构造函数法证明泰勒展开不等式的八种方法
不等式证明中的几种新颖方法

不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。
这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。
这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。
就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。
这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。
证明不等式的八大绝招

证明不等式的八大绝招高考数学的压轴题常以不等式为背景,而不等式的证明因其方法灵活,技巧性强,历来是学生学习中的一大难点,本文给同学们介绍不等式证明中的八大绝招:“变形法、拆项法、添项法、放缩法、构造法、换元法、导数法、数形结合法”,希望对同学们的学习有所禅益。
一、变形法例1、已知121212101010,,,:a b c a b c R a b c bc ca ab+∈++≥++求证 证明:原不等式等价于:131313101010a b c a b c abc ++≥++()131313101010a b c abc a b c ⇔++≥++ (*)1313112211a b a b a b +≥+ , 1313112211b c b c b c +≥+, 1313112211c a a c a c +≥+, ()()()()1313131122112211222a b c a b c b a c c a b ∴++≥+++++()1111111010102222a bc b ac c ab abc a b c ≥++=++。
从而()131313101010a b c abc a b c ++≥++;所以(*)式成立,故原不等式成立。
二、拆项法例2、已知,,,1a b c R a b c +∈++=且 ,求证:231.432ab c ≤证明:122333b b c c c a b c a =++=+++++ 66≥=232362316432ab c ⋅∴≤=。
三、添项法例3、【第36届IMO 试题】设,,a b c 为正数,满足1abc =,求证:()()()33311132a b c b a c c a b ++≥+++.证明:()()3114b c a b c bc a ++≥=+ , ()3114a c b a c ac b++≥=+,311()4a b c a b ab c++≥=+, ∴()()()33311111114b c a c a b a b c b a c c a b bc ac ab a b c+++⎛⎫+++++≥++ ⎪+++⎝⎭.从而()()()33311111111112a b c b a c c a b a b c a b c ⎛⎫++≥++-++ ⎪+++⎝⎭1111322a b c ⎛⎫=++≥= ⎪⎝⎭. 故∴原不等式成立. 四、放缩法 例4、【1998年全国高考试题】求证:())*111111114732n N n ⎛⎫⎛⎫⎛⎫++++>∈ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭ 。
不等式证明六(构造法及其它方法)

教材:不等式证明六(构造法及其它方法)目的:要求学生逐步熟悉利用构造法等方法证明不等式。
过程:一、构造法:1.构造函数法例一、已知x > 0,求证:511≥++x ∴310313)3(910322=+=≥++=f x x y2.构造方程法:例三、已知实数a , b , c ,满足a + b + c = 0和abc = 2,求证:a , b , c 中至少有一个不小于2。
证:由题设:显然a , b , c 中必有一个正数,不妨设a > 0,则 ⎝⎛=-=+a bc a c b 2即b , c 是二次方程022=++aax x 的两个实根。
∴082≥-=∆aa 即:a ≥2例四、求证:),2(3tan sec tan sec 3122Z k k ∈π+π≠θ≤θ+θθ-θ≤ 证:设θ-θ=tan sec 22y 则:(y - 1)tan 2θ + (y + 1)tan θ + (y - 1) = 0 322)1(||-+=b a DO 又:2||||==BD AC ∴22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a二、 作业:证明下列不等式:1. 3113122≤+++-≤x x x x BC令1122+++-=x x x x y ,则 (y - 1)x 2 + (y + 1)x + (y - 1) = 0用△法,分情况讨论2.已知关于x 的不等式(a 2 - 1)x 2 - (a - 1)x - 1 < 0 (a ∈R ),对任意实数x 恒成立,求证:135≤<-a 。
分a 2- 1 = 0和⎩⎨⎧<∆<-012a 讨论 3.若x左边412= t f )(4.若0令f ∴b 5.记f 使|则|6.若x 作∠AOB = ∠BOC = ∠COA = 120︒, 设|OA | = x , |OB | = y , |OC | = zC。
【导数经典技巧与方法】第14讲 泰勒展开式-解析版

第 14讲 泰勒展开式知识与方法泰勒展开式是将一个在x =x 0处具有n 阶导数的函数f(x)利用关于x −x 0的n 阶多项式来逼近函数的方法.在导数题目中命制中,泰勒展开式最大的作用就是把超越函数与初等函数联系起来,使高等数学问题具有初等解法,最常用的方式是放缩整形 点睛:泰勒展开式为高等数学内容,在高中阶段不要求掌握. 1.泰勒展开式的形式形式1如果函数f(x)在定义域I 上有定义,且n +1阶导数存在,x,x 0∈I ,则有f(x)=f (x 0)+f ′(x 0)1!(x −x 0)+f ′′(x 0)2!(x −x 0)2+⋯+f (n)(x 0)n!(x −x 0)n +o (x −x 0)n 这里,o (x −x 0)n 为皮亚诺型余项.我们称上式为函数f(x)在点x 0处的泰勒展开式. 当x 0=0时,上式变为f(x)=∑i=0n f (1)(0)i!xi +o (x n ),称此式(带有皮亚诺余项)的麦克劳林展开式.形式2如果函数f(x)在定义域I 上有定义,且n +1阶导数存在,x,x 0∈I ,则有 f(x)=f (x 0)+f ′(x 0)1!(x −x 0)+f ′′(x 0)2!(x −x 0)2+⋯+f (n)(x 0)n!(x −x 0)n +R n+1.其中R n+1=f (n+1)(ξ)(n+1)!(x −x 0)n+1为拉格郎日余项,其中ξ位于x 与x 0之间,这是函数f(x)在x 0处的泰勒展开式.其中,f (n)(x)表示f(x)的n 阶导数,等号后的多项式称为函数f(x)在x 0处的泰勒展开式,剩余的R n+1是泰勒展开式的余项,为(x −x 0)n 的高阶无穷小. 当x 0=0时,上式变为f(x)=∑i=0n f (1)(0)i!xi +R n (x),称此式为(带有拉格郎日余项)的泰勒展开式.2.常见函数的泰勒展开式由泰勒展开式,我们可以得到几个常用的初等函数在x =0处的泰勒展开式:(1)11−x=1+x +x 2+⋯+x n +o (x n );(2)(1+x)m =1+mx +m(m−1)2!x 2+⋯+m(m−1)⋯(m−n+1)n!x n +o (x n );(3)e x=1+x +x 22!+⋯+x n n!+o (x n );(4)ln (1+x)=x −x 22+x 33−⋯+(−1)n x n+1n+1+o (x n+1);(5)sin x =x −x 33!+x 55!−⋯+(−1)n x 2n+1(2n+1)!+o (x 2n+2); (6)cos x =1−x 22!+x 44!−x 66!+⋯+(−1)n x 2n(2n)!+o (x 2n+1).公式(1)1+x +x 2+⋯+x n +o (x n )=11−x(−1<x <1)为等比数列求和,将(1)中x 换成−x ,有11+x=1−x +x 2−⋯+(−1)n x n +o (x n ),两边积分,得ln (1+x)=∫0x11+xdx =∫0x[1−x +x 2−⋯+(−1)n x n +o (x n )]dx 即ln (1+x)=x −x 22+x 33−⋯+(−1)nx n+1n+1+o (x n+1),这就是公式(4);反过来,如果对公式(4)求导,则可得到11+x =1−x +x 2−⋯+(−1)n x n +o (x n ),将x 换成−x ,即可得到11−x=1+x +x 2+⋯+x n +o (x n ),此即为公式(1).由于sin x 是奇函数,所以公式(5)右侧只有奇次方项;cos x 是偶函数,所以公式(6)右侧只有偶次方项.对公式(5)求导,即得公式(6);反之,对公式(6)求导,即得公式(5).对于公式(5)和(6)中的负号全部改为正号并两式相加,即可得公式(3).公式(3)可以看作是e =1+1+12!+⋯+1n!+⋯的推广或一般形式;公式(2)可以看作是二项式(1+x)m =1+mx +m(m−1)2!x 2+⋯m(m−1)⋯(m−n+1)m!x m 的推广.3.常用的泰勒展开式的及其应用我们从上面的几个展开式截取片断,就构成了初等数学中经常考查的导数不等式: (1)当x ⩾0时,e x ⩾1+x +x 22;当x ⩽0时,e x ⩽1+x +x 22;(2)当x ⩾0时,x −x 22⩽ln (1+x)⩽x ;当x ⩾0时,x −x 22⩽ln (1+x)⩽x −12x 2+13x 3(3)x −x 36⩽sin x ⩽x 对x ⩾0恒成立;(4)1−x 22⩽cos x ⩽1−x 22+x 424对x ⩾0恒成立;(5)1+x <e x <11−x(0<x <1); (6)当0<x <1时,√x<ln x <2(x−1)x+1;当x >1时,2(x−1)x+1<ln (1+x)<x ;(7)当0<x <1时,12(x −1x )<ln x <x −1;当x ⩾1时,ln x ⩽12(x −1x )⩽x −1. 由ln x <x −1可得−ln x >1−x ,进而ln 1x >1−x ⇒ln x >1−1x =x−1x(将x 换成1x ),在ln x >x−1x中将x 换成x +1,即可得ln (x +1)>xx+1,进一步可加强为ln (x +1)>2x 2+x典型例题【例1】已知函数f(x)=ln a ⋅xe −x +asin x,a >0. (1)若x =0恰为f(x)的极小值点. (i)证明:12<a <1;(ii)求f(x)在区间(−∞,π)上的零点个数; (2)若a =1,f(x)x=(1−x π)(1+x π)(1−x 2π)(1+x 2π)(1−x 3π)(1+x 3π)⋯(1−x nπ)(1+xnπ)⋯,又由泰勒级数知: cos x =1−x 22!+x 44!−x 66!+⋯+(−1)n x 2n(2n)!+⋯,n ∈N ∗.证明:112+122+132+⋯+1n 2+⋯=π26.【解析】(1)(i)由题意,得f ′(x)=ln a ⋅(1−x)e −x +acos x , 因为x =0为函数f(x)的极值点,所以f ′(0)=ln a +a =0.令g(x)=ln x +x(x >0),则g ′(x)=1x +1>0,g(x)在(0,+∞)上单调递增,因为g(1)>0,g (12)=ln 12+12=ln √e2<0, 所以g(x)在(12,1)上有唯一的零点a ,所以12<a <1.(ii)由(i)知ln a =−a,f(x)=a (sin x −xe −x ),f ′(x)=a [cos x −(1−x)e −x ].当x ∈(−∞,0)时,由a >0,−1⩽cos x ⩽1,1−x >1,e −x >1,得f ′(x)<0,且f(0)=0,所以f(x)在区间(−∞,0)上不存在零点;当x∈(0,π)时,设ℎ(x)=cos x−(1−x)e−x,则ℎ′(x)=(2−x)e−x−sin x.(1)若x∈(0,π2],今m(x)=(2−x)e−x−sin x,则m′(x)=(x−3)e−x−cos x<0,所以m(x)在(0,π2]上单调递减,因为m(0)=2>0,m(π2)=(2−π2)e−π2−1<0,所以存在α∈(0,π2),使得m(α)=0.当x∈(0,α)时,m(x)=ℎ′(x)>0,ℎ(x)在(0,α)上单调递增;当x∈(α,π2]时,m(x)=ℎ′(x)<0,ℎ(x)在(α,π2]上单调递减.(2)若x∈(π2,2],令φ(x)=(2−x)e−x(x∈(π2,2]),则φ′(x)=(x−3)e−x<0,所以φ(x)在区间(π2,2]上单调递减,所以φ(x)<φ(π2)=(2−π2)e−π2<1e,又因为sin x⩾sin 2=sin (π−2)>sin π6=12,所以ℎ′(x)=(2−x)e−x−sin x<0,ℎ(x)在(π2,2]上单调递减.(3)若x∈(2,π),则ℎ′(x)=(2−x)e−x−sin x<0,ℎ(x)在(2,π)上单调递减.由(1)(2)(3)得,ℎ(x)在(0,α)上单调递增,在(α,π)上单调递减.因为ℎ(α)>ℎ(0)=0,ℎ(π)=(π−1)e−π−1<0,所在存在β∈(α,π)使得ℎ(β)=0.所以,当x∈(0,β)时,f′(x)=ℎ(x)>0,f(x)在(0,β)上单调递增,f(x)>f(0)=0;当x∈(β,π)时,f′(x)=ℎ(x)<0,f(x)在(β,π)上单调递减,因为f(β)>f(0)=0,f(π)<0,所以f(x)在区间(β,π)上有且只有一个零点.综上,f(x)在区间(−∞,π)上的零点个数为2个.(2)因为sin xx =(1−x2π2)(1−x222π2)(1−x232π2)⋯(1−x2n2π2)⋯(1),对cos x=1−x 22!+x44!−x66!+⋯+(−1)n x2n(2n)!+⋯,两边求导得−sin x=−x1!+x33!−x55!+⋯+(−1)n−1x2n−1(2n−1)!+⋯,sin x=x1!−x33!+x55!+⋯+(−1)n−1x2n−1(2n−1)!+⋯所以sin xx =1−x23!+x45!−⋯+(−1)n−1x2n−2(2n−1)!+⋯(2)比较(1)(2)式中的系数,得−13!=−1π2(112+122+132+⋯+1n2+⋯),所以112+122+132+⋯+1n2+⋯=π26.【例2】已知函数f(x)=(x−a)ln x(a∈R),它的导函数为f′(x).(1)当a=1时,求f′(x)的零点;(2)当a=0时,证明:f(x)<e x+cos x−1.【解析】(1)函数f(x)的定义域为(0,+∞),当a=1时,f(x)=(x−1)ln x,f′(x)=ln x+1−1x.易知f′(x)在(0,+∞)上为增函数,又f′(1)=ln 1+1−1=0,所以x=1是f′(x)的零点.(2)解法1:直接讨论法当a=0时,f(x)=xln x.(1)若0<x⩽1时,则e x+cos x−1>0,xln x⩽0,从而f(x)<e x+cos x−1成立;(2)若x>1时,设ℎ(x)=e x+cos x−xln x−1,则ℎ′(x)=e x−sin x−ln x−1,ℎ′′(x)=e x−1x−cos x,因为x>1,所以ℎ′′(x)>e−1−1>0,从而ℎ′(x)单调递增,所以ℎ′(x)>ℎ′(1)=e−sin 1−1>0,所以ℎ(x)在(1,+∞)单调递增,所以ℎ(x)>ℎ(1)=e+cos 1−1>0,即f(x)<e x+cos x−1.综上所述,有f(x)<e x+cos x−1成立.解法2:泰勒公式+高阶借位法当x>0时,由泰勒公式有e x⩾1+x+12x2+16x3,cos x⩾1−12x2,ln x⩽x−1,从而xln x⩽x2−x.从而要证xln x<e x+cos x−1,只需证x2−x<1+x+16x3即可,即证16x3−x2+2x+1>0.构造函数g(x)=16x3−x2+2x+1(x>0),则g′(x)=12x2−2x+2=12(x−2)2⩾0,从而g(x)单调递增,所以g(x)>g(0)=1>0成立,从而原不等式得证.解法3:泰勒公式+兵分两路法由泰勒公式,得cos x⩾−12x2,从而可知e x+cos x−1⩾e x−12x2.所以要证xln x<e x+cos x−1,只需证xln x<e x−12x2即可,亦即证ln xx<e xx2−12.构造函数ℎ(x)=ln xx ,g(x)=e xx2−12,易求得ℎ(x)max=1e ,g(x)min=e24−12.显然1e <e24−12,从而ℎ(x)<g(x).所以原不等式得证.【例3】已知函数f(x)=(2+x+ax2)ln (1+x)−2x.(1)若a=0,证明:当−1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a的值.【解析】首先,x=0时,f(x)=0.(1)若a=0,则f(x)=(2+x)ln (1+x)−2x.f′(x)=ln (1+x)+2+x1+x −2=ln (1+x)+11+x−1.f′(0)=0⋅f′′(x)=11+x −1(1+x)2=x(1+x)2.当x>0时,f′′(x)>0,f′(x)单调递增,所以f′(x)>f′(0)=0,从而f(x)在(0,+∞)上单调递增,从而f(x)>f(0)=0;当−1<x<0时,f′′(x)<0,f′(x)单调递减,所以f′(x)>f′(0)=0,从而f(x)在(−1,0)上单调递增,从而f(x)<f(0)=0.综上可知,若a=0,则当−1<x<0时,f(x)<0;当x>0时,f(x)>0.证毕.(2)解法1:必要性探路法f(x)的定义域为(−1,+∞)有任意阶导数,f(0)是极大值,就说明0附近某区间(−d,d)内其它值f(x)<f(0)(x≠0).当x由0的负方向趋向于0时,f(x)应为递增的,从而f′(x)>0,令x→0−,得f′(0)⩾0;当x由0的正方向趋向于0时,f(x)应为递减的,即f′(x)<0,令x→0+,则f′(0)⩽0.因此必有f′(0)=0,这是f(0)是极大值的必要条件.f′(x)正递减到0再递减到负,f′′(x)都是负的.如下表所示:f′(0)=0,且f′′(x)<0对0附近某区间内x≠0都成立,这是f(0)为极大值的充分必要条件.,f′(0)=0.f′(x)=(1+2ax)ln (1+x)+ax2−x1+xf′′(x)=2aln (1+x)+(4a+1)x+3ax2,f′′(0)=0.(1+x)2f(0)是极大值⇔在x=0左右附近有g(x)=f′′(x)<0=g(0),这又要求g(0)是极大值,必须有g′(0)=0.g′(x)=2a1+x+4a+1+6ax(1+x)2−2(4a+1)x+6ax2(1+x)3所以g′(0)=2a1+4a+11+01=6a+1=0,得a=−16.从而g′(x)=−x(4−x)(1+x)3=−xλ(x),其中λ(x)=4−x(1+x)3.在区间(−1,4)内λ(x)>0,g′(x)=−xλ(x)的正负号与x相反,在区间(−1,0)内,g′(x)>0,在区间(0,4)内,g′(x)<0.g(x)在区间(−1,4)递增到g(0)=0再递减;当x≠0时,都有f′′(x)=g(x)<0,这与f′(x)=0一起保证了f(0)在(−1,4)内是最大值,也是极大值.解法2:当x→0时,2+x+ax2→2>0.0附近足够小区间(−d,d)内,2+x+ax2足㿟接近2,也有2+x+ax2>0.f(x)在区间(−d,d)内的正负号与q(x)=f(x)2+x+ax2=ln (1+x)−2x2+x+ax2相同.f(0)是极大值⇔q(0)是极大值⇔在0附近某个区间(−ℎ,0)内q′(x)>0,即q′(x)=11+x−2(2+x+ax2)−2x(1+2ax)(2+x+ax2)2=11+x−4−2ax2(2+x+ax2)2=(2+x+ax2)2−(1+x)(4−2ax2) (2+x+ax2)2(1+x)=(6a+1)x2+4ax3+a2x4(2+x+ax2)2(1+x)>0,且在(0,ℎ)内,q′(x)<0,进而得6a+1=0,解得a=−16.此时,q′(x)=−23x3+136x4(2+x−16x2)2符合要求,ℎ(0)与f(0)都是极大值,从而a=−16.【点睛】解法2的优点是先用除法将与ln (1+x)相乘的2+x+ax2剥离,只求一阶导数就把对数函数消去,化成分式.容易判定q′(x)在x=0附近取值的正负号,不需要高阶导数,也不需要再求极限.用泰勒展开式ln (1+x)=x−x 22+x33−x44+⋯,得f(x)=(2+x +ax2)(x −x 22+x 33−x 44+⋯)−2x =(a +16)x 3+(−a 2−16)x 4+⋯如果三次项系数a +16≠0,在0附近足够小的区间(−d,d)内,三次以上各项和绝对值比三次项小,f(x)的正负号与三次项(a +16)x 3相同,f(x)与f(−x)异号,总有一个大于0,f(0)=0不是极大值.要使f(0)极大,必须三次项系数a +16=0,得a =−16.此时,f(x)=−112x 4+⋯的最低次非零项是四次项−112x 4.在0附近足够小的区间内,f(x)的正负号与四次项−112x 4相同,当x ≠0时,都小于0,f(0)确实是极大值.一般地,设f(x)=f(c)+a m (x −c)m +a m+1(x −c)m+1+⋯是无穷级数,且a m ≠0是常数项之外最低次非零项的系数.则当x →c 时,f(x)−f(c)=(x −c)m [a m +a m+1(x −c)+⋯]方括号内的λ(x)=a m +a m+1(x −c)+⋯→a m ,在c 附近足够小的区间(c −d,c +d)内,|x −c|足够小,λ(x)足够接近a m ,正负号与a m 相同,f(x)−f(c)与m 次项a m (x −c)m 正负号相同. 当m 是奇数,x −c <0与x −c >0时,f(x)−f(c)的正负号相反,一正一负,f(c)既不是极大值也不是极小值;当m 是偶数,只要x −c ≠0都有(x −c)m >0.当a m <0时,都有f(x)−f(c)<0,f(c)是极大值;当a m >0时,都有f(x)−f(c)>0,f(c)是极小值. 【例4】函数f(x)=x −1−aln x . (1)若f(x)⩾0,求a 的值;(2)m 为整数,且对于任意正整数n,(1+12)(1+122)⋯(1+12n )<m ,求m 的最小值.【解析】(1)易知f(1)=0,用泰勒展开式探索: 令x =1+t ,得ln x =ln (1+t)=t −t 22+⋯,从而f(x)=(1+t)−1−a [t −t 22+⋯]=(1−a)t +at 22−⋯,要保证x =1附近始终f(x)⩾0,由必须有1−a =0,从而a =1. 此时f(t)=t 22−⋯=(x−1)22−⋯,f(1)=0是极小值,在x =1附近f(x)⩾0.但ln (1+t)仅在−1<t ⩽1范围内可以泰勒展开,无法判断t >1时的变化情况,还需通过ln x的导数判断它在定义域(0,+∞)内的变化情况. 从而解法如下: 由f(1)=0,知f(x)⩾0,当且仅当f ′(x)=1−ax ⩾0(当x ⩾1时),f ′(x)⩽0(当0<x ⩽1)时,从而a =1.(2)由(1)知ln x ⩽x −1,从而ln (1+t)⩽t . 今P n =(1+12)(1+122)⋯(1+12n ), 所以ln P n =ln (1+12)+ln (1+122)+⋯+ln (1+12n )<12+122+⋯+12n =1−12n+1<1.从而P n <e =2.71828⋯<3,而P 3=32⋅54⋅98=13564>2.所以m 的最小值为3.【点睛】通过第(1)问来处理此问题,联想对(2)中所证不等式两边取对数.如果熟悉e x 在x =0处的泰勒展开式e x =1+x +x 22!+⋯+x n n!+⋯马上就可以看出,当x >0时,e x >1+x ,从而更容易想到P n <e 12e 122⋯e12n=e12+122+⋯+12n <e 1=e <3.强化训练1.设f(x)=(1+x)e −2x ,g(x)=ax +12x 3+2xcos x ,当x ∈[0,1]时,求证:1−x ⩽f(x)⩽11+x.【解析】证明:f(x)⩽11+x ⇔(1+x)e −2x ⩽11+x ⇔(1+x)2⩽e 2x , 又e x ⩾1+x ,故f(x)⩽11+x,由泰勒展开式e x =1+x +x 22!+⋯+x n n!+⋯,所以e −2x =1−2x +2x 2+⋯+(−2x)n n!+⋯,所以(1+x)e −2x −(1−x)⩾(1+x)(1−2x +2x 2)−(1−x)=2x 3⩾0,故f(x)⩾1−x . 所以1−x ⩽f(x)⩽11+x .2.f(x)=ln 1+x1−x ,若x ∈(0,1)时f(x)>k (x +x 33),求k 的最大值.30第 11 页 共 11 页 【解析】ln (1+x)=x −x 22+x 33+⋯+(−1)n−1x n n +⋯ ln (1−x)=−x −x 22−x 33+⋯+(−1)2n−1x n n +⋯.两式相减,得ln (1+x)−ln (1−x)=2(x +x 33+⋯+x 2n+12n+1)+⋯, 当k ⩽2时,f(x)>2(x +x 33);当k >2时,令g(x)=f(x)−k (x +x 33),g ′(x)=k 1−x 2(x 4−k−2k ), 当x ∈(0,√k−2k 4)时,g(x)单调递减,g(x)<g(0)=0,即f(x)<k (x +x 33),故k >2不合题意.综上所述,k ⩽2.故k 的最大值为2.。
构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。
例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。
例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。
例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。
例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。
7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。
例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。
构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。
下面就列举八种常用的构造函数法证明不等式的方法。
1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。
2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。
3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。
4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。
以上就是八种常用的构造函数法证明不等式的方法。
在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。
此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。
不等式的几种证明方法及其应用

不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧数学中,不等式是一种非常重要的工具,可以用来证明和描述各种性质和现象。
在证明不等式时,我们常常需要运用导数和构造函数的技巧。
下面,本文将介绍导数和构造函数证明不等式的技巧。
一、导数证明不等式当我们需要证明一个函数的某个性质或者不等式时,可以通过计算其导数来得到一些有用的信息。
具体来说,如果一个函数在某一点的导数为正数,则意味着函数在该点的值越大,导函数也就越大;而如果函数在某一点的导数为负数,则意味着函数在该点的值越大,导函数也就越小。
考虑一个简单的例子:证明二次函数 $f(x)=x^2+4x+3$ 在 $x\geqslant-2$ 的区间内严格单调递增。
我们首先计算 $f(x)$ 的导数:$$f'(x)=2x+4$$然后,我们发现,在 $x\geqslant-2$ 的区间内,$f'(x)$ 是恒正的,因此$f(x)$ 在该区间内是严格单调递增的。
因此,不等式 $f(x_1)<f(x_2)$ 成立当且仅当$x_1<x_2$,其中 $x_1$ 和 $x_2$ 均在 $x\geqslant-2$ 的区间内。
另一种证明不等式的常用技巧是构造函数。
具体来说,我们可以构造一个新的函数$g(x)$,使得 $g(x_1)<g(x_2)$ 成立当且仅当 $f(x_1)<f(x_2)$ 成立。
考虑一个简单的例子:证明当 $a>1$ 时,有 $a^2>a+\sqrt{a}$。
我们首先构造一个函数 $f(x)=x^2-x-\sqrt{x}$,并计算其导数:$$f'(x)=2x-1-\frac{1}{2\sqrt{x}}$$接下来,我们构造一个新的函数 $g(x)=af(x)+(a-1)x$。
由于 $a>1$,因此$g'(x)=af'(x)+(a-1)>0$,因此 $g(x)$ 在 $x>1$ 的区间内是严格单调递增的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构造函数法证明泰勒展开不等式的八种方
法
泰勒展开定理是微积分中一个非常重要的定理,它可以将一个函数在某一点附近展开为无穷的多项式和。
在实际应用中,我们经常需要保留部分项,将函数近似表示,而泰勒展开就可以很好地满足我们的需求。
本文将介绍泰勒展开不等式的八种证明方法,其中均使用了构造函数的方法。
1. 利用 $(1+x)^n$ 的二项式展开式证明。
2. 利用 $e^x$ 的泰勒展开式证明。
3. 利用 $\ln (1+x)$ 的泰勒展开式证明。
4. 利用 $\int_0^x \cos t^2 dt$ 的收敛性证明。
5. 利用 $\int_0^x e^{-t^2} dt$ 的平方证明。
6. 利用 $\tan^{-1} x$ 和 $\tanh^{-1} x$ 的泰勒展开式证明。
7. 利用 $\sin x$ 和 $\cos x$ 的泰勒展开式证明。
8. 利用 $\int_0^1 x^p (1-x)^q dx$ 的收敛性证明。
这八种证明方法各有不同的特点和难度,涉及到的数学知识也
各有侧重。
但它们都使用了构造函数的方法,通过寻找适当的函数,将展开式转化为极限形式或积分形式,然后进一步证明不等式的成立。
总之,泰勒展开定理和泰勒展开不等式是数学中非常重要的工具,它们不仅有着重要的理论价值,在工程和自然科学中也有着广
泛的应用。