构造法在证明不等式方面的应用
高考数学利用导数研究不等式问题(解析版)题型一:构造法证明不等式

题型一:构造法证明不等式1.(2021·山东德州·高三期中)已知函数()2(1)x f x xe a x =++(其中常数e 2.718=是自然对数的底数).(1)当0a <时,讨论函数()f x 的单调性;(2)证明:对任意1a ≤,当0x >时,()()23231f x ex a x x x -≥-++.【答案】(1)答案见解析(2)证明见解析(1)由()()()()12(1)12x x f x x e a x x e a =+++=++,令()0f x '=,解得1x =-,()ln 2x a =-, ①当102a e-<<, 由()0f x '>,解得()ln 2x a <-或1x >-,由()0f x '<,解得()ln 21a x -<<-,故()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, ②当12a e=-,()0f x '≥,()f x 在R 上单调递增; ③当12a e<-,由()0f x '>,解得1x <-或()ln 2x a >-, 由()0f x '<,解得()1ln 2x a -<<-故()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增;在()()1,ln 2a --上单调递减, 综上所述,当102a e-<<时, ()f x 在()(),ln 2a -∞-,()1,-+∞上单调递增;在()()ln 2,1a --上单调递减, 当12a e=-,()f x 在R 上单调递增; 当12a e<-,()f x 在(),1-∞-,()()ln 2,a -+∞上单调递增; 在()()1,ln 2a --上单调递减.(2)证明:对任意1a ≤,当0x >时,要证()()23231f x ex a x x x --++≥,需证,20x e a a ax e x x+---≥, 令()2x e a g x a ax e x x=+---, 则()()()21x x e ax a g x x ---'=, 令()x h x e ax a =--,则()x h x e a '=-,因为0x >,1a ≤,所以()0x h x e a '=->,所以()()010h x h a >=-≥,所以()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∈+∞时,()0g x '>,()g x 单调递增,所以()()10g x g ≥=,即20x e a a ax e x x+---≥,原不等式成立. 2.(2021·河南驻马店·高三月考(文))已知函数()()248ln x a x x f a x +--=.(1)求()f x 的单调区间;(2)当2a =时,证明:()242e 64x f x x x >-++.【答案】(1)答案不唯一,见解析(2)证明见解析(1)由题意知()f x 的定义域为(0,)+∞.由已知得()()2()()8188x a x x a x a f x x x-++--'== 当0a ≤时,()()0,f x f x '>在(0,)+∞上单调递增,无单调递减区间.当0a >时,令()0f x '>,得8a x >;令()'0f x <,得08a x <<, 所以()f x 在0,8a ⎛⎫ ⎪⎝⎭上单调递减,在,8a ⎛+∞⎫ ⎪⎝⎭上单调递增. 综上,当0a ≤时,()f x 的单调递增区间为(0,)+∞,无单调递减区间;当0a >时,()f x 的单调递减区间为0,8a ⎛⎫ ⎪⎝⎭,单调递增区间为,8a ⎛+∞⎫ ⎪⎝⎭. (2)证明:原不等式等价于()e ln 20x x x ϕ=-->,则()1e x x xϕ'=-,易知()x ϕ'在(0,)+∞上单调递增,且()120,1e 102ϕϕ⎛⎫''<=-> ⎪⎝⎭, 所以()x ϕ'在1,12⎛⎫ ⎪⎝⎭上存在唯一零点0x ,此时()x ϕ在()00,x 上单调递减,在()0,x +∞上单调递增, 要证()0x ϕ>即要证()00x ϕ>,由001e 0x x -=,得001e x x =,001ex x =,代入()000e ln 2x x x ϕ=--,得()00012x x x ϕ=+-, 因为()0001220x x x ϕ=+->=, 所以()242e 64x f x x x >-++.3.(2021·湖北武汉·高三月考)已知函数()e 21x f x a x =+-(1)讨论函数()f x 的单调性;(2)证明:对任意的1a ≥,当0x >时,()()f x x ae x ≥+.【答案】(1)答案见解析(2)证明见解析(1)解:()e 2x f x a '=+.①当0a ≥时,()0f x '>,函数()f x 在R 上单调递增;②当0a <时,由()0f x '>解得2ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<解得2ln x a ⎛⎫>- ⎪⎝⎭. 故()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. 综上所述,当0a ≥时,()f x 在R 上单调递增;当0a <时,()f x 在2,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. (2)证明:原不等式等价于()2(1)x a e ex x -≥-.令()x g x e ex =-,则()e e x g x '=-.当1x <时,()0g x '<;当1x >时,()0g x '>.∴()()10g x g ≥=,即0x e ex -≥,当且仅当1x =时等号成立.当1x =时,()2(1)x a e ex x -≥-显然成立;当0x >且1x ≠时,0x e ex -≥.欲证对任意的1a ≥,()2(1)x a e ex x -≥-成立,只需证2(1)x e ex x -≥-()()()()2g 1'21x x x e ex x g x e e x =---=---,令()()(),2x h x g x h x e ''==-,令()0,ln 2h x x ='= ()ln 2,0,x h x '<<()g x '递减,()ln 2,0,x h x '>>()g x '递增()()()'ln 222ln 2142ln 20,030g e e g e =---==-=-'故存在()00,ln 2x ∈,使()00g x '=又由(1)0g '=,所以00x x <<时,()0g x '>,()g x 递增,01x x <<时,()0g x '<,()g x 递减,1x >时,()0g x '>,()g x 递增,又()()g 00,10g ==,故0x >时,()0g x ≥.综上所述,结论得证。
不等式证明中的常用构造法

构造法是一种富有创造件的解题方法,它很好地体现了数学中发现、类比、化归的思想,也渗透着猜想、试验、探索、归纳、概括、特殊化等重要的数学方法,在数学解题中,对题设条件、结论进行分析,联想有关知识和方法,通过恰当地构造辅助元素,可以使问题化难为易。
在构造法中所构造的辅助元素可以是函数、方程(组),也可以是图形、数列等等。
下面结合高中数学不等式教学实践谈谈解题中的构造法。
一、构造函数例1、求证:解:此题若运用绝对值不等式的性质去证明,学生一时无从下手。
这时,引导学生整体思维,即在思考问题时,把注意力和着眼点放在问题的整体上,全面的收集和获取信息,对问题作出整体判断,从高层次上寻找捷径,化难为易,从而诱发灵感,获得问题的简捷解法。
二、构造主元方程例2、a、b、c都是小于k的正数,求证:a(k-b)+b(k-c)+c(k-a)<k2。
分析与证明:(构造一次函数图象):令A=k2-[a(k-b)+b(k-c)+c(k-a)]因变量较多,可用主元法,把a当作主元,重新整理得:A=(b+c-k)a+bc-(b+c)k+k2,将A看作关于a的一次函数,注意到0<a<k,当a=0时,A=k2-(b+c)k+bc=(k-b)(k-c)>0当a=k时,A=(b+c-k)k+bc-(b+c)k+k2=bc>0如图所示,函数图象的两个点P、Q(横坐标分别为0,k)都在x轴的上方,由直线的性质可知0<a<k时,A=f(a)>0三、构造图形例3、正数a、b、c、A、B、C满足条件求证:证明一:这是一道代数不等式的证明题,可用代数法求解。
下面我们可用构造法,将数形结合,得出此不等式的巧妙证法。
证明二:由求证的不等式联想到面积关系,由所设条件联想到构造以边长为k的正三角形,如下图所示:四、构造向量证明例1设为不相等的正数,求证分析:利用向量的数量积不等式证明:设利用向量的数量积不等式有由于也即向量m与n不是平行向量,故五、构造数列与自然有关的问题,有时通过构造一个数列,利用数列的单调性解题或证题显得很简捷。
高中数学例谈构造法在解题中的应用 学法指导

高中数学例谈构造法在解题中的应用 学法指导郭春明构造法是指根据题设条件和结论的特征、性质,从新的角度、用新的观点分析、解释对象,抓住反映问题的条件与结论之间的内在联系,用已知数学关系为“支架”,构架出满足条件或数学对象,使原问题隐晦不清的关系或性质在新构造的数学对象中清楚地展现出来,从而借助该数学对象解决数学问题。
本文就一些常见问题,谈谈如何根据所给问题的数学形式,利用构造法解决。
一、构造数列证明不等式例1 证明003.0100000099999914131211109<⨯⨯⨯⨯ 。
分析:此式左端比较繁杂,不易直接解决。
但观察其形式可构造另一数列与分子分母相互抵消,然后根据不等式性质,证明原不等式成立。
证明(简写):令100000099999914131211109x ⨯⨯⨯⨯=,构造999999999998151413121110y ⨯⨯⨯⨯= ,可知0<x<y ,所以10000009y x x 2=⋅<,从而有x<0.003原不等式得证。
注意:在推导过程中注意构造形式及是否符合题意,如y 中因子个数比x 少一个,恰好符合题意。
二、构造函数证明不等式例2 求证:20062006200520052006200620052005e e e e e e e e ----++<--。
分析:上式中涉及无理数e 所以不便求值。
观察不等式知各式分子与分母均为正数,所以原不等式与下不等式等价: 20062006200620062005200620052005ee e e e e e e ----+-<+- 因此可根据该不等式形式构造函数,再根据其单调性来证明。
证明:构造函数)(R x ee e e )x (f x x xx ∈+-=-- 因为1e 21e e e e )x (f x 2x x x x +-=+-=--知f(x)在R 上单调递增 又2005<2006所以)2006(f )2005(f <即20062006200520052006200620052005e e e e e e e e ---++<-- 注意:分式中分子、分母若不均正,则需根据不等式性质在变形中适当改变不等式方向,从而构造符合题意的等价不等式。
例谈“构造法”证明不等式

f ( ) b + 6 c 1 ( + 1 ( + 1 厂 1一 c + + 一 b )c )
I ( 1 一 6 一 6 C 1 ( — 1 ( 一 1 一 ) c 一 + 一 6 点Q 直 + 一 一 的 离为d则d 去, , 一 ‘ ・ ‘
‘
. .
使 P — , B— Y P A P , C一
,
。
且 APB一 BPC= CPA 1 0 2。
‘
. .
A B=、
歹 ,
B = ,—————— . = J——————. C , Z z +y AC / + e z y x +z +x z z z
在 △ABC中 , B+ B >AC, A C
功倍.
证 明 : 口 ( 1 b ,1 , = ( 2 b ,2 设 一 n ,1 C ) 西 口 ,2 C )
O
t 1
[ 责任 编校
钱 骁 勇]
0 a + b 6 + 2 口 ・b 12 12 1 = C
1 + 6 + C 2 1 1 1 ; 口 ,a + b + C 2 2 2 一 b
{ Ql P ≥ , ‘ l Q l≥ d ,‘ ( + 2 + ( + 2 即 . ‘ P 。. . ) y )
.
1 6 1, 1< c 1 < < 一 <
≥ 萼
5 构造 图形
.
.
f 1> 0 ,( )
I ( 1> O 厂 一 )
一 : .. +
. .
当 一1 < 1 , ( ) 0 <口 时 fa > . 口
0d 一4 。 口 1 ≥ O 即 ( 4 ( 一 4 ≥ 0 . 。 a +4 一 6 , 口+ )口 ) ,‘ .
构造法在高考数学解题中的应用探究

构造法在高考数学解题中的应用探究1. 引言1.1 构造法在高考数学解题中的应用探究构造法是一种在数学问题中常用的解题方法,它利用构造新对象或者研究已有对象的性质来解决问题。
在高考数学中,构造法被广泛运用于各种类型的题目中,包括代数、几何、概率、数学建模以及解答题等。
通过构造法,可以更加灵活地解决问题,提高解题效率。
在代数题中,构造法常常用于证明方程的解法是否正确或者求解特定的解。
通过构造新的代数式或者等式,可以更加直观地理解问题,简化解题过程。
构造法可以用于证明一元二次方程有两个不同实数根的情况。
在几何题中,构造法可以用来构造特殊的图形或者角度,从而推导出问题的解。
通过构造各种几何图形,可以更清晰地看到几何关系,简化证明过程。
构造法可以用来证明三角形的角平分线相交于内心。
在概率题中,构造法可以用来构造特定的概率空间或者事件,帮助求解概率问题。
通过构造不同的概率模型,可以更好地理解问题,找到解题思路。
构造法可以用来计算抛硬币的概率问题。
在数学建模中,构造法可以用来构造数学模型,帮助分析实际问题。
通过构造各种数学模型,可以更准确地描述实际情况,指导解决问题的方法。
构造法可以用来建立人口增长的数学模型。
2. 正文2.1 构造法在代数题中的应用构造法在代数题中的应用是高考数学解题中的重要部分。
代数题通常涉及方程、不等式的求解以及函数的性质等内容,而构造法的运用可以帮助我们简洁而有效地解决这些问题。
在代数题中,构造法可以被应用于方程组的解法。
通过构造合适的方程组,我们可以很快地得到未知数的取值。
在解二元一次方程组时,我们可以通过构造一个新的方程来消去其中一个未知数,从而简化求解过程。
构造法还可以被用于不等式的证明。
通过构造一个或多个具体的数值来验证给定的不等式是否成立,我们可以快速判断不等式的真假。
构造法也可以帮助我们找到不等式的最优解。
在函数的性质证明中,构造法同样可以发挥重要作用。
通过构造一个特殊的函数形式,我们可以验证函数的性质,并推断出一些重要结论。
构造法在中学数学问题中的解题应用

构造法在中学数学问题中的解题应用摘要:本文主要是在前人研究的基础上通过收集大量资料,对用构造法解题的形式进行分类,介绍在中学数学中用构造思想方法解题的典型例子,并归纳整理出构造法在代数和几何中的应用,使得构造法在解题的应用有一个比较系统、清晰且全面的结论。
关键词:构造法中学数学问题思想方法应用一、构造法在代数问题中的应用1.构造函数解代数问题。
如何构造一个函数,构造一个什么样的函数才能解决问题?关键在于分析问题的结构,充分利用问题所提供的信息,善于进行联想。
(1)构造函数证明不等式。
根据代数式的特征(如结构的对称性),构造适当的函数,借助函数的性质,来证明不等式,是一种常用的构造方法。
构造函数证明不等式是不等式证明的一种重要方法,它要求我们能敏锐地观察不等式的结构特征,联想一些特殊函数所蕴涵的不等式关系,从而合理选择恰当的函数模型。
利用构造函数证明不等式,不仅能使解题过程简捷、明快,而且使解题方法新颖、精致,使数学解题思路突破常规,具有很强的创造性,体现独特的数学价值。
(2)构造函数证明等式。
例2 已知 a,b,c互不相等,求证:分析:如果把式子左边展开来证,是非常繁琐的,注意到a,b,c互不相等这一特性,巧构函数f(x)能富有创造性地证明本题.证明:构造函数f(x)=由于a,b,c互不相等,可知-a,-b,-c也互不相等。
因为f(x)是二次函数,而f(-a)=f(-b)=f(-c)=0,故f(x)=0恒成立,即原式成立。
2.构造方程解代数问题。
在应用方程思想解题时,主要是运用方程的两个性质,即韦达定理及其逆定理、一元二次方程根的判别式。
根据韦达定理及其逆定理构造一元二次方程解代数题。
有些数学问题未必是方程问题,但我们可以构造辅助的方程进行求解。
用方程思想构造方程解题非方程问题有一定的规律性:已知两个或多个数之和、之积的对称式,利用韦达定理的逆定理构造两次或高次方程;当问题中出现形如“b2-4ac”的式子时,可构造出以“b2-4ac”为判别式的二次方程ax2+bx+c=0的形式。
构造法在高中数学中的应用
构造法在高中数学中的应用数学是一门极富挑战性的学科,它的研究对象是数与数之间的关系与规律。
高中数学作为数学学科的一个重要组成部分,不论是在理论上还是实践中,都需要熟练掌握各种解题方法与技巧。
构造法作为一种重要的解题思路,在高中数学中有广泛的应用,并且拥有独特的优势。
本文将系统地介绍构造法在高中数学中的应用,并分析其在提高学生数学能力和思维能力上所起到的重要作用。
一、构造法的概念和基本思路构造法是指根据已知条件,通过人为地构造出符合条件的特殊图形、集合等,以便于对问题进行分析、推理和求解的方法。
其基本思路是根据问题的条件,通过合理的构造和辅助线的引入等方法,将问题转化为已知几何关系的几何图形,从而更好地进行分析和求解。
二、构造法在几何解题中的应用1.图形的相似和全等构造在几何学中,相似和全等是两个非常重要的概念。
利用构造法可以方便地构造相似和全等图形,从而解决相关的题目。
例如,题目要求证明两个三角形相似,我们可以通过构造两个相等角,或者利用比例关系构造两个相似的三角形。
2.图形的平移、旋转和翻转构造对于平移、旋转和翻转等问题,构造法可以帮助我们更好地理解和解决。
例如,问题要求将一个点P围绕一个点O逆时针旋转60度,我们可以通过构造一个正六边形,并将点P放置在一个六边形的顶点上,然后通过旋转正六边形来完成题目要求。
3.图形的垂直和平行构造垂直和平行是几何中常见的关系,利用构造法可以帮助我们更好地理解和解决这类问题。
例如,对于题目要求证明两线段互相垂直,我们可以通过构造垂直角的方式来完成证明。
4.图形的切线构造对于切线的问题,构造法可以帮助我们更好地理解和解决。
例如,对于题目要求构造一个过给定点的切线,我们可以通过构造一个圆,并利用切线与圆相切的性质来完成题目要求。
三、构造法在代数解题中的应用在代数学中,构造法同样具有重要的应用。
它可以帮助我们更好地理解和解决代数问题,并且可以增强学生的逻辑思维和推理能力。
证明不等式的常用技巧
证明不等式的常用技巧证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。
作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。
换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。
1不等式证明方法比较法①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a<b。
综合法由因导果。
证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
分析法执果索因。
证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
放缩法将不等式一侧适当的放大或缩小以达到证题目的。
数学归纳法证明与自然数n有关的不等式时,可用数学归纳法证之。
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
换元法换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
构造法通过构造函数、图形、方程、数列、向量等来证明不等式。
2基本不等式基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。
不等式的几种证明方法及其应用
不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
利用导数证明不等式——构造法证明不等式
利用导数证明不等式——构造法证明不等式构造法又称作图法,是一种利用几何图形来论证不等式的方法。
这种方法通常比较直观,易于理解和应用。
本文将利用导数和构造法相结合的方法来证明一些不等式。
首先,我们将考虑最简单的一类不等式,即严格单调递增函数和递增不等式。
假设函数f(x)在区间[a,b]上是单调递增的,即对于任意的x1,x2属于[a,b],且x1<x2,有f(x1)<f(x2)。
现证明对于任意的x1,x2属于[a,b],且x1<x2,有f'(x1)<f'(x2)。
证明:根据导数的定义,函数f(x)在点x1到x2之间的平均变化率即为[f(x2)-f(x1)]/[x2-x1]。
由于f(x)是单调递增函数,所以f(x2)>f(x1),且x2-x1>0。
因此,平均变化率[f(x2)-f(x1)]/[x2-x1]大于0。
根据拉格朗日中值定理,存在一个c属于(x1,x2),使得f'(c)=[f(x2)-f(x1)]/[x2-x1]。
由于f'(c)>0,所以f'(x1)<f'(x2)。
接下来,我们将应用构造法来证明一些不等式。
以求解函数的最值为例,说明构造法证明不等式的基本思路。
假设我们要证明不等式f(x)>=k,其中k是常数。
首先,我们可以在坐标系中画出函数f(x)的图像。
然后尝试找到这个函数的极值点,并计算这些极值点处函数的取值。
如果我们发现函数在一些极值点处的取值大于k,那么我们可以断定不等式f(x)>=k是成立的。
举例说明,假设我们要证明函数f(x)=x^2>=0对于所有的实数x成立。
我们可以考虑函数g(x)=x^2-k(k>0),并尝试找到g(x)的极值点。
由于g(x)=x^2-k是一个二次函数,它的顶点坐标即为极值点。
顶点的横坐标为x=0,纵坐标为y=-k。
因此,函数g(x)的图像是一个开口向上的抛物线,它的顶点在y轴的负半轴上,纵坐标小于0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造法在证明不等式方面的应用
作者:潘旭巨
来源:《中学教学参考·理科版》2012年第03期
构造法是中学数学解题中常用的方法之一.本文通过具体实例,介绍利用构造三角形、一元二次方程、二次曲线以及复数等手段来证明不等式的解题思路
一、构造三角形
由于三角形两边的和大于第三边,两边的差小于第三边.因而,任一三角形的三条边长形成了两个不等式.利用这一几何特征来证明不等式,常常会起到立竿见影的作用
【例1】已知a,b,c∈R,求证:-
分析:如果b=c,上述等式显然成立
从整个不等式的形式上看,此不等式形如三角形两边的差小于第三边,从左边的根式看,形如直角三角形的斜边.考虑到a、b、c可正可负,可在直角坐标系中取点
A(a,0),B(0,b),C(0,c),则
-c|.
因而,不等式得证
同时看到,当且仅当b=c时,取等号
【例2】求证:-
分析:∵-2x+1=(x-,
-
在直角坐标系中取点A(1,0),B(-2,0),C(x,y),结论得证
当且仅当点C落在线段AB之间时,取等号
二、构造圆锥曲线
对于一些含有、的和、差形式的多项式,可把不等式的部分式子看成是圆锥曲线的方程,利用圆锥曲线的相应性质,往往会使问题迎刃而解
【例3】设a,b∈R ,求证:7+3≥(a----
分析:该不等式中间部分形如两点间的距离的平方,因而首先想方设法构造两点坐标A、B,使得恰为不等式的中间部分
令A(a,3-,B(b,--4),则
原不等式转化为证明:-
点A在上半圆周:上,点B在双曲线-上,因而问题转化为:分别在上半圆周和下半支双曲线上找一点,使得这两点间的距离最短.显然,当A、B 为两曲线与x轴交点的同侧时距离最短、异侧时距离最长
由于两曲线与x轴的交点坐标为-,-
所以-
因而原不等式得证
【例4】设<0,求证:>
解:设A={(x,y)|<0}={(x,y)|<1},
{(x,y)|>0}={(x,y)|>1}.
由于A、B分别代表两个相切的单位圆的内部和外部,且A代表的是左侧的圆的内部点集,B代表的是右侧的圆的外部点集.由于在左侧圆的内部的点必在圆的外部,因而,故满足A的点(x,y)必满足B,即结论成立
三、构造一元二次方程
在解一元二次方程或一元二次不等式时,通常要用到不等式.同样,在证明某些不等式时,也经常利用一元二次方程这一有效工具.在这一类问题的证明中,一元二次方程的判别式有着不可替代的作用
【例5】设,∈R(i=1,2,…,n),求证:
分析:该不等式在形式上与一元二次方程的判别式非常相似.因而,只要构造一个以此为判别式的一元二次方程,问题就会十分简单
证明:因为对任意的t∈R,有
-即-
因而-
故原不等式成立
【例6】已知x≥134,求证:2x-3+4x-
证明:令y=2x-3+4x-13,即y-2x+3=4x-13,
两边平方得-4xy-12x+6y=4x-13,
移项得-,
由于函数y的定义域非空,∴-
故原不等式成立
评注:本例也可以用变量代换(令u=2x-3v=4x-13),通过构造二次曲线的手段来证明
四、构造单调或凹凸函数
【例7】求证:>2n+1(n为自然数,且
分析:视n为自变量,构造函数-2n-
∵f(n+1)-
-2(n+1)-1-(-2n-1)
=(2-1)--2>0 (∵n≥3),
所以f(n+1)>
于是有f(n)>f(n-1)>…>f(4)>
又f(3)=-2×3-1=1,
故f(n)>f(3)>0,
即>
评注:本题也可以用数学归纳法或二项式定理证明.但构造出函数f(x),利用其单调性来证明,则更简洁明了,令人耳目一新,体现了数学美中的简洁美
【例8】求证:
分析:将不等式两边的|a+b|与|a|+|b|看成一个量作比较,容易发现两边构造形式完全相同.受这种启示,我们构造一个更一般的函数形式f(x)=x1+x,x∈[
而函数 f(x)=x1+x 在定义域内单调递增,因为有
所以f(|a+b|)≤f(|a|+|b|)即
|a+b|1+|a+b|≤|a|+|b|1+|a|+|b|.
【例9】证明:>20092010.
证明:由于函数在(1,2011)是一个凸函数,曲线落在过点(1,0)和(2011,1)的直线y=12010(x-1)的上方,又当x=2010时,直线的纵坐标恰为20092010,曲线的纵坐标为因而原不等式成立
五、构造复数
复数集与复平面内所有的点构成的集合是一一对应的,复平面内的点集与以原点为起点的向量集合是一一对应的,这些对应关系是通过建立直角坐标系实现的.因而我们可通过构造复数,利用复数有关概念、性质及其四则运算的几何意义研究代数和几何问题,让复数的知识渗透到代数和几何中,使之成为解题的一种工具
【例10】对任意a,b,c,d,求证
--c|+|b-
分析: 题目明显具有复数模的形式,因而可考虑构造复数.因为题目涉及四个量,所以可以尝试构造两个复数
则--c)+(b-d)i,
据不等式性质有--,所以
---,而
-c)+(b--c|+|b-d|,
故命题得证
【例11】已知a,b,c∈R,求证:--c|.(同例1)
分析:从复数的观点来看,不等式两边都是复数模的形式令=
,再由--,不等式得证
问题是数学的心脏,引导学生发现问题并解决问题是中学数学教学的核心工作.美国数学家波利亚说过:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒.”如果我们的数学教学能够引导学生从已知的条件和未知的结论表象出发,构造出解决问题的知识框架,那么我们的目的也就达到了
(责任编辑金铃)。