电缆局部放电试验方法
10kV电力电缆振荡波局部放电检测试验方案

10kV电力电缆振荡波局部放电检测试验方案(送审稿)批准:审核:编写:XX供电局试验研究所2010年06月- 1 -10kV 电力电缆振荡波局部放电检测试验方案一、试验标准和目的根据《XX 电网公司亚运会保供电重要设备准备阶段运行管理工作标准》要求,通过现场试验,在不损害电缆本体绝缘的情况下检查10kV 电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。
二、试验仪器SEBAKMT OWTS -M28型电缆振荡波局放检测仪,SEBAKMT Easyflex Com 多功能脉冲反射仪,S1-1054型电子兆欧表三、试验内容10kV 电缆振荡波局部放电检测基本原理如图1所示:图1 电缆振荡波局放测试原理用直流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。
实时快速状态开关S 闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进行振荡。
空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工频频率。
图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。
回路品质Q 一般为30~100,振荡波以谐振频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。
LC f π2/1=振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C和tan值可通过振荡波的时间和频率特性来计算。
1、被测电缆要求及测试前准备1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏;2)尽量将电缆接头处PT、避雷器等其它设备拆除;3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够;4)收集电缆长度、型号、类型、投运日期等电缆参数;5)电缆长度L:电缆一侧测量方式:50m≦L≦3km;电缆两端测量方式:L>3km。
高压电缆验收标准 局部放电检测与评估

高压电缆验收标准局部放电检测与评估高压电缆是大型电力工程中常用的重要设备,其质量和安全性直接影响到电力系统的运行和供电可靠性。
为了确保高压电缆的质量符合规定标准,必须对其进行验收。
本文将重点介绍高压电缆验收标准中的局部放电检测与评估。
一、局部放电概述局部放电(PD)是高压电缆中常见的故障形式之一,指的是在电缆绝缘中的局部区域发生间歇性放电现象。
这种放电不仅会引起电缆绝缘材料的老化和劣化,还可能导致绝缘击穿,从而造成电缆的故障和事故。
因此,在高压电缆验收中,对局部放电进行检测与评估具有重要意义。
二、局部放电的检测方法常见的局部放电检测方法有多种,包括频域分析法、时域分析法、相位分析法等。
其中,频域分析法是较为常用的方法,通过测量电缆敷设后的局部放电特性,来评估电缆绝缘材料的质量和绝缘状态。
此外,还可以利用电缆封闭直流电荷法(DC Voltage-Step)和交流脉冲法(AC Voltage-Withstand)等验证电缆的质量。
三、局部放电的评估参数局部放电评估的参数主要有放电量、放电能量、频率特性、放电模式等。
放电量和放电能量是衡量故障严重程度的重要指标,频率特性可以分析出放电源的类型,而放电模式则能表征电缆绝缘的状况。
通过这些评估参数的分析,可以判断电缆的安全性和可靠性。
四、局部放电的评估标准根据国家相关标准和行业规范,高压电缆的局部放电评估标准一般包括放电量、放电能量、频率特性和放电模式等参数的限定范围。
超过这些范围的数值,则可能代表电缆存在质量问题。
同时,还需要注意不同类型的高压电缆在局部放电评估标准上可能存在差异,有针对性地进行评估。
五、局部放电的检测设备局部放电的检测设备主要有高压电缆局部放电在线监测系统和离线检测仪器。
在线监测系统能够实时监测电缆的放电情况,并提供警报和故障诊断等功能。
离线检测仪器可以对电缆进行定期的检测和评估,是电力工程部门常用的检修设备。
六、局部放电的处理方式当检测到高压电缆存在局部放电问题时,应及时采取相应的处理方式。
电力电缆的局部放电检测与处理

电力电缆的局部放电检测与处理局部放电是电力电缆中常见的故障形式之一,它会导致电缆损坏、短路等严重后果。
因此,对电力电缆进行局部放电的及时检测与处理,具有重要的意义。
本文将介绍电力电缆局部放电的检测原理、方法以及处理措施。
一、电力电缆局部放电的检测原理局部放电是指电缆中的电荷在局部区域释放能量,造成电弧放电或脉冲放电的现象。
电缆在运行或负荷过程中,由于介质老化、控制电极不良、绝缘结构破损等原因,可能引发局部放电。
因此,及时检测局部放电的存在是至关重要的。
电力电缆局部放电的检测可以通过不同的方法实现。
其中主要包括以下几种:1. 电缆局部放电检测仪器:采用高频电流放电法、超声波法、暂态地电压法等原理进行检测,可以对电缆进行全面、精确的监测。
2. 红外热像仪:通过检测电缆表面的热量分布,可以发现局部放电产生的热量异常,提前发现潜在故障。
3. 电缆局部放电监测系统:通过长期、实时监测电缆的电压、电流等参数,及时判断电缆是否存在局部放电,保障电力系统的稳定运行。
二、电力电缆局部放电的检测方法1. 高频电流放电法:通过检测电缆导体内部的高频电流信号,判断是否存在局部放电现象。
2. 超声波法:利用超声波的传导和反射特性,检测电缆绝缘及连接部位是否存在局部放电。
3. 暂态地电压法:通过在电缆两端施加暂态地电压,通过检测地电压的变化情况,判断是否存在局部放电。
三、电力电缆局部放电的处理措施当电力电缆存在局部放电时,需要及时采取相应的处理措施,避免故障扩大,确保电力系统的正常运行。
具体处理措施包括:1. 局部放电源的隔离:通过对电缆的发生放电部位进行隔离,防止放电的继续发展。
2. 放电源的修复:及时修复局部放电源,修复或更换损坏的电缆绝缘部分。
3. 系统的升级改造:通过对电力系统进行升级改造,提高电缆的绝缘性能,减少局部放电的可能性。
4. 定期检测与维护:定期对电力电缆进行检测与维护,及时排除潜在的故障隐患,提高电缆的安全可靠性。
局部放电测试方法

局部放电测试方法局部放电测试方法随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。
我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。
局部放电检测作为一种非破坏性试验,越来越得到人们的重视。
虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。
若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。
对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。
因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。
对电力设备进行局部放电测试是一项重要预防性试验。
根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产生分解物等,可以有很多测量局部放电的方法。
总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。
一、电测法局部放电最直接的现象即引起电极间的电荷移动。
每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。
另外,每次放电过程持续时间很短,在气隙中一次放电过程在10ns量级;在油隙中一次放电时间也只有1u s。
根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。
局部放电电检测法即是基于这两个原理。
常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。
1.脉冲电流法脉冲电流法是一种应用最为广泛的局部放电测试方法。
脉冲电流法的基本测量回路见图3-5。
图中C代表试品电容,Z(Z)代表测量阻抗,C k代表耦合电容,它的作用是为C x与Z m之间提供一个低阻抗的通道。
35kV电缆振荡波局放检测试验方案

..35kV电力电缆振荡波局部放电检测试验方案批准:XXX审核:XXX编写:XXXXX电科院试验所日期:专业资料- .35kV电力电缆振荡波局部放电检测试验方案一、概况XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。
XLPE电缆在制造和接头操作过程中,绝缘层部易出现的杂质、微孔、半导电层突起和分层缺陷,当外护套被侵蚀后引起的进水,水树枝演化成电树枝之后均会引起局部放电的发生。
长期的实践证明,局部放电是造成电力电缆绝缘破坏的主要原因。
首先,在局部放电的过程中,电离出来的电子、正负离子在电场力的作用下具有较大的能量,当它们撞到绝缘空气隙的绝缘壁时,足以打断绝缘材料高分子的化学键,产生裂解。
其次,在放电点上,介质发热可达到很高的温度,使得绝缘材料在放电点被烧焦或熔化,温度升高还会产生热裂解或促使氧化裂解,同时温度升高会增大介质的电导和损耗,由此产生恶性循环,导致绝缘体破坏。
第三,在局部放电过程中会产生许多活性生成物,这些生成物会腐蚀绝缘体,使得介质性能劣化。
第四,局部放电有可能产生X射线和Y射线,这两种射线具有较高的能量,促使高分子裂解。
除此之外,连续爆破性的放电以及放电产生的高压气体都会使绝缘体产生微裂,从而发展成电树枝。
局部放电会不断地破坏绝缘材料,最终导致绝缘击穿。
- . 可修编.电力电缆振荡波局部放电检测试验方案电力电缆局部放电量与电力电缆绝缘状况密切相关,局部放电量的变化预示着电缆绝缘存在着可能危及电缆安全运行的缺陷。
因此,国外许多专家、学者及一些国际电力权威机构一致推荐局部放电试验为绝缘电力电缆绝缘状况评价的最佳方法,并作为及时发现电缆故障隐患、预测电缆运行寿命、保障电缆安全可靠运行的重要手段。
OWTS振荡波电缆局部放电检测和定位技术,是目前国际国应用比较广泛的能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害的先进技术。
电缆局部放电检测方法

电缆局部放电检测方法随着电力系统的不断发展,电缆作为输电线路的重要组成部分,其安全性能和可靠性越来越受到重视。
电缆局部放电是指电缆绝缘局部区域发生的放电现象,这种放电可能导致电缆绝缘击穿,造成设备损坏甚至火灾等严重事故。
因此,就需要对电缆局部放电进行检测。
下面一起了解下电缆局部放电检测的方法和意义。
一、电缆局部放电检测的意义1.提高设备安全性。
电缆局部放电会导致绝缘击穿,进而引发设备故障,影响电力系统的稳定运行。
通过对电缆局部放电的及时检测,可以有效降低设备故障率,提高设备的安全性。
2.保证电力系统稳定运行。
电缆局部放电会导致电力系统的电压波动、电流畸变等问题,影响电力系统的稳定运行。
通过对电缆局部放电的检测,可以及时发现问题并采取措施,保证电力系统的稔定运行。
3.延长设备使用寿命。
电缆局部放电会导致绝缘老化、材料损耗等问题,从而缩短设备的使用寿命。
通过对电缆局部放电的检测,可以及时发现问题并采取措施,延长设备的使用寿命。
二、电缆局部放电检测的方法1.电测法电测法是一种直接测量电缆绝缘介质中的电气参数的方法。
通过在电缆表面或内部安装电极,利用电场的作用原理,测量绝缘介质中的电压、电流等参数。
当绝缘介质中存在局部放电时,会产生局部电场,从而导致绝缘介质中的电压、电流发生变化。
通过对这些变化信号的分析,可以判断是否存在局部放电现象。
电测法的优点是检测灵敏度高,能够实现对电缆全面、连续的检测。
但其缺点是对现场设备要求较高,需要专业的检测仪器和技术人员进行操作。
2.热像法热像法是一种通过测量绝缘介质中的温度分布来判断是否存在局部放电的方法。
当绝缘介质中存在局部放电时,会产生局部热量,导致绝缘介质中的温度分布发生变化。
通过时这些温度变化的图像分析,可以判断是否存在局部放电现象。
热像法的优点是检测成本较低,适用于对现场设备要求较低的场合。
但其缺点是对温度分布的敏感度较低,可能漏检部分局部放电现象。
3.声波法声波法是一种通过测量绝缘介质中传播的声音信号来判断是否存在局部放电的方法。
10kV电力电缆振荡波局部放电检测试验方案说明

WORD文档下载可编辑10kV电力电缆振荡波局部放电检测试验方案(送审稿)专业技术资料分享.WORD 完美格式..专业知识编辑整理.一、试验标准和目的根据《XX 电网公司亚运会保供电重要设备准备阶段运行管理工作标准》要求,通过现场试验,在不损害电缆本体绝缘的情况下检查10kV 电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。
二、试验仪器SEBAKMT OWTS -M28型电缆振荡波局放检测仪,SEBAKMT Easyflex Com 多功能脉冲反射仪,S1-1054型电子兆欧表三、试验内容10kV 电缆振荡波局部放电检测基本原理如图1所示:图1 电缆振荡波局放测试原理用直流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。
实时快速状态开关S 闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进行振荡。
空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工频频率。
图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。
回路品质Q 一般为30~100,振荡波以谐振频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。
LC f π2/1=佛山供电局- 2 -振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C 和 tan 值可通过振荡波的时间和频率特性来计算。
1、被测电缆要求及测试前准备1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏;2)尽量将电缆接头处PT 、避雷器等其它设备拆除;3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够;4)收集电缆长度、型号、类型、投运日期等电缆参数;5)电缆长度L :电缆一侧测量方式:50m ≦L ≦3km ;电缆两端测量方式:L >3km 。
高压电力电缆局放测试的方法

高压电力电缆局放测试的方法高压电力电缆局放测试的方法首先是交流耐压试验电源处理,交流耐压试验电源处理用到的装置是串联谐振1、交流耐压试验电源处理高压电缆交流耐压采用的是变频谐振装置产生试验电源,变频柜是装置的核心部件,变频柜通过晶闸管的整流和逆变获取试验所需的频率,在电源变换过程中引入了大量的高频脉冲电流成份。
.变频谐振系统输出的电源不能直接作为电缆局放试验的电源直接施加于被试对象进行局部放电测试,必须采取有效措施对试验电源进行预处理,通过设置串联电抗、防晕导线、均压环进行对试验电源质量进行改善,其电气原理所下图所示。
.2、电缆终端局放测试回路电缆终端的局放测试回路如下图,当被试电缆内部发生了局部放电时,耦合电容瞬时对电缆终端充电,形成高频的脉冲充电电流波形,脉冲电流的幅值、发生的频度反映了电缆内部局部放电的严重程度,通道1、通道2两个传感器将局放信号传送至局放诊断系统进行分析处理。
.在电缆的中间接头,测试原理如图所示,一侧电缆的铠装与电缆导体之间存在电容Ca,另一侧电缆的导体与铠装之间存在电容Cb,如果在电缆的中间接头发生局部放电,那么形成两个电容C1和C2,此时Ca和Cb就会通过导体向C1和C2充放电,从而形成局放电流回路,在两侧电缆屏蔽层桥接一个高频低阻的电容臂C0和高频电流传感器,就可以检测到局放的脉冲电流信号。
..3、高压电缆局放测试的技术难点a) 测试系统灵敏度要求高高压电缆发生局放时产生的脉冲信号微弱,要求传感器及测试系统有相当高的检出灵敏度。
b) 现场干扰因素复杂在现场实施电缆局放试验时干扰信号会严重影响电缆局放的检测和诊断,主要有临近试验现场的运行设备产生的电晕或者局部放电信号、交流耐压试验装置自身的局部放电信号、交流耐压试验回路的引线产生的电晕信号三个方面的因素。
因此甄别并排除干扰信号、提取有效的信息并根据其特征诊断电缆的绝缘状态是一项具有挑战性的技术难题。
c) 对测试人员的要求高高压电缆局放的信号主要集中在0-30MHz范围内,信号频带较宽,加上现场存在一定的干扰信号,测试人员通过信号抑制、识别、分类、提取、判断等技术手段,准确的解析复杂的电子信号成份实现电缆的状态诊断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆局部放电试验方法
[ 作者:admin 转贴自:中国电力试验设备网点击数:505 更新时间:2008-8-29 ]
对于制造中没有包上屏蔽的电缆线,可用图(1)的牵引试验装置对局部放电定位和检测。
图(1)未加屏蔽的电缆芯用牵引法对局部放电定位
其原理是把不屏蔽的电缆芯子通过一个紧贴着试验的管状电极,电极上施加试验电压,并把电极连到试验回路。
管子都浸在绝缘液中(如离子水),并把这区域中不会发生干扰试验的边缘放电,液体不断循环与过滤。
电缆芯接地,从缆盘经管状电极被匀速牵引至第二个电缆盘。
如放电脉冲正好被检测仪观察到,放电在图中A处开始出现,在B处开始消失,这两位置都在芯子表面的C处标记离A、B为已知距离I1、I2,这些长度沿芯子标出,则放电就可确定在电缆A、B之间。
至于成品电缆则不能用这种办法定位和检测。
在长电缆的测试时,要考虑到行波及其在端部的反射和衰减。
可归纳以下几点:
1)在没有反射波的情况下,放电所产生的电压行波在进行中其幅值虽有很大衰减,但波形与放电量成正比的面积基持不变。
2)在有反射波的情况下,传输波和反射波在检测仪的响应上要形成交迭。
在检测仪具有α响应时总是形成正迭加,时则既可能正送加,也可能负迭加,而负迭加是局部放电测试的大忌,应尽量避免。
因此,如没有附加措施(例如迭器)的话。
应尽量采用具有α响应的检测仪。
至于检测短电缆,可以当作集中参数元件考虑。
测试就没有什么困难了。
现在的问题是究竟多少长度的电缆可视作短电缆?说法很不统一,第二个问题是这个电缆长度和检测仪有没有关系?为此,IEC最近对此作了比较具体的规定:
1、首先用可调脉冲间隔的双脉冲发生器(模拟电缆上两个交迭的脉冲波)对检测仪测试其交迭响应特性,即所谓At/A t交线。
(其中t为双脉冲峰与峰间的时间间隔,A100是t达到相当大,不会产生交迭效应时的脉冲响应检测量,先定t时的脉冲检测量)。
绘制At/A100~t曲线的测试电路图见图(2)。
根据检测仪响应特性的不同,大体上可作出三种类型的交迭响应特性,见图(3)-(5)。
上图中不同的t值对应于脉冲传播的电缆长度。
I1k=0.5·tk·U,I1=0.5 t1·U,·I2=0.5·t2·U
(U约170~200m/μs)
图(2)双脉冲发生器的连接图
图(3)α响应检测仪的双脉冲响应关系
图(4)α响应检测仪的双脉冲响应
图(5)严重β响应检测仪的双脉冲响应
由图(3)-图(5)可知:
①所谓短电缆,应按1≤1k作为判断依据,它与检测仪响应特性有关,1k可短至100米以下,也可长达1000米以
②当1≤2I1,可1≥2 I2,时,虽然按长电缆考虑,但因无负交迭,所以也可以与1≤1k的短电缆一样当作集中参数试,而不必在电缆端部接匹配的特性阻抗。
③测试长度I在2I1≤I≤2 I2范围内的长电缆时,如无附加措施,则应在电缆端部接匹配特性阻抗以抑制反射。
或者用α响应的检测仪以免迭加(图4-25)。
④检测仪的β响应愈是显著(见图5),则2I1≤I≤2 I2的I范围愈是大。
局部放电检测仪的响应特性与频带选择有关,故使用时选择放大器频带时应考虑这些因素。
2、根据At/A100~t图,确定电缆长度所处的范围后,选择合适的测试电路。
(1)对于I≤Ik,或I≤2 I1,或I≥2 I2的情况,可采取终端不接匹配阻抗的路:(图(6)-图(8))
(2)对于长度在2Ik≤I≤2 I2范围内的长电缆,必须在电缆终端采取消除终端反射波的终端匹配阻抗(或用反射抑见图(9)。
终端阻抗若用RC元件,则:
Rw=电缆特性阻抗
Cw≥0.52· (fo为检测仪频率平均值)
Cw须无放电容。
输入单元用7R号。
3、测量与校正:
(1)对I≤Ik的短电缆:
校正在离开检测仪的一端进行,注入校正电容q校正,检测仪相偏转
α2(㎜),得刻度系数k=q校正/α2
测量仪在试品一端进行,测得放电脉冲高度A(㎜)。
则放电量q=K(QC/㎜)·A(㎜)
(2)对于不接终端匹配阻抗的长电缆:(即I≤2 I1或I≥2 I2)。
校正在电缆二端进行。
靠近检测仪端注入校正电荷q校正(pc)时。
测得α1(㎜)。
远离检测仪端注入校正电荷q校正(pc)时。
测得α2(㎜)。
则刻度系数K=q校正/α1(pc /㎜)。
修正因子F(考虑衰减效应):
α2≥α1时,F=1
如α2<α1时,F=α1/α2
测量在电缆两端进行,从较大的脉冲高度A最大(㎜)得
Q最=K(pc/㎜)×A最大(㎜)
于是放电量q=Q最大(pc)·F
(3)接有匹配终端阻抗的长电缆:(可对任何长度电缆)采用7R号输入单元。
与(2)一样作校正得α1,α2和K=q校正/α2(pc/㎜)。
检测仪连续从电缆两端测得局部放电的脉冲高度A1A2。
放电量q=q校正(pc)
4、试验程序和允许放电量:
IEC规定,试验电压加在导体和屏蔽之间,先升至并保持在1.5U o不少于1分钟(U o电缆额定电压值),然后慢慢至于1测量放电量。
目前IEC对6~30KV的聚乙烯电缆的放电量规定应≤20pc;乙丙胶、丁基橡胶电缆应≤40pc。
为了消除电缆端部电场集中产生的放电,帮须接上消应力锥(电缆头)或漫在油中进行测试。
所需得试验设备武汉鑫华福电力设备有限公司均可提供,主要得设备如下:
YDQ系列充气无晕超轻型试验变压器
X(T)C系列操作箱(台)
EDTCD-9302局部放电检测仪
JZF-10型正电量发生器
局放仪校正脉冲发生器
滤波隔离变压器
耦合电容。