第9章凸轮机构应用和分类(1)

合集下载

第9章_凸轮机构及其设计

第9章_凸轮机构及其设计
是在圆柱面上开有曲线凹 槽或在圆柱端面上具有曲线轮 廓的构件。 它是一种空间凸轮机构。 行程可较大,但结构较复杂。e
ω
V
V
ω
ω
2、按推杆末端(the follower end)形状分:(如图9-5) 1)尖顶(knife-edge)推杆(图a、b): (a) (a) 结构简单,因是点接触,又是滑动 (d 摩擦,故易磨损。只宜用在受力不 (a)(a) ( (a) 大的低速凸轮机构中,如仪表机构。 图a) 图b)
▲ 注意:
1)所有运动过程的推杆位 移s是从行程的最近位臵 开始度量。回程时,推 杆的位移s是逐渐减小的。 2)凸轮的转角δ是从各个 运动过程的开始来度量。 如:在推程时,δ是从推程开始时进行度量;
在回程时,δ是从回程开始时进行度量。
3)有的凸轮δ01=0° (无远休),有的δ02=0°(无近休), 有的同时无远休和无近休。 e
2)运动线图——用于图解法
s = s(δ)—位移线图;如图9-8b所示。 v = v(δ)—速度线图; a = a(δ)—加速度线图。
图9-8
推杆的运动规律可分为基本运动规律和组合运动规律。 e
一)基本(Basic)运动规律
1、等速运动规律(一次多项式运动规律) v=常数。 s 1)方程: s=hδ/δ0 推程 v=hω/δ0 a=0 (9-3a) (δ:0~δ0)
对心直动尖顶 推杆盘形凸轮 机构
偏臵直动尖顶 推杆盘形凸轮 机构
对心直动滚子 直动平底推杆 推杆盘形凸轮 盘形凸轮机构 机构
摆动尖顶推杆 盘形凸轮机构
摆动滚子推杆 盘形凸轮机构
摆动平底推杆 盘形凸轮机构
上面介绍的是一些传统的凸轮机构,目前还研究出了 一些新型的凸轮机触,增加了接触面积, 提高了凸轮机构的承载能力。

凸轮机构及其应用

凸轮机构及其应用

械 压力角为0°,传力性能好。



v

F


科目 机械原理
⑶按推杆的运动型式分
专 直动推杆:作往复直线运动,又分对心直动 业 推杆和偏置直动推杆。 机 摆动推杆:作往复摆动。 械 制 造 与 自 动 化
科目 机械原理
根据凸轮与推杆保持接触的方法不同分
专 ①力封闭凸轮机构:利用推杆的重力、弹簧 业 力来使推杆与凸轮保持接触;
δ0 δ01
δ0'
ω δ02
为推 远 的近程 休 角休凸 止 度止轮 。 称。所 远 为近转 休 回休过 止 程止的 所 运所角对动对度应角应δ称凸0凸为轮'。轮推转转程过 过运 的的动 角角度度δ称0称为,为远从近休动休止件止角沿角δ导0δ路1。02移。动的
最大位移称为升距h。



科目 机械原理
高速场合






科目 机械原理
⑶运动规律特性分析
①最大速度
专 最大速度值越大,则从动件系统的动量也越大。若 业 机构在工作中遇到需要紧急停车的情况,由于从动
机 件系统动量过大,会出现操控失灵,造成机构损坏
械 制
等安全事故。
造 希望推杆运动速度的最大值越小越好。
与 ②最大加速度
自 最大加速度值的大小,会直接影响从动件系统的惯
科目 机械原理
第9章 凸轮机构及其应用
专 业
9-1 凸轮机构的应用和分类

9-2 推杆的运动规律
械 制
9-3 凸轮轮廓曲线的设计

9-4 凸轮机构的基本尺寸的确定

机械原理凸轮机构-201810

机械原理凸轮机构-201810

2. 对心滚子移动从动件盘形凸轮廓线的设计
已知凸轮的基圆半径rb,滚子
半径rr、凸轮角速度和从动件的运
动规律,设计该凸轮轮廓曲线。

s
8
7
5
3
1
9 10 11 12
13 14
实际轮廓曲线 A

O
1 3 5 7 8 9 11 13 15

120º 60º 90º 90º
设计步骤 ①③按作尖各顶滚直子动圆从的动内件(外盘)形包凸络轮 11 作线出—廓实线际—廓理线论。廓线。 ②以理论廓线上的各点为圆心
ρa=ρ-rr
轮廓失真
ρa=ρ-rr<0
ρ
ρ
rr
ρ =rr
rr
ρa=ρρ<-rr rr<0
外凸凸轮中:ρ实=ρ理-rr
1)若ρ实=0则出现尖点,磨损严重; 2)若ρ实<0则运动失真;
经验公式: rr=(0.1-0.5)r0 ;
rr≤0.8ρ理min ;
出现尖点,运动失真时所采取的办法:
1)r0↑→ρa↑; 2)rr ↓ ;
二、基圆半径r0:
rb

d
s d tan[ ]
e

s
2

e2
α、r0成反比关系: α↑→r0↓; α↓→r0↑;
三、滚子半径rr:
外凸凸轮:
内凹凸轮:
rr ρ
rr
ρa
ρ
ρ > rr
ρa=ρ-rr
ρa
ρa=ρ+rr
外凸凸轮中:
轮廓正常
rr
轮廓变尖:
ρ
ρa
ρ > rr
ρa=ρ-rr=0

机械原理-第9章凸轮机构及其设计

机械原理-第9章凸轮机构及其设计
③等加速回程段:(见书上) ④等减速回程段:(见书上)
①等加速推程段:
s = 2hδ2/δ02 v = 4hω δ /δ02 a = 4h ω 2/ δ02
②等减速推程段: s = h-2h(δ0-δ)2/δ02 v = 4hω(δ0-δ)/ δ02 a = -4hω2/δ02
由图知,有柔性冲击。
凸轮机构的适用场合: 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
2.凸轮机构的分类
盘形凸轮 (1)按凸轮的形状分:移动凸轮 (板凸轮 )
圆柱凸轮
尖端推杆 (2)按从动件端部型式分 滚子推杆
平底推杆
直动推杆 (3)按从动件的运动方式分 摆动推杆
凸轮机构的命名:
从动件
原动件
对心
• 沿-w方向将基圆作相应等分;
• 沿导路方向截取相应的位移, 得到一系列点;
• 光滑联接。
2)对心直动滚子推杆盘形凸轮机构
s
h
h/2
w
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
4
89
13 14
14 1
取长度比例尺l绘图
13
2
12 w
3
实际廓线
11
4
10
5
9
6
7
A5
C
6
2
B B180°B
6 5
4C
C
5
4φ3
C
φ3 2
A1Leabharlann R(3)按-w 方向划分圆R得 A0、A1、A2等点; 即得机架 反转的一系列
位置;
A4 A3
A2
(4)找从动件反转后的一系

第9章 凸轮机构及其设计(有答案)

第9章 凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。

如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。

(1) 由等速运动规律和等加速等减速运动规律组合而成。

(2) 有冲击。

(3) ABCD 处有柔性冲击。

2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。

(1) 运动规律发生了变化。

(见下图 )(2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度'='v O P 2111ω,由于O P O P v v 111122≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60︒时从动件的位置及从动件的位移s。

总分5分。

(1)3 分;(2)2 分(1) 找出转过60︒的位置。

(2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h,说明推程运动角和回程运动角的大小。

总分5分。

(1)2 分;(2)1 分;(3)1 分;(4)1 分(1) 从动件升到最高点位置如图示。

(2) 行程h如图示。

(3)Φ=δ0-θ(4)Φ'=δ'+θ120时是渐开线,5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=︒从动件行程h=30 mm,要求:(1)画出推程时从动件的位移线图s-ϕ;(2)分析推程时有无冲击,发生在何处?是哪种冲击?-总分10分。

(1)6 分;(2)4 分(1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0⋅ω,其位移为直线,如图示。

(2) 推程时,在A 、B 处发生刚性冲击。

6. 在图示凸轮机构中,已知:AO BO ==20mm ,∠AOB =60ο;CO =DO =40mm ,∠=COD 60ο;且A B (、CD (为圆弧;滚子半径r r =10mm ,从动件的推程和回程运动规律均为等速运动规律。

凸轮机构

凸轮机构

机械设计基础
3.4 凸轮设计中的几个问题 设计凸轮机构时,不仅要保证从动件能实 现预定的运动规律,还要求整个机构传力性能 良好、结构紧凑。这些要求与凸轮机构的压力 角、基圆半径、滚子半径等因素相关。 3.4.1 凸轮机构的压力角问题 如图3-15所示为凸轮机构在推程中某瞬时 位置的情况,为作用在从动件上的外载荷,在 忽略摩擦的情况下,则凸轮作用在从动件上的 力将沿着接触点处的法线方向。此时凸轮机构 中凸轮对从动件的作用力(法向力)方向与从 动件上受力点速度方向所夹的锐角即为机构在 该瞬时的压力角,如图3-15所示。将力正交分 解为沿从动件轴向和径向两个分力,即
min
3.4.2 基圆半径的确定
从传动效率来看,压力角越小越好,但压力角减小将导致凸轮尺寸增大。由图315得压力角的计算公式
ds e d arctan
r02 e2 s
机械设计基础
其中,“-”为导路在凸轮轴的右侧,“+”为导路在凸轮轴的左侧。
显然,如果从动件位移s已给定,代表运动规律的
机械设计基础
2)滚子从动件凸轮机构 在从动件的尖顶处安装一个滚子,即成为滚子从动件,这样通过 将滑动摩擦转变为滚动摩擦,克服了尖顶从动件易磨损的缺点。滚子从 动件耐磨损,可以承受较大载荷,是最常用的一种从动件型式,如图35(b)所示。缺点是凸轮上凹陷的轮廓未必能很好地与滚子接触,从 而影响实现预期的运动规律。 3)平底从动件凸轮机构 在从动件的尖顶处固定一个平板,即成为平底从动件,这种从动 件与凸轮轮廓表面接触的端面为一平面,所以它不能与凹陷的凸轮轮廓 相接触,如图3-5(c)所示。这种从动件的优点是:当不考虑摩擦时, 凸轮与从动件之间的作用力始终与从动件的平底相垂直,传动效率较高, 且接触面易于形成油膜,利于润滑,故常用于高速凸轮机构。 在凸轮机构中,从动件不仅有不同的形状,而且也可以有不同的 运动形式。根据从动件的运动形式不同,可以把从动件分为直动从动件 (直线运动)和摆动从动件两种。在直动从动件中,若导路轴线通过凸 轮的回转轴,则称为对心直动从动件,否则称为偏置直动从动件。将不 同形式的从动件和相应的凸轮组合起来,就构成了种类繁多的各种不同 的凸轮机构。

机械原理课件9 凸轮机构

机械原理课件9 凸轮机构

1、凸轮廓线设计的基本原理
• 解析法、作图法 • 相对运动原理法:(也称反转法) • 此时,凸轮保持不动
• 对整个系统施加 -ω
运动
• 而从动件尖顶复合运动的 轨迹即凸轮的轮廓曲线。

A A A A A A A A
1 2
3’ 2’ 1’
ω
r0
1
O
2 3
3
2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
e
对心平底推杆凸轮机构
平底摆杆凸轮机构
从动件与凸轮之间易形成油膜,润滑状况好,受力平稳, 传动效率高,常用于高速场合。但与之相配合的凸轮轮廓 必须全部外凸。
偏心平底推杆凸轮机构
滚子摆杆凸轮机构
e
§9-2 推杆的运动规律
一.推杆常用的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式; 2)推杆运动规律; 3)合理确定结构尺寸; 4)设计轮廓曲线。
a
2h 2
02
2 sin 0

R= 2
h
A 0 1 v
2
3 4
5
6
7
8

回程: s=h[1-δ /δ
0
′)/2π
0

+sin(2π δ /δ
0
0
]

v=hω [cos(2π δ /δ 0’)-1]/δ a=-2π
hω 2 sin(2π δ /δ

FI ma 0
(1).对心直动尖顶从动件盘形凸轮
s
h
对心直动尖顶从动件凸轮机构 中,已知凸轮的基圆半径rmin, 角速度ω和从动件的运动规律, 设计该凸轮轮廓曲线。 设计步骤小结:

第9章 凸轮机构及其设计.ppt

第9章 凸轮机构及其设计.ppt
当根单据击凸轮此机构处的工编作要辑求和母结版构条标件选题定了样其机式构的型式、
基本尺寸、推杆的运动规律和凸轮的转向之后,就可以进行凸轮 轮廓曲线的设计了。
•凸单轮廓击线此设处计的编方辑法母: 作版图文法本和解样析式法 •1.第凸二轮级廓线设计的基本原理
•无第论是三采级用作图法还是解析法设计凸轮廓线,所依据的基本 原理•都例第是偏反四置转级直法动原尖理顶。推杆盘形凸轮机构
可用•来单求摆击动此推处杆的编角辑位母移了版。文本样式 (• 3第)直二动级推杆圆柱凸轮廓线的设计 •3.第用三解级析法设计凸轮的轮廓曲线
律和•用已第解知析的四法机级设构计参凸数轮,廓求线凸,轮就廓是线根的据方工程作式所,要并求精的确推地杆计运算动出规凸 轮廓•线第上各五点级的坐标值。
(1)偏置直动滚子推杆盘形凸轮机构 (2)对心直动平底推杆盘形凸轮机构 (3)摆动滚子推杆盘形凸轮机构
(• 2第)三四角级函数运动规律 •1)第余推五弦程级加时速:度s=运h动[1-规c律os((π简δ /谐δ0)运]/2动规律)
在始、末两瞬时有柔性冲击。
2)正弦加速度运动规律(摆线运动规律)
推程时:s=h[(δ /δ0)-sin(2π δ /δ0) /(2π)]
6
推杆的运动规律(4/4)
既无刚性冲击,又无柔性冲击。
([α]<<αc)
•许第用压三力级角[α]的一般取值为 •推第程四时:级直动推杆[α]=30° • 第五级 摆动推杆[α]=35 °~ 45°
回程时: [α]=70 °~ 80°
13
凸轮机构基本尺寸的确定(3/7)
(21.)单凸凸轮轮击基机圆此构半的处径压的力编确角定与辑基圆母半径版的标关系题样式
r0≥{[(ds/dδ - e)/tan[α] - s]2+e2}1/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按照凸轮与从动件维持 高副接触的方法分类
力锁合 形锁合
2020/10/17
§4-1 凸轮机构的应用和分类
力锁合
所谓力锁合型,是指 利用重力、弹簧力或 其它外力使从动件与 凸轮轮廓始终保持接 触。
2020/10/17
§4-1 凸轮机构的应用和分类
形锁合
所谓形锁合型,是指 利用高副元素本身的 几何形状使从动件与 凸轮轮廓始终保为半径作的 圆。
基圆半径
即为最小向径r0。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
偏距
凸轮回转中心至从动 件导路的偏置距离e。
偏距圆
以e为半径作的圆。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
行程
从动件往复运动的最 大位移,用h表示。
第四章 凸轮机构及其设计
§4-1 凸轮机构的应用和分类
Knowledge Points
凸轮机构的组成 凸轮机构的分类 凸轮机构的优点、缺点
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的组成
凸轮是具有曲线轮廓 或凹槽的构件
凸轮机构一般由凸轮、 从动件和机架三个构 件组成。
凸轮轮廓线与从动件之间是点或线接触的 高副,易于磨损,故多用于传力不大的场 合。
2020/10/17
§4-1 凸轮机构的应用和分类
§4-2 从动件的运动规律
Knowledge Points
多项式运动规律 三角函数运动规律 组合运动规律
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
s c 0 c 1 c 22 c nn
式中c0、cl、c2、…、cn为n+1个 系数。这n+1个系数可以根据对 运动规律所提的n+1个边界条件 来确定。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
一次多项式
从动件速度为常量,故称为等速运动规
律,由于其位移曲线为一条斜率为常数的 斜直线,故又称直线运动规律。
特点:速度曲线连续,不会产生刚
性冲击;因加速度曲线在运动的起始、 中间和终止位置有突变,会产生柔性 冲击。
适用场合:中速轻载。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
五次多项式
其位移方程式中多项式剩余项 的次数为3、4、5,故称3-4-5 次多项式运动规律。也称五次多 项式运动规律。
盘形凸轮
这种凸轮是一个绕固 定轴转动并且具有变 化向径的盘形零件, 如。当其绕固定轴转 动时,可推动从动件 在垂直于凸轮转轴的 平面内运动。它是凸 轮的最基本型式,结 构简单,应用最广。
2020/10/17
§4-1 凸轮机构的应用和分类
移动凸轮
当盘形凸轮的转轴位 于无穷远处时,就演 化成了图示的移动凸 轮(或楔形凸轮)。 凸轮呈板状,它相对 于机架作直线移动。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的优点
结构简单、紧凑,占据空间较小;具有多 用性和灵活性,从动件的运动规律取决于 凸轮轮廓曲线的形状。对于几乎任意要求 的从动件的运动规律,都可以毫无困难地 设计出凸轮廓线来实现。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的缺点
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
按照凸轮的形状分类 按照从动件的型式分
类 按照凸轮与从动件维
持高副接触的方法分 类
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
按照凸轮的形状分类 盘形凸轮 移动凸轮 圆柱凸轮
2020/10/17
§4-1 凸轮机构的应用和分类
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
推程
从动件背离凸轮轴心 运动的行程。
推程运动角
与推程对应的凸轮转 角。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
回程
从动件向着凸轮轴心 运动的行程。
回程运动角
与回程对应的凸轮转 角。
2020/10/17
§4-1 凸轮机构的应用和分类
2020/10/17
§4-1 凸轮机构的应用和分类
平底从动件
从动件与凸轮轮廓之 间为线接触,接触处 易形成油膜,润滑状 况好。此外,在不计 摩擦时,凸轮对从动 件的作用力始终垂直 于从动件的平底,受 力平稳传动效率高, 常用于高速场合。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
2020/10/17
§4-1 凸轮机构的应用和分类
圆柱凸轮
如果将移动凸轮卷成 圆柱体即演化成圆柱 凸轮。图示为自动机 床的进刀机构。在这 种凸轮机构中凸轮与 从动件之间的相对运 动是空间运动,故属 于空间凸轮机构。
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的分类
按照从动件的型式分类 尖底从动件 滚子从动件 平底从动件
特点:速度曲线和加速度曲线 均连续无突变,故既无刚性冲击 也无柔性冲击。
2020/10/17
§4-1 凸轮机构的应用和分类
尖底从动件
从动件的尖端能够与 任意复杂的凸轮轮廓 保持接触,从而使从 动件实现任意的运动 规律。
2020/10/17
§4-1 凸轮机构的应用和分类
滚子从动件
为减小摩擦磨损,在 从动件端部安装一个 滚轮,把从动件与凸 轮之间的滑动摩擦变 成滚动摩擦,因此摩 擦磨损较小,可用来 传递较大的动力,故 这种形式的从动件应 用很广。
特点:速度曲线不连续,从动件运动起
始和终止位置速度有突变,会产生刚性冲 击。
适用场合:低速轻载。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
二次多项式
从动件在推程或回程的前半段作等
加速运动,后半段作等减速运动,通 常加速度和减速度绝对值相等。由于 其位移曲线为两段在O点光滑相连的 反向抛物线,故又称为抛物线运动规 律。
基本概念
远休止角
从动件在最远处停留 凸轮的转角。
近休止角
从动件在距离回转中 心最近处停留凸轮的 转角。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
从动件位移线图
从动件位移s与凸轮转 角φ的对应关系。
2020/10/17
§4-1 凸轮机构的应用和分类
多项式运动规律
一般形式
相关文档
最新文档