(完整版)复数知识点归纳及习题
复数的知识点总结与题型归纳

复数的知识点总结与题型归纳一、知识要点 1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有11.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例] 实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数.(2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内. (2)在复平面内的x 轴上方.[解](1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:(1) AO ――→表示的复数; (2)对角线CA ――→表示的复数; (3)对角线OB ――→表示的复数.[解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.12 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A .2 B.12 C .-12D .-2(2)(江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. [解析] (1)(1+a i)(2+i)=2-a +(1+2a )i ,要使复数为纯虚数,所以有2-a =0,1+2a ≠0,解得a =2.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5.题型十:复数代数形式的除法运算[典例] (1)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ) A .2 B .-2 C .-12D.12[解析] (1)∵z (2-i)=11+7i ,∴z =11+7i2-i =(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a 5+1+2a 5i ,由1+a i 2-i 是纯虚数,则2-a 5=0,1+2a 5≠0,所以a =2.[答案] (1)A (2)A题型十一:i 的乘方的周期性及应用[典例] (1)(湖北高考)i 为虚数单位,i 607的共轭复数为( ) A .iB .-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i2 016)1-i=i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。
复数知识点归纳及习题

复数一.知识网络图二.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.三.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.四.基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔z=z ⇔ z 2≥0;(2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0;(4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R );2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
复数讲义(含知识点和例题及解析)

数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部。
若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数。
(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R )。
(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R )。
(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面。
x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。
(5)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2。
2.复数的几何意义 (1)复数z =a +b i――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。
(2)复数z =a +b i ――→一一对应平面向量OZ →(a ,b ∈R )。
3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i 。
②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i 。
③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i 。
④除法:z 1z 2=a +b i c +d i =(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0)。
(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。
复数的概念及运算 知识点+例题 全面分类

[例2] 设复数z 满足)1)(23(i i iz -+=-,则.______=z i 51+[巩固1] 复数i i a 212+-是纯虚数,则实数a 的值为________.4[巩固2] 如果)(112R m mi i ∈+=-,那么._____=m 1[例3] 已知i z 34+-=,则._______2=-z i 36+[巩固1] 已知复数i z 211+=,i z 322-=,则21z z +的共轭复数是___________.i +3[巩固2] 已知i 是虚数单位,R n m ∈,,且ni i m -=+22,则ni m ni m -+的共轭复数为_________.i[例4] 计算:(1)3)2)(1(ii i ++-(2)22)1(1)1(1i i i i -+++-[巩固] 计算:(1))1()2()23(i i i +---++;(2))2)(1(2013i i i -+⋅;(3)ii 4321-+1.复平面:我们把建立了直角坐标系来表示复数的平面叫做复平面.x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.2.复数的模:22b a bi a z +=+=3.bi a z +=1,di c z +=2,则2221)()(d b c a z z -+-=- 两个复数的差的模就是复平面内与这两个复数对应的两点间的距离.[例1] 已知复数i i z -+=12,则._____=z 210[巩固1] 复数)0(21<+=a iai z ,其中i 为虚数单位, 5=z ,则a 的值为__________.-5[巩固2] 若2=z ,求i z 43-+取最大值时的.______=z i 5856-[例2] 复数)(23)1(2R a i a a i z ∈++--=(1)若z z =,求z ;(2)若在复平面内复数z 对应的点在第一象限,求a 的范围. 知识模块3复数的模精典例题透析[巩固] 已知z为复数,iz2+为实数,且zi)21(-为纯虚数,其中i为虚数单位.(1)求复数z;(2)若复数z满足1=-zw,求w的最小值.题型一:复数的概念[例](1)已知a∈R,复数z1=2+a i,z2=1-2i,若z1z2为纯虚数,则复数z1z2的虚部为_______.(2)若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的_________条件.(填充分不必要,必要不充分,充要或既不充分也不必要)答案(1) 1(2) 充分不必要条件解析(1)由z1z2=2+a i1-2i=(2+a i)(1+2i)5=2-2a5+4+a5i是纯虚数,得a=1,此时z1z2=i,其虚部为1.(2)由⎩⎪⎨⎪⎧m2+m+1=3,m2+m-4=-2,解得m=-2或m=1,所以“m=1”是“z1=z2”的充分不必要条件.[巩固](1)设i是虚数单位.若复数a-103-i(a∈R)是纯虚数,则a的值为__________.(2)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的____________条件.(填充分不必要,知识模块4经典题型必要不充分,充要或既不充分也不必要)答案 (1) 3 (2) 既不充分也不必要条件解析 (1)a -103-i=a -(3+i)=(a -3)-i ,由a ∈R , 且a -103-i为纯虚数知a =3. (2)当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.题型二:复数的运算[例] 计算:(1)3(1+i )2i -1=________; (2)(1+i 1-i )6+2+3i 3-2i=________. 答案 (1)3-3i (2)-1+i解析 (1)3(1+i )2i -1=3×2i i -1=6i i -1=-6i (i +1)2=-3i(i +1)=3-3i. (2)原式=[(1+i )22]6+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i. [巩固](1)已知复数z 满足(3+4i)z =25,则z 等于_________.(2)复数⎝ ⎛⎭⎪⎫1+i 1-i 2=________. 答案 (1) 3-4i (2)-1解析 (1)方法一 由(3+4i)z =25,得z =253+4i =25(3-4i )(3+4i )(3-4i )=3-4i. 方法二 设z =a +b i(a ,b ∈R ),则(3+4i)(a +b i)=25,即3a -4b +(4a +3b )i =25,所以⎩⎪⎨⎪⎧ 3a -4b =25,4a +3b =0,解得⎩⎪⎨⎪⎧a =3,b =-4,故z =3-4i. (2)⎝ ⎛⎭⎪⎫1+i 1-i 2=1+i 2+2i 1+i 2-2i =i -i=-1.题型三:复数的几何意义[例] 如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1)AO →、BC →所表示的复数;(2)对角线CA →所表示的复数;(3)B 点对应的复数.解 (1)AO →=-OA →,∴AO →所表示的复数为-3-2i.∵BC →=AO →,∴BC →所表示的复数为-3-2i.(2)CA →=OA →-OC →,∴CA →所表示的复数为(3+2i)-(-2+4i)=5-2i.(3)OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i ,即B 点对应的复数为1+6i.[巩固](1)在复平面内复数Z =i(1-2i)对应的点位于第_____象限.答案 一解析 ∵复数Z =i(1-2i)=2+i ,∵复数Z 的实部2>0,虚部1>0,∴复数Z 在复平面内对应的点位于第一象限.(2)已知z 是复数,z +2i 、z 2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围.解 设z =x +y i(x 、y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2.∵z 2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由题意得x =4.∴z =4-2i.∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0, 解得2<a <6,∴实数a 的取值范围是(2,6).1.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为___________.答案 -1解析 由复数z 为纯虚数,得⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,解得x =-1,故选A. 2.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是__________.答案 -3-4i解析 因为CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i.3.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i的点是______点. 夯实基础训练。
高中复数知识点及相关练习

For personal use only in study and research; not forcommercial useFor personal use only in study and research; not forcommercial use复数复数基础知识一、复数的基本概念(1)形如a + b i 的数叫做复数(其中);复数的单位为i ,它的平方等于-1,即.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当时的复数a + b i 为虚数;纯虚数:当a = 0且时的复数a + b i 为纯虚数 (2)两个复数相等的定义:(3)共轭复数:z a bi =+的共轭记作z a bi =-;(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a bR b a ∈,1i 2-=0≠b 0≠b 00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且(5)复数的模:对于复数z a bi =+,把z =z 的模; 二、复数的基本运算 设111z a b i =+,222z a b i =+(1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-;(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。
(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-⋅⋅⋅⋅⋅⋅三、复数的化简c di z a bi+=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc ic di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+ 对于()0c di z a b a bi +=⋅≠+,当c da b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi+==+进一步建立方程求解一、知识梳理1、复数的有关概念(1)复数的概念:形如(,)a bi a b R +∈的数叫做复数,其中,a b 分别是它的 。
复数的知识点总结与题型归纳

复数的知识点总结与题型归纳一、知识要点1.复数的有关概念我们把集合C={a+b i|a,b∈R}中的数,即形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位.全体复数所成的集合C叫做复数集.复数通常用字母z表示,即z=a+b i(a,b∈R),这一表示形式叫做复数的代数形式.对于复数z=a+b i,以后不作特殊说明都有a,b∈R,其中的a与b分别叫做复数z的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b而非b i.(3)复数z=a+b i只有在a,b∈R时才是复数的代数形式,否则不是代数形式.2.复数相等在复数集C={a+b i|a,b∈R}中任取两个数a+b i,c+d i(a,b,c,d∈R),我们规定:a+b i与c+d i相等的充要条件是a=c且b=d.3.复数的分类对于复数a+b i,当且仅当b=0时,它是实数;当且仅当a=b=0时,它是实数0;当b≠0时,叫做虚数;当a=0且b≠0时,叫做纯虚数.这样,复数z =a+b i可以分类如下:复数(b=0),(b≠0)(当a=0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b )(2)复数z =a +b i(a ,b ∈R)――――→一一对应平面向量OZ ――→.5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模.(2)记法:复数z =a +b i 的模记为|z |或|a +b i|.(3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R).说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i.7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律对任意复数z 1,z 2,z 3∈C ,有交换律z 1·z 2=z 2·z 1结合律(z 1·z 2)·z 3=z 1·(z 2·z 3)分配律z 1(z 2+z 3)=z 1z 2+z 1z 311.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则(1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d .(2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0.12.复数代数形式的除法法则:(a +b i)÷(c +d i)=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例]实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解](1)当x 2-2x -15=0,+3≠0,即x =5时,z 是实数.(2)当x2-2x -15≠0,+3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 0,≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件。
(完整版)复数基础练习题附答案
(完整版)复数基础练习题附答案一、单选题1.复数20222i 1iz =+(其中i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知复数()1i z a a =-+(a ∈R ),则1a =是1z =的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.设复数21iz =-+,则z 在复平面内对应的点的坐标为( ) A .(1,1)B .(-1,1)C .(1,-1)D .(-1,-1)4.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.5.在复平面内,复数z 满足()1i 3i z -=-+,则复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.已知x ,R y ∈,i 为虚数单位,且()2i 2y y x ++=-,则x y +的值为( ) A .1 B .2C .3D .47.若复数(32)(1)i ai +-在复平面内对应的点位于第一象限,则实数a 的取值范围为( )A .32,23⎛⎫- ⎪⎝⎭B .3,2⎛⎫-∞- ⎪⎝⎭C .23,32⎛⎫- ⎪⎝⎭D .2,3⎛⎫-∞- ⎪⎝⎭8.已知复数z 满足()1i 1z +=,则z 的虚部为( ) A .12- B .1i 2-C .12D .1i 29.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( ) A .第一象限 B .第二象限 C .第三象限D .第四象限10.2243i 4i a a a a --=+,则实数a 的值为( )A .1B .1或4-C .4-D .0或4-11.“1x =”是“22(1)(32)i x x x -+++是纯虚数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件12.复数1ii+(其中i 为虚数单位)在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 13.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( ) A .1 B .15 C .3 D .16 14.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3- B .2- C .2 D .3 15.已知12z i =-,则(i)z z -的模长为( )A .4BC .2D .1016.已知复数z 满足()21i 68i z -=+,其中i 为虚数单位,则z =( )A .10B .5 CD.17.已知i 为虚数单位,则复数1i -+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限18.若复数4i1iz =-,则复数z 的模等于( ) AB .2C.D .419.已知复数z 满足(34i)5(1i)z +⋅=-,则z 的虚部是( ) A .15-B .75-C .1i 5-D .7i 5-20.复数3i(43i )-在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题21i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.22.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12z z =_______. 23.已知复数z 满足24(1i)(12i)z --=-,则||z =________.24.设i 是虚数单位,若复数z =1+2i ,则复数z 的模为__________. 25.写出一个在复平面内对应的点在第二象限的复数z =__________. 26.计算:3i1i+=-___________.27.若复数2(1i)34iz +=+,则z =__________.28.已知复数z =(,a b ∈R 且0,0a b ≠≠)的模等于1,则12b a b++的最小值为______.29.已知复数i 3i z =+(i 为虚数单位),则z =__________.30.已知复数z 满足()()1i 2i z t t +=∈R ,若z =,则t 的值为___________. 31.若复数()()32i z a a R =-+-∈为实数,则2021i 1ia a -+的值为______. 32.已知4cos isin 1212z ππ⎛⎫=+ ⎪⎝⎭,则1z 的辐角主值为________. 33.已知i 是虚数单位,则202220211()1+⎛⎫+= ⎪-⎝⎭i i i ___________.34.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.35.i 是虚数单位,则1i1i+-的值为__________. 36.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________.37.若复数22(9)(23)i z m m m =-++-是纯虚数,其中m ∈R ,则|z |=________.38.已知z =,则22022z z z ++⋅⋅⋅+=___________. 39.设i 是虚数单位,复数z =,则z =___________. 40.已知复数z 满足()1i 42i -=+z ,则z =_________. 三、解答题41.设复数3cos isin z θθ=+.求函数()tan arg 02y z πθθ⎛⎫=-<< ⎪⎝⎭的最大值以及对应的θ值.42.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限; (2)位于第四象限;(3)位于直线x -y -3=0上.43.(1)解方程()20x x x C +=∈;(2)已知32i -+是方程()220,x px q p q R ++=∈的一个根,求实数,p q 的值.44.复数cos isin 33ππ+经过n 次乘方后,所得的幂等于它的共轭复数,求n 的值.45.如图,向量OZ 与复数1i -+对应,把OZ 按逆时针方向旋转120°,得到OZ .求向量OZ '对应的复数(用代数形式表示).【参考答案】一、单选题 1.B 2.A 3.D 4.D 5.C 6.B 7.A 8.A 9.D 10.C 11.A 12.D 13.B14.B 15.B 16.B 17.B 18.C 19.B 20.B 二、填空题21.1-1- 22.12i -##2i+1- 23.22425.1i -+(答案不唯一)2627.825i 625- 28.72930.2或2- 31.i - 32.2312π3334.2i +##i 2+ 35.1 36.③ 37.12 38.039.40.13i + 三、解答题41.3πθ=时,函数y【解析】 【分析】由3cos isin z θθ=+求得()1arg 3tg z tg θ=,再由两角差的正切建立关于tg θ的函数,()2arg 3y tg z tg tg θθθ=-=+,再由基本不等式法求解. 【详解】 解:解:由02πθ<<得0tg θ>.由3cos isin z θθ=+得sin 1(arg )3cos 3tg z tg θθθ==. 故213(arg )113tg tg y tg z tg θθθθ-=-=+23tg tg θθ=+∵3tg tg θθ+≥∴23tg tg θθ≤+当且仅当302tg tg πθθθ⎛⎫=<< ⎪⎝⎭时,即tg θ=时,上式取等号. 所以当3πθ=时,函数y42.(1)-3<x <2 (2)2<x <5 (3)x =-2 【解析】 【分析】根据复数的几何意义即可求解. (1)当实数x 满足22602150x x x x ⎧+-<⎨--<⎩,即-3<x <2时,点Z 位于第三象限; (2)当实数x 满足22602150x x x x ⎧+->⎨--<⎩ ,即2<x <5时,点Z 位于第四象限; (3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上;综上,(1)()3,2x ∈- ,(2)()2,5x ∈ ,(3)2x =- . 43.(1)0x =或i x =±;(2)12,26p q ==. 【解析】 【分析】(1)设出()i ,x a b a b =+∈R ,带入等式,再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案.(2)将32i -+带入()220,x px q p q R ++=∈,化简后再利用两复数相等:实部等于实部,虚部等于虚部.列出方程组即可解出答案. 【详解】(1)设()i ,x a b a b =+∈R ,由20x x +=,得222i 0a b ab -+,所以220,0,a b ab ⎧⎪-=⎨=⎪⎩当0a =时,1,1,0b =-; 当0b =时,0a =. 所以0x =或i x =±.(2)因为32i -+是方程()220,x px q p q ++=∈R 的一个根,所以()22(32i)32i 0p q -++-++=,整理,得()310212i 0q p p -++-=, 即()2120,3100p q p ⎧-=⎨-+=⎩解得12,26p q ==. 【点睛】本题考查复数的运算,属于基础题.解本类题型的关键在于利用两复数相等:实部等于实部,虚部等于虚部. 44.()61Z k k -∈. 【解析】 【分析】用共轭复数的概念,以及复数的三角表示即可. 【详解】由题意:cos isin cos isin cos isin 333333nn n ππππππ⎛⎫+=+=- ⎪⎝⎭,可得cos cos ,sin sin 3333n n ππππ==-, ∴()2Z 33n k k πππ=-∈,()61Z n k k =-∈. 45.1313i 22-+- 【解析】 【分析】复数的旋转用相应的三角函数公式即可. 【详解】如上图,将Z 逆时针旋转到'Z ,即是向量'OZ 对应的复数:()()()1313131i cos120isin1201i 2︒︒⎛⎫-+-++=-+-= ⎪ ⎪⎝⎭, 1313-+.。
复数的知识点总结与题型归纳
1/ 9复数的知识点总结与题型归纳一、知识要点1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式.2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模.的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|.(3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有,有交换律 z 1·z 2=z 2·z 1 结合律 (z 1·z 2)·z 3=z 1·(z 2·z 3) 分配律z 1(z 2+z 3)=z 1z 2+z 1z 311.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷i)÷((c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例典例]] 实数x 分别取什么值时,复数z=x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数. (2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例典例] ] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例典例]] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:满足下列条件:(1)在复平面的第二象限内.在复平面的第二象限内.(2)在复平面内的x 轴上方.轴上方.[解] (1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例典例]] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2iB .-1-2iC .±1±1±2i 2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例典例]] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例典例]] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例典例]] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:求:(1) AO ――→表示的复数;表示的复数; (2)对角线CA ――→表示的复数;表示的复数; (3)对角线OB ――→表示的复数.表示的复数. [解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例典例]] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.B.112 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示,解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例典例]](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A.2 B.1 2C.-12D.-2(2)(江苏高考)复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是________.[解析](1)(1+a i)(2+i)=2-a+(1+2a)i,要使复数为纯虚数,所以有2-a=0,1+2a≠0,解得a=2.(2)(1+2i)(3-i)=3-i+6i-2i 2=5+5i,所以z的实部是5.题型十:复数代数形式的除法运算[典例典例]](1)若复数z满足z(2-i)=11+7i(i是虚数单位),则z为() A.3+5i B.3-5iC.-3+5i D.-3-5i(2)设i是虚数单位,复数1+a i2-i为纯虚数,则实数a为()A.2 B.-2C.-12 D.12[解析](1)∵z(2-i)=11+7i,∴z=11+7i2-i=(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a5+1+2a5i,由1+a i2-i是纯虚数,则2-a5=0,1+2a5≠0,所以a=2.[答案](1)A(2)A题型十一:i的乘方的周期性及应用[典例典例]](1)(湖北高考)i为虚数单位,i607的共轭复数为() A.i B.-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i 2 016)1-i =i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i 1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。
复数知识点总结和例题
复数知识点总结和例题一、名词的复数形式1. 一般情况下,名词构成复数的规则是在单数形式后面加上-s,如book-books,cat-cats,dog-dogs等。
2. 以-s, -ss, -sh, -ch, -x结尾的名词,复数形式应在词尾加-es,如bus-buses,class-classes,box-boxes等。
3. 以辅音字母+y结尾的名词,复数形式应将y变为i再加上-es,如baby-babies,city-cities等。
4. 以-f或-fe结尾的名词,复数形式应将f变为v再加上-es,如leaf-leaves,knife-knives 等。
5. 一些名词的复数形式是不规则变化的,需要独立记忆,如child-children,man-men,woman-women等。
二、不可数名词不可数名词是指不能用于单复数变化的名词,它们通常表示一种概念、物质或抽象事物,如water, milk, money, information等。
不可数名词没有复数形式,不能与不定冠词a/an连用,通常用于表示数量的量词或用作可数名词的量词修饰。
例题一:1. The teacher gave us some useful _______ for the exam. (information)A. informationsB. informC. informationD. informs答案:C. information2. There are too many ______ in the river. (fish)A. fishsB. fishC. fishesD. fishies答案:B. fish3. He bought two new ______ at the bookstore yesterday. (novel)A. novellsB. novlesC. novelD. novels答案:D. novels4. There is some ______ on the table, could you please pass me the ______? (butter)A. buttersB. butterC. buttersD. butteries答案:B. butter5. Please give me some more ______ for my cup of ______. (milk)A. milksB. milkC. milkieD. milkies答案:B. milk三、名词的数量表达1. 在表示数量的名词或代词前,应使用相应的量词来修饰,如a few, a little, some, many, much, a lot of, plenty of等。
高三复数总复习知识点、经典例题、习题
复数一.基本知识【1】复数的基本概念(1)形如a + 的数叫做复数(其中a,b R );复数的单位为i ,它的平方等于-1,即i 2 1 . 其中a 叫做复数的实部, b 叫做虚部实数:当 b = 0 时复数a + 为实数虚数:当b 0 时的复数 a + 为虚数;纯虚数:当 a = 0 且b(2))两个复数相等的定义:0 时的复数 a + 为纯虚数a bi c di a c且b d(其中,a,b,c,d,R)特别地a bi 0 a b 0(3))共轭复数:z a bi 的共轭记作z a bi ;(4))复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi ,对应点坐标为p a, b ;(象限的复习)(5)复数的模:对于复数z a bi ,把【2】复数的基本运算z a 2b2 叫做复数z 的模;设z1 a1b1i ,z2a2 b2 i(1))加法:z1z2a1 a2b1 b2 i ;(2))减法:z1z2a1a2b1b2i ;(3))乘法:z1 z2 a1a2 b1b2 a2 b1a1b2 i 特别z z a2 b 2 。
(4))幂运算:i1i i 2 1 i 3i i 4 1 i 5i i 6 1【3】复数的化简z c dia bi(a, b是均不为0 的实数);的化简就是通过分母实数化的方法将分母化为实数:z c di c di a bi ac bd ad bc ia bi a bi a bi a 2 b2对于z c dia ba bi0 ,当 c da b时z 为实数;当z 为纯虚数是z 可设为z c dia bixi 进一步建立方程求解二.例题分析【例1】已知z a 1 b 4 i ,求(1))当a, b 为何值时z 为实数(2))当a, b 为何值时z 为纯虚数(3))当a, b 为何值时z 为虚数(4))当a, b 满足什么条件时z 对应的点在复平面内的第二象限。
【变式1】若复数z ( x21) ( x 1)i 为纯虚数,则实数x 的值为A. 1 B .0 C 1 D .1或1【变式2】求实数m 的值,使复数别是:( m 22m 3) (m23m 4) i 分(1)实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数
一.知识网络图
二.复数中的难点
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
(3)复数的辐角主值的求法.
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
三.复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.
(4)复数集中一元二次方程和二项方程的解法.
四.基础知识
1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。
便产生形如a+bi (a,b ∈R )的数,称为复数。
所有复数构成的集合称复数集。
通常用C 来表示。
(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔z=z ⇔ z 2≥0; (2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );
(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0; (4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R ); 2.复数的几种形式。
对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。
因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。
因此坐标平面内的向量也是复数的一种表示形式,称为向量形式
3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。
模与共轭的性质有:(1)
2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2
12
1
z z z
z =⎪⎪⎭⎫ ⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)|
||
|||
2121z z z z =
;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z
z 1=。
4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;
复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则: (1) z 1±z 2 = (a + b )± (c + d )i ;
(2) z 1.z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ; (3) z 1÷z 2 =
=-+-+))(())((di c di c di c bi a i d
c a
d bc d c bd ac 2222+-+++ (z 2≠0) ; 几个重要的结论:
(1) i i 2)1(2±=±(2) i 性质:T=4;i i i i i i n n n n -=-===+++3424144,1,,1;;03424144=++++++n n n i i i i
(3) z z z z z 1
11=
⇔=⇔=。
;⑷;11;11i i
i i i i -=+-=-+ 运算律:(1));,())(3(;))(2(;2121N n m z z z z z z z z z m
m
m
mn n m n m n m ∈=⋅==⋅+
共轭的性质:⑴2121)(z z z z ±=± ;⑵2121z z z z ⋅= ;⑶2
121)(
z z
z z = ;⑷ z z =。
模的性质:⑴||||||||||||212121z z z z z z +≤±≤-;⑵||||||2121z z z z =;⑶|
||
|||
2121z z z z =;⑷
n n z z ||||=;
5.复数相等的充要条件:两个复数实部和虚部分别对应相等。
6.复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0).
五.习题
1.已知a ∈R ,若(1-ai )(3+2i )为虚数,则a 的值为( )
A .-32 B.32 C .-23 D.23
2.复数
i 1+2i
(i 是虚数单位)的实部是( )
A.25 B .-25 C.15 D .-15
3.复数z 是实数的充要条件是( ) A.z z =
B.z z =
C.2z 为实数
D.z z +为实数
4.若复数z 满足10
12z z i
-=-,则z 等于( ) A.34i -+ B.34i -- C.34i - D.34i +
5.
2
13(3)
i i -+等于( )
A.1
344
i +
B.134
4i --
C.1322
i + D.1322
i --
6.z ∈C ,若{}
2
2(1)1M z z z =-=-|,则( ) A.{}M =实数
B.{}M =虚数
C.{}{}M
实数复数苘 D.{}M ϕ=
7.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b >
B.11b -<< C.1b >
D.0b >
8.(32)(1)i i +-+表示( )
A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 9.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( ) 411411
B.3和1 C.523439 3
10.设0<θ<
π2
,(a +
22i )(1-i )=cos θ+2
2
i ,则θ的值为( )
A.
2π3 B.3π4 C.π3 D.π4
11.若x ∈C ,则方程13x i x =+-的解是( ) A.132
2
i +
B.1241x x ==-, C.43i -+
D.1322
i --
12.满足条件22z i z +-+=的复数z 在复平面内对应的点的轨迹是 ( ) A.双曲线
B.双曲线的一支
C.两条射线
D.一条射线
13.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面( ) A.第一象限
B.第二象限
C.第三象限
D.第四象限
14.已知复数)()65(1
672
2
2R a i a a a a a z ∈--+-+-=,那么当a=_______时,z 是实数;当a ∈__________时,z 是虚数;当a=______时,z 是纯虚数。
15.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则1
2z f z ⎛⎫
= ⎪ ⎪⎝⎭
.
16.复数22(32)(28)z m m m m i =-++--的共轭复数在复平面上的对应点在第一象限内,则实数m 的取范围是 .
17.已知1z =,则复数234z i ω=+-,对应点的轨迹是 .
18.设222log (33)log (3)()z m m i m m =--+-∈R ,若z 对应的点在直线210x y -+=上,则m 的值是 .
19.已知向量1OZ 对应的复数是i 45-,向量2OZ 对应的复数是i 45+-, 则1OZ +2OZ 对应的复数是___________。
20.复数z 1=3+4i ,z 2=0,z 3=c +(2c -6)i 在复平面内对应的点分别为A ,B ,C 若∠BAC 是钝角,则实数c 的取值范围为________.
21.已知复数3z z -对应的点落在射线(0)y x x =-≤上,12z +=,求复数z .
22.已知z 是复数,2z i +与2z
i
-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.。