Eviews时间序列分析

合集下载

时间序列 eviews操作

时间序列 eviews操作

1.打开EVIEWS新建一个工作文件,步骤如下:
出现如下对话框,选择数据频率为季度,开始日期为1989年1季度,结束日期为2004年4季度,即为工作文件的范围区间。

点击ok生成工作文件
2.若要改变工作文件的范围区间,双击Range,出现如下对话框
3.利用命令series 生成时间序列gdp
点击Edit+/-改变数据的编辑状态,打开EXCEL文件将数据复制粘贴到数据区域,查看数据序列的折线图,步骤如下:
结果:
从图中可看出时间序列有明显的季节波动。

4.对gdp序列进行描述统计分析:
5.对原GDP数据进行季节调整,调整后时间序列存为GDP_SA
6.做出折线图:
由图知序列受季节影响程度变小。

7.进行单位根检验,结果如下:
计算自相关函数和偏相关函数如下:
9.利用方程建立ARMA(3,3)模型
10.建立组,包括gdp gdp_sa dgdp
建组后展示如下:
11.将建组后的收据以EXCEL格式输出:
点击ok即可。

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程时间序列分析是一种常用的数据分析方法,通过对一系列时间上连续测量的数据进行观察、描述和分析,可以发现其中的规律和趋势,从而预测未来的发展走势。

Eviews是一种专业的时间序列分析软件,具有强大的数据处理和统计分析功能。

本文将介绍如何使用Eviews进行时间序列分析。

首先,打开Eviews软件,并导入需要分析的时间序列数据。

在Eviews的工作区中,选择“File”菜单下的“Open”选项,然后选择需要导入的数据文件,点击“Open”按钮导入数据。

导入数据后,可以在Eviews的对象浏览器中看到导入的数据对象。

接下来,对时间序列数据进行初步的观察和描述分析。

在对象浏览器中,选择需要分析的数据对象,右键点击并选择“Open as Group”选项,将数据对象打开为一个分析组。

然后,在Eviews的对象浏览器中,选择分析组,在右侧窗口中可以看到该组中包含的所有时间序列数据。

可以通过列出每个时间序列的统计概要、绘制时间序列图、查看自相关和偏自相关等方式对数据进行初步的观察和描述分析。

接下来,进行时间序列模型的构建和估计。

在Eviews的操作菜单中,选择“Quick”菜单下的“Estimate Equation”选项,打开方程估计窗口。

在方程估计窗口中,选择需要构建的时间序列模型类型,如AR、MA、ARMA等。

然后,在“Dependent Variable”栏目中选择需要分析的时间序列数据,将其作为因变量。

在“Independent Variables”栏目中选择需要作为自变量的时间序列数据,可以根据需求选择多个自变量。

点击“OK”按钮,Eviews将根据所选择的时间序列模型类型和数据进行模型的估计。

估计完成后,可以查看估计结果。

在方程估计窗口中,可以看到估计结果的统计指标、系数估计值、显著性水平等信息。

可以根据需要查看和分析各个系数的显著性水平、置信区间等信息,判断模型的有效性和可靠性。

Eviews时间序列分析报告实例

Eviews时间序列分析报告实例

Eviews时间序列分析实例时间序列是市场中经常涉与的一类数据形式,本书第七章对它进展了比拟详细的介绍。

通过第七章的学习,读者了解了是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。

本节的主要内容是说明如何使用Eviews软件进展分析。

一、指数平滑法实例所谓指数平滑实际就是对历史数据的加权平均。

它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期。

由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列中仍然占据着相当重要的位置。

〔-〕一次指数平滑一次指数平滑又称单指数平滑。

它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到结果。

一次指数平滑的特点是:能够跟踪数据变化。

这一特点所有指数都具有。

过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。

这样,值总是反映最新的数据结构。

一次指数平滑有局限性。

第一,值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期,而不适合作中长期的;第三,由于值是历史数据的均值,因此与实际序列的变化相比有滞后现象。

指数平滑是否理想,很大程度上取决于平滑系数。

Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。

选择自动给定,系统将按照误差平方和最小原如此自动确定系数。

如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的值。

出于的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。

平滑系数取值比拟适宜呢?一般来说,如果序列变化比拟平缓,平滑系数值应该比拟小,比如小于0.l;如果序列变化比拟剧烈,平滑系数值可以取得大一些,如0.3~0.5。

假如平滑系数值大于0.5才能跟上序列的变化,明确序列有很强的趋势,不能采用一次指数平滑进展。

[例1]某企业食盐销售量。

现在拥有最近连续30个月份的历史资料〔见表l〕,试下一月份销售量。

表1 某企业食盐销售量单位:吨解:使用Eviews对数据进展分析,第一步是建立工作文件和录入数据。

Eviews时间序列分析

Eviews时间序列分析

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心2007年2月目录实验一EVIEWS中时间序列相关函数操作········ - 1 - 实验二确定性时间序列建模方法··········- 10 - 实验三时间序列随机性和平稳性检验·········- 21 - 实验四时间序列季节性、可逆性检验·········- 25 - 实验五ARMA模型的建立、识别、检验·······- 34 - 实验六ARMA模型的诊断性检验··········- 37 - 实验七ARMA模型的预测·············- 38 - 实验八复习ARMA建模过程············- 40 - 实验九时间序列非平稳性检验···········- 42 -实验一EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

时间序列分析实验1 Eviews的基本操作与平稳性检验

时间序列分析实验1 Eviews的基本操作与平稳性检验
随机产生100个标准正态分布的随机数可在matlab中进行将结果导入eviews中命名为randnum绘制时序图和检验
实验目的: 1. 熟悉 Eviews 的基本操作,重点是工作文件的创建、数据的录入(导入) 。 2. 掌握散点图、时序图以及自相关图的操作。 3. 掌握序列平稳性的检验。
, x100 ,将它们保存起来,命名为 aut,考察这个序
实验内容:
1. 随机产生 100 个标准正态分布的随机数(可在 Matlab 中进行) ,将结果导入 Eviews 中,命名为 rand_num,绘制时序图和自相关图。
2. 考察上述序列的平稳性。
3. 对于自回归过程 X t 0.5 X t 1 0.6 t ,其中 t ~ i.i.d . N (0, 1) ,从初值 X 0 1开 始,模拟生成序列 x1 , x2 , 列的平稳性。

eviews时间序列分析实验Word版

eviews时间序列分析实验Word版

实验一ARMA 模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。

学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念 1 平稳时间序列:定义:时间序列{zt}是平稳的。

如果{zt}有有穷的二阶中心矩,而且满足:(a )ut= Ezt =c;(b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。

2 AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。

具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。

⎪⎪⎪⎪⎨⎧<∀=≠===≠+++++=---ts Ex t s E Var E x x x x t s s t t t p t p t p t t t ,0,0)(,)(,0)(0222110εεεσεεφεφφφφε3 MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。

4 ARMA 模型:ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。

具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。

112220()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,⎪⎪⎪⎪⎨⎧<∀=≠===≠≠---++++=----ts Ex t s E Var E x x x t s s t t t q p q t q t t p t p t t ,0,0)(,)(,0)(0,0211110εεεσεεθφεθεθεφφφε三、实验内容及要求 1 实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;2 实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测;(3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

用EVIEWS处理时间序列分析

用EVIEWS处理时间序列分析

应用时间序列分析实验手册目录目录1第二章时间序列的预处理2一、平稳性检验2二、纯随机性检验9第三章平稳时间序列建模实验教程9一、模型识别9二、模型参数估计(如何判断拟合的模型以及结果写法)14三、模型的显著性检验17四、模型优化18第四章非平稳时间序列的确定性分析19一、趋势分析19二、季节效应分析34三、综合分析38第五章非平稳序列的随机分析44一、差分法提取确定性信息44二、ARIMA模型57三、季节模型61第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的X围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图10020030040050060019601970198019902000YEARO U T P U T图3:年份和产出的散点图(二)自相关图检验 例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1.可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.)有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

用EVIEWS处理时间序列分析

用EVIEWS处理时间序列分析

应用时间序列分析实验手册AHA12GAGGAGAGGAFFFFAFAF目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (9)第三章平稳时间序列建模实验教程 (10)一、模型识别 (10)二、模型参数估计(如何判断拟合的模型以及结果写法) (13)三、模型的显著性检验 (17)四、模型优化 (18)第四章非平稳时间序列的确定性分析 (19)一、趋势分析 (19)二、季节效应分析 (34)三、综合分析 (38)第五章非平稳序列的随机分析 (44)一、差分法提取确定性信息 (44)AHA12GAGGAGAGGAFFFFAFAF二、ARIMA模型 (58)三、季节模型 (62)AHA12GAGGAGAGGAFFFFAFAF第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据AHA12GAGGAGAGGAFFFFAFAF图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名AHA12GAGGAGAGGAFFFFAFAF图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF图1:绘制散点图图2:年份和产出的散点图 010020030040050060019601970198019902000YEAR O U T P U T图3:年份和产出的散点图(二)自相关图检验例2.3导入数据,方式同上;在Quick菜单下选择自相关图,对Qiwen原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列分析实验指导A统计与应用数学学院随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心2007年2月实验一EVIEWS中时间序列相关函数操作................. -1 -实验二确定性时间序列建模方法 ........................ -10 -实验三时间序列随机性和平稳性检验. (21)实验四时间序列季节性、可逆性检验.................. -25 -实验五ARMA模型的建立、识别、检验................ -34 -实验六ARMA模型的诊断性检验...................... -37 -实验七ARMA模型的预测............................ -38 -实验八复习ARMA建模过程 .......................... -40 -实验九时间序列非平稳性检验........................ -42 -实验一EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

【实验容】一、EViews软件的常用菜单方式和命令方式;二、各种常用差分函数表达式;三、时间序列的自相关和偏自相关图与函数;【实验步骤】一、EViews软件的常用菜单方式和命令方式;㈠创建工作文件1•菜单方式启动EViews软件之后,进入EViews主窗口在主菜单上依次点击File/New/Workfile ,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency )、起始期和终止期。

选择时间频率为Annual (年度),再分别点击起始期栏(Start date ) 和终止期栏(End date ),输入相应的日期,然后点击0K按钮,将在EViews 软件的主显示窗口显示相应的工作文件窗口。

工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C (保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)<2.命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。

命令格式为:CREATE 时间频率类型起始期终止期则菜单方式过程可写为:CREATE A 1985 1998㈡输入丫、X的数据1.DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>… <序列名n>本例中可在命令窗口键入如下命令:DATA 丫 X2•鼠标图形界面方式在EViews软件主窗口或工作文件窗口点击Objects/New Object ,对象类型选择Series,并给定序列名,一次只能创建一个新序列。

再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit + / -,进入编辑状态,输入数据。

㈢生成log (丫)、log (X)、X A2、1/X、时间变量T等序列在命令窗口中依次键入以下命令即可:GENR LOGY=LOG(Y)GENR LOGX=LOG(X)GENR X1=X A2GENR X2=1/XGENR T=@TREND(84)㈣选择若干变量构成数组,在数组中增加变量。

在工作文件窗口中单击所要选择的变量,按住Ctrl键不放,继续用鼠标选择要展示的变量,选择完以后,单击鼠标右键,在弹出的快捷菜单中点击Open/as Group,则会弹出数组窗口,其中变量从左至右按在工作文件窗口中选择变量的顺序来排列。

在数组窗口点击Edit + / ―,进入全屏幕编辑状态,选择一个空列,点击标题栏,在编辑窗口输入变量名,再点击屏幕任意位置,即可增加一个新变量增加变量后,即可输入数据。

点击要删除的变量列的标题栏,在编辑窗口输入新变量名,再点击屏幕任意位置,弹出RENAME对话框,点击YES按钮即可。

㈤在工作文件窗口中删除、更名变量。

1•在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete (删除)或Rename (更名)即可2•在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected …(Rename selected …),即可删除(更名)变量3•在工作文件窗口中选取所要删除的变量,点击工作文件窗口菜单栏中的Word文档资料Delete按钮即可删除变量三、图形分析与描述统计分析㈠利用PLOT命令绘制趋势图在命令窗口中键入:PLOT 丫也可以利用PLOT命令将多个变量的变化趋势描绘在同一图中,例如键入以下命令,可以观察变量丫、X的变化趋势PLOT 丫 X㈡利用SCAT命令绘制X、丫的散点图在命令窗口中键入:SCAT X 丫则可以初步观察变量之间的相关程度与相关类型二、各种常用差分函数表达式表1-1:1949年1月---I960年12月数据(一)利用D(x)命令系列对时间序列进行差分(x为表1-1中的数据)。

1、在命令窗口中键入:ge nr dx= D(x)则生成的新序列为序列x的一阶差分序列2、在命令窗口中键入:ge nr dxn= D(x ,n)则生成的新序列为序列x的n阶差分。

3、在命令窗口中键入:genr dxs= D(x,O,s)则生成的新序列为序列x的对周期长度为s一阶季节差分。

4、在命令窗口中键入:ge nr dxs n= D(x, n,s)则生成的新序列为对周期长度为s的时间序列x取一阶季节差分后的序列再取n阶差分。

5、在命令窗口中键入:ge nr dlx= Dlog(x)则生成的新序列为x取自然对数后,再取一阶差分。

6、在命令窗口中键入:ge nr dlxs n= Dlog(x, n,s)则生成的新序列为周期长度为s的时间序列x先取自然对数,再取一阶季节差分,然后再对序列取n阶差分。

在EVIEWS中操作的图形分别为:__ DX121DLX、时间序列的自相关和偏自相关图与函数(一)观察时间序列的自相关图。

命令方式:(1)在命令行输入命令:Ide nt x(x 为序列名称);(2)然后在出现的对话框中输入滞后时期数。

(可取默认数) 菜单方式:(1 )双击序列图标。

菜单操作方式:View — >Correlogram ,0.15 0.10 0.05 0.00 -0.05 -0.10 -0.1549 50 51 52 53 54 55 56 57 58 59 60DLX121在出现的对话框中输入滞后数。

(可取默认数)(二)练习:观察一些文件中的序列自相关函数Autocorrelation ,偏自相关函数Partial autocorrelation 的特征练习1:操作文件:Stpoor~1.wf1(美国S&P500工业股票价格指数1980年1 月~1996年2月)步骤:(1)打开该文件。

(2)观察序列stpoorr的趋势图,自相关图(自相关函数,偏自相关函数)的特征。

(3)对序列取一阶差分,生成新序列dsp : genr dsp=d(stpoor),并观察其趋势图,自相关图(同上,下略)的特征。

(4)对该序列的自然对数取一阶差分,生成新的序列dlnsp : genr dln sp=dlog(stpoor),并观察其趋势图,自相关图。

练习2:操作文件:usagnp.wf1(美国1947年第一季度~1970年第四季度GNP数据)步骤:(1)打开该文件。

(2)观察序列usagdp的趋势图的特征,自相关图的特征。

(3)对该序列取一阶差分,生新的序列dgdp : Genrdgdp=d(usagdp)。

观察其趋势图,自相关图。

(4)对该序列的自然对数取一阶差分,生成新的序列dingdp : Genr din gdp=dlog(gdp)。

观察其趋势图,自相关图。

(5)对序列一阶季节差分,生成新序列dsgdp=d(usagdp,0,4)观察其趋势图,自相关图的特征。

(6 )对该序列的自然对数取一阶季节差分,生成新的序列:dslngdp=dlog(usagdp,0,4) ,观察其趋势图、自相关图。

实验二确定性时间序列建模方法【实验目的】熟悉确定性时间序列模型的建模原理;掌握确定性时间序列建立模型的几种常用方法。

【实验容】一、多项式模型和加权最小二乘法的建立;二、单参数和双参数指数平滑法进行预测的操作练习;三、二次曲线和对数曲线趋势模型建立及预测;【实验步骤】」、多项式模型和加权最小二乘法的建立;1、我国1974 —1994年的发电量资料列于表中,已知2012年的发电量为47086亿千瓦小时,试以表1.1中的资料为样本:(1)据拟合优度和外推检验的结果建立最合适的多项式模型。

(2)采用加权最小二乘法估计我国工业发电量的线性趋势,并与普通最小二乘法估计的线性模型进行比较,列出OLS方法预测值和W=0.6,W=0.7时1992到1995年预测值以及相对误差。

16682820377058489281123932203371463 195830064107621210071355625004207172 203130934495677510811480828654466737 223432774973753911351654032814708655 2566351454528395116719105346608操作过程:建立WORKFILE: CREATE A 1974 2012生成新序列丫:data y生成新的时间趋势序列t : genr t=@trend(1973)建立系列方程:smpl 1974 2011Is y c tIs y c t t A2Is y c t tA2tA3Sample 19741994通过拟合优度和外推检验的结果发现一元三次多项式模型效果最好。

相关文档
最新文档