复变函数与积分变换期中考试题附答案
复变函数与积分变换试题及答案14

复变函数与积分变换试题与答案一、单项选择题(每题4分,共16分)1、当 ()z f 为下面( )项时,⎰=≠2|z |0dz )z (f : A 、 e z cosz B 、21)-z (1 C 、 1z 1- D 、π-z 1 2、点 z =21 关于单位圆 | z | = 1 的对称点是( ) A 、 1 + i B 、2 C 、 2 i D 、 -23、下列各项中o 正o确的是( )A 、| sin z | ≤1B 、 Ln z 2 = 2 Ln zC 、f(z)= e z 的周期是2πiD 、arg z 1z 2 = arg z 1 + arg z 2 4、若z 0是f (z) 的m 阶极点,下列说法o 错o误的是( )A 、z 0是)z (f 1的m 阶零点 B 、)z (f lim o z z →存在 C 、f(z) 在z 0不解析 D 、)z (f lim oz z →= ∞ 二、计算题(每题6分,共30分)1、设 z =i1i 3+ 求 | z | 、 arg z 和 z3、求 Ln (1- i ) 及其主值 ln (1- i )2、求 ⎰cz dz 其中 c: z = 0 到 z = 2 + i 的直线段4、设 z = 2 + 2 i ,写出z 的指数表达式,并计算 ( 2 + 2 i )45、求在映射f (z) = z 2 +3z 下,过点z =2i 的光滑曲线C 在该点的转角和伸缩率三、解答题(每题7分,共35分)1、求方程 z 3 - 8 i = 0 的全部三个根1、f (z ) = 2 x 3+3 y 3i 在何处可导? 何处解析? 如果可导,求出f '(z).3、求dz )4z )(1z (z e 2|z |2z ⎰=-- ( C 为正向)4、将 f(z) =2)1z )(z 2(1-- 在 0< |z -1| <1 上展开成罗朗级数。
(幂为(z -1))5、指出 f(z) =6zsinz z - 在有限复平面上的孤立奇点及类型,并求奇点处的留数四、 解答题(1、2题6分,3题7分共19分)1、求将上半平面 Im z > 0 保形映照到单位圆 | w | < 1内, 且满足 f ( 2 i )= 0,arg ) i 2(f ' =2π 的分式线性映照。
复变函数与积分变换试题及答案7

复变函数与积分变换试题与答案一、填空(每题2分)1.z=i 的三角表示式是:。
指数表示式是。
2.|z -1|=4在复平面上表示的曲线是一个 。
3.38的全部单根是: ,, 。
4.函数在f (z )=|z |2在z 平面上是否解析 。
5.设C 是正向圆周|z |=1,积分⎰c z dz2=。
6.函数221)1()(z ez f -=的弧立奇点是和,其中是极点,是本性奇点。
7.级数 +++++n z z z 21在|z |<1时的和函数是 。
8.分式线性映射具有,,。
二、判断题(每题2分,请在题后括号里打“√”或“×”)。
1.零的辐角是零。
( ) 2.i <2i .( ) 3.如果f (z )在z 0连续,那么)(0z f '存在。
( ) 4.如果)(0z f '存在,那f (z )在z 0解析。
( ) 5.z e e -=2( ) 6.解析函数的导函数仍为解析函数( ) 7.幂级数的和函数在其收敛圆内解析。
()8.孤立奇点的留数在该奇点为无穷远点时其值为1--β9.单位脉冲函数)(t δ与常数1构成一个傅氏变换对。
( ) 10.共形映射具有保角性和伸缩率的不变性。
()三、计算题(每题6分) 1.dz zzc ⎰3sin (其中C 为正向圆周|z|=1)2.⎰=⎪⎭⎫ ⎝⎛-++4||3211z dz z z (积分沿正向圆周进行)3.dz z ze z z⎰=-2||21(积分沿正向圆周进行)4.求函数)2()(1)(10-+=z i z z f 在无穷远点处的留数四、求解题(每题6分)1. 求函数22),(y x y x u -=的共扼调和函数),(y x v 和由它们构成的解析函数)(z f ,使f (0)=0。
2. 求函数2)1(1)(z z z f -=在1|1|0<-<z 内的罗朗展开式。
五、解答题(每题6分)1.求函数⎩⎨⎧≥<=-000)(t e t t f tβ的傅氏变换)(ωF 。
复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。
2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。
3、62111i i i -æö==-ç÷+èø。
10125212131i i i i i +-=+-=-。
4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。
5、()()231,f z z z =-+则()61f i i ¢-=--。
6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。
7、()(2)1321,(13)2ik i iiee i p p p -++==+。
8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。
1224(4)2i i -==±。
9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。
11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。
1()s i n f z z=,0z =是本性奇点。
二、判断下列函数在何处可导?何处解析?在可导处求出导数。
(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。
复变函数与积分变换试题和答案

复变函数与积分变换试题(一)一、填空(3分×10)1.得模ﻩﻩ、幅角ﻩ。
2.-8i得三个单根分别为:、、。
3.Lnz在得区域内连续。
4.得解极域为:ﻩﻩﻩﻩﻩ。
5.得导数ﻩﻩﻩﻩﻩ。
6. ﻩﻩ。
7.指数函数得映照特点就是:ﻩﻩﻩﻩﻩﻩﻩﻩﻩ。
8.幂函数得映照特点就是: ﻩﻩﻩﻩﻩﻩﻩ。
9.若=F [f(t)]、则= F ﻩﻩﻩﻩ。
10.若f(t)满足拉氏积分存在条件、则L [f(t)]= ﻩﻩﻩ。
二、(10分)已知、求函数使函数为解析函数、且f(0)=0。
三、(10分)应用留数得相关定理计算四、计算积分(5分×2)1.2.C:绕点i一周正向任意简单闭曲线。
五、(10分)求函数在以下各圆环内得罗朗展式。
1.2.六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
(2)七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0得解y (t )。
八、(10分)就书中内容、函数在某区域内解析得具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1.ﻩﻩ、ﻩ ﻩ2、ﻩ-i ﻩﻩ2iﻩ-i ﻩ3、ﻩZ 不取原点与负实轴 4、 空集5、ﻩ2z ﻩ6.0 7、将常形域映为角形域ﻩ8、 角形域映为角形域 9、ﻩ ﻩ10、 二、解:∵ﻩ ∴ ﻩ(5分)∵f (0)=0ﻩﻩﻩﻩc =0(3分)∴ﻩﻩ(2分)三、解:原式=(2分)ﻩ(2分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(=0∴原式=(2分) =四、1.解:原式ﻩ(3分) z 1=0 ﻩz2=1ﻩ=0ﻩﻩ(2分)2.解:原式=五、1.解:nn i i z i i z ii z ii z i i z i z z f ∑∞=⎪⎭⎫⎝⎛--⋅-=-+⋅⋅-=+-⋅-=0111111)(111)(11)(分)(分)(分)( ﻩﻩ(2分) ﻩ2.解: (1分)ﻩ(2分)六、1.解:∵ﻩ(3分)ﻩ∴结论成立 (2)解:∵ﻩ(2分)ﻩ ∴与1构成傅氏对∴(2分)七、解:∵ﻩﻩ(3分)S (2)-(1):∴ (3分)∴八、解:①定义;②C-R 充要条件Th ; ③v 为u 得共扼函数ﻩ10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导就是f(z)在D 内解析得(ﻩ ﻩ)条件。
复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。
() 2.因为|sin |1z ≤,所以在复平⾯上sin z 有界。
()3.若()f z 在0z 解析,则()()n f z 也在0z 解析。
() 4.对任意的z ,2Ln 2Ln z z =()⼆填空(每题3分)1.i 22i =-- , ia r g 22i =-- 。
2.ln(3i)-= , i i = 。
3.在映照2()24f z z z =+下,曲线C在iz =处的伸缩率是,旋转⾓是。
4.0z =是241e zz -的阶极点,241Re [,0]ze s z -=。
三解答题(每题7分)设2222()i()f z x axy by cx dxy y =++-++。
问常数,,,a b c d为何值时()f z 在复平⾯上处处解析?并求这时的导数。
求(1)-的所有三次⽅根。
3.2d Cz z其中C 是0z=到34i z =+的直线段。
4.||2e cos d z z z z=?。
(积分曲线指正向)5.||2d (1)(3)z zz z z =+-?。
(积分曲线指正向)6 将1()(1)(2)f z z z =--在1||2z <<上展开成罗朗级数。
7.求将单位圆内||1z <保形映照到单位圆内||1w <且满⾜1()02f =,1πarg ()22f '=的分式线性映照。
四解答题(1,2,3题各6分, 4题各9分)1.求0 0()e 0ktt f t t -设22()e e sin 6()t t f t t t t t δ-=+++, 求()f t 的拉⽒变换。
设221()(1)F s s s =+,求()F s 的逆变换。
4. 应⽤拉⽒变换求解微分⽅程23e (0)0, (0)1t'==? 复变函数与积分变换试题答案 1若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。
复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
复变函数与积分变换试题及答案(4)

3 4
考试科目:复变、积分学号:
12
西安建筑科技大学考试试卷(共4页)
班级:姓名:考试科目:复变函数与积分变换学号:
五.将函数 在圆环域 内展开成罗朗级数。
六.计算下列各积分(积分路径均取正向):1Βιβλιοθήκη ;2. ;3. ;
七、(10分)应用拉氏变换求方程组 满足x(0)=y(0)=z(0)=0的解y(t)。
西安建筑科技大学考试试卷(共4页)评卷人填写
题号
一
二
三
四
五
六
七
八
九
十
总分
分数
阅卷人
(全日制)班级:姓名:
一.填空题:
1. ;
2.方程 的全部解为;
3. ;
4. ;
5. ;
6.幂级数 的收敛半径 。
二.讨论函数 可导性与解析性。
三.已知调和函数 ,求解析函数 。
四.将函数 展开成 的幂级数,并指出幂级数的收敛半径。
《复变函数与积分变换》试卷及答案

《复变函数与积分变换》试卷及答案一、填空题(本题共8小题,每小题2分,满分16分) 二、(1))ln(-1i +的虚部是π43 三、(2)映射zw 1=把z 平面上的曲线122=+y x 映成w 平面上的曲线是 122=+v u 四、(3)设)nxy x (i y x my )z (f 23233++-=解析函数,则常数=m 1 ,=n -3 五、(4)沿x y =计算积分()i dz iy xi 6561102+-=+⎰+六、(5)若)2)((cos )(--=z i z z z f 的Taylor 级数为∑∞=+-01n nn )i z (c ,则该级数的收敛半径为2七、(6)设()z f 在10<<z 内解析,且()10=→z zf lim z ,则 ()[]=0,z f s Re i π2八、(7)设⎩⎨⎧≥<=,t ,,t ,)t (f 01001 ⎩⎨⎧≥<=,0,sin ,0,0)(2t t t t f 则=*)()(21t f t f ⎩⎨⎧<≥-0001t t t cos 九、(8)设t cos e )t (f t=,则)t (f 的Laplace 变换为[]=)t (f 2212+--s s s 二、选择题(本题共5小题,每小题2分,满分10分。
) (1)2z )z (f =在0=z 处(B )(A )解析 (B )可导(C )不可导 (D )既不解析也不可导 (2)下列命题中正确的是( D )(A )设y ,x ,iy x z +=都是实数,则()1≤+iy x sin (B )设)z (g )z z ()z (f m--=0,)z (g 在点0z 解析,m 为自然数,则0z 为()z f 的m 级极点(C )解析函数的实部是虚部的共轭调和函数 (D )幂级数的和函数在收敛圆内解析(3)级数∑∞=-+02))1(1(n n n in(A )(A )条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不定(4)设0=z 是zsin z e z421-的 m 级极点,则=m ( C )(A )5 (B )4 (C )3 (D )2(5)设)()(0t t t f -=δ,则的)t (f 的Fourier 变换[]=)(t f ( D )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得分
得分
«复变函数与积分变换»期中考试题
电子信息专业2015年11月
题号 一 二 三 四 五 六 总分 得分
一.填空题(每小题3分,共计15分)
1.231i -的幅角是 ; 2,1,0,23
±±=+-
k k ππ
2.)1(i Ln +-的主值是 ;i 4
32ln 21π
+ 3.
211)(z
z f +=,
=)0()5(f ;0 4.以原点为中心,焦点在实轴上,长半轴短半轴分别为a ,b 的椭圆曲线方程是 (用复数形式表示!!!);
z=acost+ibsint t ∈[0,2π]
5.
=⎰+i
11
z)dz z(e^ ;ie^(1+i)=ie(cos1+isin1)
二.选择题(每小题3分,共计15分)
1.解析函数),(),()(y x iv y x u z f +=的导函数为( );B
(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;
(C )
y x iv u z f +=')(; (D )x y iv u z f +=')(.
2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰C
z z f ; D
(A )
23-z ; (B )2
)
1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .
3.若c 为不经过1与-1的正向曲线,则⎰+-c
dz 1)^2)(z 1(z
z 为()
;D
(A )πi/2; (B )-πi/2; (C )0; (D)以上的都可能.
4.下列结论正确的是( );B
(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰
C
dz z f ;
(C )如果0)(=⎰
C
dz z f ,则函数)(z f 在C 所围成的区域内一定解析;
(D )函数
),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是
),(y x u 、),(y x v 在该区域内均为调和函数.
5.函数)(z f 在z 点可导是)(z f 在点z 解析的().B (A) 充分不必要条件;(B) 必要不充分条件; (C) 充分必要条件;(D) 即不充分也不必要条件.
三.按要求完成下列各题(共计40分)
(1)设)()(2
2
2
2
y dxy cx i by axy x z f +++++=是解析函数,求
d
c b a ,,,;
解:因为)(z f 解析,由C-R 条件
y v x u ∂∂=∂∂ x
v
y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+
,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c
给出C-R 条件6分,正确求导给2分,结果正确2分。
得分
(2).计算
⎰
-C
z
z z z e d )
1(2
其中C 是正向圆周:2=z ; 因为函数z z e z f z
2
)1()(-=在复平面内只有两个奇点1,021==z z ,分别以21,z z 为圆心画互不相交互不包含的小圆
2
1,c c 且位于c 内
⎰⎰⎰-+-=-21
d )1(d )1(d )1(222C z C z C z
z z z e z z
z e z z z e i z e i
z e i z z
z z πππ2)1(2)(20
2
1=-+'===
(3)计算积分
c
2
d 1
-z z
4πsin
z ,其中|z|=2;
(4)求积分⎰=1
d z z
z z e ,并证明p.d θ)sin θ(cos p
=⎰
四、(本题10分)设复数z1,z2,z3对应等边三角形的三个顶点得分
试求证: z1^2+z2^2+z3^2-z1z2-z2z3-z3z1=0.
五.(本题14分)用解析函数与调和函数的关系解问题
验证3xy^2-x^3y)u(x,=是调和函数,并求以)y u(x,为实
部的解析函数)(z f ,使之适合i )
0(=f .
得分
六、(本题6分)将一对二元实变函数
2
^2^,y^2x^22x u y x y
v +=+=
化为一个复变函数.
得分。