高清晰度显示屏和汽车照明等领域。
4. COB形式(Chip-on-Board):COB是一种将多个LED芯片直接粘接在一起,并用导热胶固定在陶瓷基板上的封装形式。
COB封装具有高集成度、高亮度和均匀的光斑分布等特点,可实现超高亮度的照明效果。
COB封装还可以通过将多颗LED芯片组成一个模块,实现多种颜色和灯光效果的组合,广泛应用于舞台灯光和户外照明等领域。
LED发光二极管技术参数常识

LED发光二极管技术参数常识半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。
事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。
一、半导体发光二极管工作原理、特性及应用(一)、LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。
因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向电压下,电子由N区注入P区,空穴由P区注入N区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。
假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。
除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。
发光的复合量相对于非发光复合量的比例越大,光量子效率越高。
由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。
理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg 的单位为电子伏特(eV)。
若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。
比红光波长长的光为红外光。
现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。
(二)、LED的特性1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。
超过此值,LED发热、损坏。
(2)最大正向直流电流IFm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压VRm:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏。
发光二极管封装
发光二极管封装1. 引言发光二极管(LED)是一种能够将电能转化为可见光的电子器件。
发光二极管封装是指将LED芯片封装在一种具有保护、导热和导光功能的外壳中,以实现对LED芯片的保护和光束控制。
本文将介绍发光二极管封装的原理、封装类型以及一些常见的封装材料。
2. 封装原理发光二极管封装的主要目的是提供对LED芯片的保护,同时能够控制光束的发散角度和射出方向。
封装过程中,需要将LED芯片固定在封装材料的底部,并通过导线连接芯片的正负极,以使其能够正常工作并发光。
封装材料的选择同样非常重要,需要具备良好的导热性能和导光性能,以确保LED的稳定工作和高亮度输出。
3. 封装类型根据封装的形式和结构,发光二极管封装可以分为多种类型。
常见的封装类型包括直插式(DIP)、贴片式(SMD)、透明式、封装板式等。
每种封装类型都有自己的特点和适用场景。
3.1 直插式(DIP)直插式封装是最早使用的一种封装形式,也是最常见的一种封装。
它具有体积较大的特点,适用于大功率LED的封装。
直插式封装需要通过在电路板上插入LED器件的引脚,再通过焊接来固定。
这种封装形式相对简单,但体积较大,不适合小型化的应用场景。
3.2 贴片式(SMD)贴片式封装是一种体积较小、结构较薄的封装形式,适用于小型化和集成化的应用场景。
贴片式封装可以直接焊接在电路板上,而无需插入引脚。
由于其体积小、重量轻,能够满足越来越高对小尺寸和轻型设备的需求。
3.3 透明式透明式封装是一种具有透明外壳的封装形式,通过透明外壳可以实现较好的光输出效果。
透明式封装通常用于需要较好光输出效果的应用场景,例如照明、显示等。
3.4 封装板式封装板式是一种特殊的封装形式,它将多个发光二极管封装在一个大型的封装板上。
这种封装形式可以实现高亮度输出,并在照明领域得到广泛应用。
4. 封装材料发光二极管封装需要选择适当的封装材料,以满足不同的要求。
常见的封装材料有塑料、陶瓷和金属等。
LED发光二极管内部结构详解
LED发光二极管内部结构详解LED Lamp(led 灯)主要由支架、银胶、晶片、金线、环氧树脂五种物料所组成。
一、支架:1)、支架的作用:用来导电和支撑2)、支架的组成:支架由支架素材经过电镀而形成,由里到外是素材、铜、镍、铜、银这五层所组成。
3)、支架的种类:带杯支架做聚光型,平头支架做大角度散光型的Lamp。
A、2002杯/平头:此种支架一般做对角度、亮度要求不是很高的材料,其Pin长比其他支架要短10mm 左右。
Pin间距为2.28mmB、2003杯/平头:一般用来做φ5以上的Lamp,外露pin长为+29mm、-27mm。
Pin间距为2.54mm。
C、2004杯/平头:用来做φ3左右的Lamp,Pin长及间距同2003支架。
D、2004LD/DD:用来做蓝、白、纯绿、紫色的Lamp,可焊双线,杯较深。
E、2006:两极均为平头型,用来做闪烁Lamp,固IC,焊多条线。
F、2009:用来做双色的Lamp,杯内可固两颗晶片,三支pin脚控制极性。
G、2009-8/3009:用来做三色的Lamp,杯内可固三颗晶片,四支pin脚。
二、银胶银胶的作用:固定晶片和导电的作用。
银胶的主要成份:银粉占75-80%、EPOXY(环氧树脂)占10-15%、添加剂占5-10%。
银胶的使用:冷藏,使用前需解冻并充分搅拌均匀,因银胶放置长时间后,银粉会沉淀,如不搅拌均匀将会影响银胶的使用性能。
三、晶片(Chip):发光二极管和LED芯片的结构组成1)、晶片的作用:晶片是LED Lamp的主要组成物料,是发光的半导体材料。
2)、晶片的组成:晶片是采用磷化镓(GaP)、镓铝砷(GaAlAs)或砷化镓(GaAs)、氮化镓(GaN)等材料组成,其内部结构具有单向导电性。
3)、晶片的结构:焊单线正极性(P/N结构)晶片,双线晶片。
晶片的尺寸单位:mil晶片的焊垫一般为金垫或铝垫。
其焊垫形状有圆形、方形、十字形等。
4)、晶片的发光颜色:晶片的发光颜色取决于波长,常见可见光的分类大致为:暗红色(700nm)、深红色(640-660nm)、红色(615-635nm)、琥珀色(600-610nm)、$(580-595nm)、黄绿色(565-575nm)、纯绿色(500-540nm)、蓝色(450-480nm)、紫色(380-430nm)。
发光二极管的构造和原理
发光二极管的构造和原理发光二极管(Light Emitting Diode,简称LED)是一种能够发出可见光的半导体器件。
它是通过将电能转化为光能而实现发光的,具有体积小、寿命长、耐用、节能、反应快的特点,因此在各种照明、显示等领域得到广泛应用。
一、发光二极管的构造:发光二极管的标准结构包括P型半导体、N型半导体、P-N结、金属电极和透明环氧树脂封装等部分。
P型半导体和N型半导体分别通过多晶硅或者单晶硅的晶体生长技术制备而成。
1. P型半导体:P型半导体是在硅(Si)或者砷化镓(GaAs)等材料中,通过将硼(B)等离子体杂质掺入制作而成。
掺杂杂质后,硅晶体中的硅原子被部分取代,因此缺少电子。
2. N型半导体:N型半导体则是通过将磷(P)等掺杂杂质掺入硅晶体中制备而成。
因为磷原子中有5个电子,其中4个电子和硅晶体原子形成共价键,一个电子不形成共价键。
3. P-N结:将P型半导体和N型半导体材料在一起制作而成,即形成了P-N结。
在P-N结的接触面上,N型半导体中的多余电子会向P型半导体中的缺少电子的区域流动,形成带正电的离子、电子重组产生能量的区域。
4. 金属电极:P型半导体和N型半导体的两端各接上金属电极,金属电极的作用是为发光二极管提供电流。
5. 透明环氧树脂封装:将以上部分组装在一起,并使用透明环氧树脂进行封装,以保护发光二极管内部结构免受外界影响。
二、发光二极管的原理:发光二极管的发光是通过电流通过P-N结而引起的,其发光原理可以通过P-N 结的内部发光理论、能带理论以及注入激子复合理论来解释。
1. 内部发光理论:当电流被施加到发光二极管上时,P型半导体中的空穴和N 型半导体中的电子在P-N结区域形成复合。
在这个复合过程中,电子从N型半导体跳跃到P型半导体,释放出的能量以光的形式发出。
2. 能带理论:根据能带理论,半导体材料中电子的能量是量子化的,它们仅能具备一定数量的能量。
当一个电子从高能级跃迁到低能级时,将释放出一个能量子,该能量子以光子的形式发出。
LED发光二极管内部结构详解
LED发光二极管内部结构详解LED Lamp(led 灯)主要由支架、银胶、晶片、金线、环氧树脂五种物料所组成。
一、支架:1)、支架的作用:用来导电和支撑2)、支架的组成:支架由支架素材经过电镀而形成,由里到外是素材、铜、镍、铜、银这五层所组成。
3)、支架的种类:带杯支架做聚光型,平头支架做大角度散光型的Lamp。
A、2002 杯/平头:此种支架一般做对角度、亮度要求不是很高的材料,其Pin 长比其他支架要短10mm 左右。
Pin 间距为2.28mmB、2003 杯/平头:一般用来做φ5以上的Lamp,外露pin 长为+29mm、-27mm。
Pin 间距为2.54mm。
C、2004 杯/平头:用来做φ3左右的Lamp,Pin 长及间距同2003 支架。
D、2004LD/DD:用来做蓝、白、纯绿、紫色的Lamp,可焊双线,杯较深。
E、2006:两极均为平头型,用来做闪烁Lamp,固IC,焊多条线。
F、2009:用来做双色的Lamp,杯内可固两颗晶片,三支pin 脚控制极性。
G、2009-8/3009:用来做三色的Lamp,杯内可固三颗晶片,四支pin 脚。
二、银胶银胶的作用:固定晶片和导电的作用。
银胶的主要成份:银粉占75-80%、EPOXY(环氧树脂)占10-15%、添加剂占5-10%。
银胶的使用:冷藏,使用前需解冻并充分搅拌均匀,因银胶放置长时间后,银粉会沉淀,如不搅拌均匀将会影响银胶的使用性能。
三、晶片(Chip):发光二极管和LED 芯片的结构组成1)、晶片的作用:晶片是LED Lamp 的主要组成物料,是发光的半导体材料。
2)、晶片的组成:晶片是采用磷化镓(GaP)、镓铝砷(GaAlAs)或砷化镓(GaAs)、氮化镓(GaN)等材料组成,其内部结构具有单向导电性。
3)、晶片的结构:焊单线正极性(P/N 结构)晶片,双线晶片。
晶片的尺寸单位:mil 晶片的焊垫一般为金垫或铝垫。
其焊垫形状有圆形、方形、十字形等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发光二极管封装结构及技术(1)1、LED封装的特殊性LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。
一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。
而LED封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于LED。
LED的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。
但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高LED的内、外部量子效率。
常规Φ5mm型LED封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。
反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。
顶部包封的环氧树脂做成一定形状,有这样几种作用:保护管芯等不受外界侵蚀;采用不同的形状和材料性质(掺或不掺散色剂),起透镜或漫射透镜功能,控制光的发散角;管芯折射率与空气折射率相关太大,致使管芯内部的全反射临界角很小,其有源层产生的光只有小部分被取出,大部分易在管芯内部经多次反射而被吸收,易发生全反射导致过多光损失,选用相应折射率的环氧树脂作过渡,提高管芯的光出射效率。
用作构成管壳的环氧树脂须具有耐湿性,绝缘性,机械强度,对管芯发出光的折射率和透射率高。
选择不同折射率的封装材料,封装几何形状对光子逸出效率的影响是不同的,发光强度的角分布也与管芯结构、光输出方式、封装透镜所用材质和形状有关。
若采用尖形树脂透镜,可使光集中到LED的轴线方向,相应的视角较小;如果顶部的树脂透镜为圆形或平面型,其相应视角将增大。
一般情况下,LED的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。
另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,LED的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数LED的驱动电流限制在20mA左右。
但是,LED的光输出会随电流的增大而增加,目前,很多功率型LED的驱动电流可以达到70mA、100mA甚至1A级,需要改进封装结构,全新的LED封装设计理念和低热阻封装结构及技术,改善热特性。
例如,采用大面积芯片倒装结构,选用导热性能好的银胶,增大金属支架的表面积,焊料凸点的硅载体直接装在热沉上等方法。
此外,在应用设计中,PCB线路板等的热设计、导热性能也十分重要。
进入21世纪后,LED的高效化、超高亮度化、全色化不断发展创新,红、橙LED光效已达到100Im/W,绿LED为501m/W,单只LED的光通量也达到数十Im。
LED芯片和封装不再沿龚传统的设计理念与制造生产模式,在增加芯片的光输出方面,研发不仅仅限于改变材料内杂质数量,晶格缺陷和位错来提高内部效率,同时,如何改善管芯及封装内部结构,增强LED内部产生光子出射的几率,提高光效,解决散热,取光和热沉优化设计,改进光学性能,加速表面贴装化SMD进程更是产业界研发的主流方向。
2、产品封装结构类型自上世纪九十年代以来,LED芯片及材料制作技术的研发取得多项突破,透明衬底梯形结构、纹理表面结构、芯片倒装结构,商品化的超高亮度(1cd以上)红、橙、黄、绿、蓝的LED产品相继问市,如表1所示,2000年开始在低、中光通量的特殊照明中获得应用。
LED 的上、中游产业受到前所未有的重视,进一步推动下游的封装技术及产业发展,采用不同封装结构形式与尺寸,不同发光颜色的管芯及其双色、或三色组合方式,可生产出多种系列,品种、规格的产品。
LED产品封装结构的类型如表2所示,也有根据发光颜色、芯片材料、发光亮度、尺寸大小等情况特征来分类的。
单个管芯一般构成点光源,多个管芯组装一般可构成面光源和线光源,作信息、状态指示及显示用,发光显示器也是用多个管芯,通过管芯的适当连接(包括串联和并联)与合适的光学结构组合而成的,构成发光显示器的发光段和发光点。
表面贴装LED可逐渐替代引脚式LED,应用设计更灵活,已在LED显示市场中占有一定的份额,有加速发展趋势。
固体照明光源有部分产品上市,成为今后LED的中、长期发展向。
3、引脚式封装LED脚式封装采用引线架作各种封装外型的引脚,是最先研发成功投放市场的封装结构,品种数量繁多,技术成熟度较高,封装内结构与反射层仍在不断改进。
标准LED被大多数客户认为是目前显示行业中最方便、最经济的解决方案,典型的传统LED安置在能承受0.1W 输入功率的包封内,其90%的热量是由负极的引脚架散发至PCB板,再散发到空气中,如何降低工作时pn结的温升是封装与应用必须考虑的。
包封材料多采用高温固化环氧树脂,其光性能优良,工艺适应性好,产品可靠性高,可做成有色透明或无色透明和有色散射或无色散射的透镜封装,不同的透镜形状构成多种外形及尺寸,例如,圆形按直径分为Φ2mm、Φ3mm、Φ4.4mm、Φ5mm、Φ7mm等数种,环氧树脂的不同组份可产生不同的发光效果。
花色点光源有多种不同的封装结构:陶瓷底座环氧树脂封装具有较好的工作温度性能,引脚可弯曲成所需形状,体积小;金属底座塑料反射罩式封装是一种节能指示灯,适作电源指示用;闪烁式将CMOS振荡电路芯片与LED管芯组合封装,可自行产生较强视觉冲击的闪烁光;双色型由两种不同发光颜色的管芯组成,封装在同一环氧树脂透镜中,除双色外还可获得第三种的混合色,在大屏幕显示系统中的应用极为广泛,并可封装组成双色显示器件;电压型将恒流源芯片与LED管芯组合封装,可直接替代5—24V的各种电压指示灯。
面光源是多个LED管芯粘结在微型PCB板的规定位置上,采用塑料反射框罩并灌封环氧树脂而形成,PCB板的不同设计确定外引线排列和连接方式,有双列直插与单列直插等结构形式。
点、面光源现已开发出数百种封装外形及尺寸,供市场及客户适用。
LED发光显示器可由数码管或米字管、符号管、矩陈管组成各种多位产品,由实际需求设计成各种形状与结构。
以数码管为例,有反射罩式、单片集成式、单条七段式等三种封装结构,连接方式有共阳极和共阴极两种,一位就是通常说的数码管,两位以上的一般称作显示器。
反射罩式具有字型大,用料省,组装灵活的混合封装特点,一般用白色塑料制作成带反射腔的七段形外壳,将单个LED管芯粘结在与反射罩的七个反射腔互相对位的PCB板上,每个反射腔底部的中心位置是管芯形成的发光区,用压焊方法键合引线,在反射罩内滴人环氧树脂,与粘好管芯的PCB板对位粘合,然后固化即成。
反射罩式又分为空封和实封两种,前者采用散射剂与染料的环氧树脂,多用于单位、双位器件;后者上盖滤色片与匀光膜,并在管芯与底板上涂透明绝缘胶,提高出光效率,一般用于四位以上的数字显示。
单片集成式是在发光材料晶片上制作大量七段数码显示器图形管芯,然后划片分割成单片图形管芯,粘结、压焊、封装带透镜(俗称鱼眼透镜)的外壳。
单条七段式将已制作好的大面积LED芯片,划割成内含一只或多只管芯的发光条,如此同样的七条粘结在数码字形的可伐架上,经压焊、环氧树脂封装构成。
单片式、单条式的特点是微小型化,可采用双列直插式封装,大多是专用产品。
LED光柱显示器在106mm长度的线路板上,安置101只管芯(最多可达201只管芯),属于高密度封装,利用光学的折射原理,使点光源通过透明罩壳的13-15条光栅成像,完成每只管芯由点到线的显示,封装技术较为复杂。
半导体pn结的电致发光机理决定LED不可能产生具有连续光谱的白光,同时单只LED 也不可能产生两种以上的高亮度单色光,只能在封装时借助荧光物质,蓝或紫外LED管芯上涂敷荧光粉,间接产生宽带光谱,合成白光;或采用几种(两种或三种、多种)发不同色光的管芯封装在一个组件外壳内,通过色光的混合构成白光LED。
这两种方法都取得实用化,日本2000年生产白光LED达1亿只,发展成一类稳定地发白光的产品,并将多只白光LED 设计组装成对光通量要求不高,以局部装饰作用为主,追求新潮的电光源。
发光二极管封装结构及技术(2)4 引脚式封装LED脚式封装采用引线架作各种封装外型的引脚,是最先研发成功投放市场的封装结构,品种数量繁多,技术成熟度较高,封装内结构与反射层仍在不断改进。
标准LED被大多数客户认为是目前显示行业中最方便、最经济的解决方案,典型的传统LED安置在能承受0.1W 输入功率的包封内,其90%的热量是由负极的引脚架散发至PCB板,再散发到空气中,如何降低工作时pn结的温升是封装与应用必须考虑的。
包封材料多采用高温固化环氧树脂,其光性能优良,工艺适应性好,产品可靠性高,可做成有色透明或无色透明和有色散射或无色散射的透镜封装,不同的透镜形状构成多种外形及尺寸,例如,圆形按直径分为Φ2mm、Φ3mm、Φ4.4mm、Φ5mm、Φ7mm等数种,环氧树脂的不同组份可产生不同的发光效果。
花色点光源有多种不同的封装结构:陶瓷底座环氧树脂封装具有较好的工作温度性能,引脚可弯曲成所需形状,体积小;金属底座塑料反射罩式封装是一种节能指示灯,适作电源指示用;闪烁式将CMOS振荡电路芯片与LED管芯组合封装,可自行产生较强视觉冲击的闪烁光;双色型由两种不同发光颜色的管芯组成,封装在同一环氧树脂透镜中,除双色外还可获得第三种的混合色,在大屏幕显示系统中的应用极为广泛,并可封装组成双色显示器件;电压型将恒流源芯片与LED管芯组合封装,可直接替代5—24V的各种电压指示灯。
面光源是多个LED管芯粘结在微型PCB板的规定位置上,采用塑料反射框罩并灌封环氧树脂而形成,PCB板的不同设计确定外引线排列和连接方式,有双列直插与单列直插等结构形式。
点、面光源现已开发出数百种封装外形及尺寸,供市场及客户适用。
LED发光显示器可由数码管或米字管、符号管、矩陈管组成各种多位产品,由实际需求设计成各种形状与结构。
以数码管为例,有反射罩式、单片集成式、单条七段式等三种封装结构,连接方式有共阳极和共阴极两种,一位就是通常说的数码管,两位以上的一般称作显示器。
反射罩式具有字型大,用料省,组装灵活的混合封装特点,一般用白色塑料制作成带反射腔的七段形外壳,将单个LED管芯粘结在与反射罩的七个反射腔互相对位的PCB板上,每个反射腔底部的中心位置是管芯形成的发光区,用压焊方法键合引线,在反射罩内滴人环氧树脂,与粘好管芯的PCB板对位粘合,然后固化即成。