三视图与表面积体积练习题(一)
立体几何三视图及体积表面积的求解

立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2013—2014年度高三上学期第四次阶段检测)一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2014届高三七校第二次联考)如图为几何体的三视图,根据三视图可以判断这个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2014届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )【答案】:D【解析】为。
4. (江西省稳派名校学术联盟2014届高三12月调研考试)如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x 的值为( )212 2A32B32 C22 D2A. B. C. 1 D.【答案】C 【解析】5.(石家庄2014届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出满足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2014届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,则这个矩形的对角线长为 .【答案】123432【解析】:设底面的等腰直角三角形的腰长为,则侧棱长也为,则,解得,则其,宽为。
二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如图所示,则该组合体的体积为()A .48 B .56 C .64 D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540创=,下面的棱柱体积为46124创=,故组合体的体积为642.(四川省泸州市2014届高三数学第一次教学质量诊断性考试)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2014年福建宁德市普通高中毕业班单科质量检查)一个几何体的三视图如图所示,则该几何体的侧面积为()A.8+B.10C.8+.123. (承德市联校2013-2014年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图可以得到三棱锥如图:其侧视图的面积即t R ACEV的面积,由正方形的边长为2得==1AE CE,故侧视图面积为125.(安徽省六校教育研究会2014届高三2月联考)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是()(A) (B)(C)(D)8【答案】D【解析】由三视图可得三棱锥如图所示:底面是边长为4的正三角形,AD BDC ^平面,故四个面的面积中,最大的面积是ABC V 的面积为142创4. (宁夏银川一中2014届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3.2+2.8+5.6+3【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2014届高三第五次联考数学)已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A. 16pB. 4pC. 8pD. 2pπ+π+π+π+1212(1)2S ππ=⨯⨯++32π=+7.(西安铁一中2014届高三11月模拟考试试题)一个几何体的三视图如图所示,则其外接球的表面积是( )A. B.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长分别为3、4、5,所以长方体的体对角线为,所以外接球的半径为,所以外接球的表面积为。
2013届高三数学(理)寒假作业(14)空间几何体的三视图、表面积、体积

高三数学寒假作业 (十四) 空间几何体的三视图、表面积、体积一、选择题1.一个几何体的三视图形状都相同,大小均相等, 那么这个几何体不可以是( ) (A)球 (B)三棱锥 (C)正方体 (D)圆柱2.(2012·济南模拟)一个几何体的三视图如 图所示,则这个几何体的体积等于( ) (A)4 (B)6 (C)8 (D)123.一个三棱锥的三视图如图所示,则其侧(左)视图直角三角形的面积是( )(A)2(B)3(C)4(D)4.(2012·湖北高考)已知某几何体的三视图 如图所示,则该几何体的体积为 (A)83π (B)3π (C)103π (D)6π二、填空题5.(2012·山东高考)如图,正方体ABCD-A 1B 1C 1D 1的棱长为 1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体 积为________.6.已知三条侧棱两两垂直的正三棱锥的俯视图如图所示,那么此三棱锥的体积是 ________,侧(左)视图的面积是_________.7.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得几何体的表面积是________cm 2.三、解答题8.(2012·厦门模拟)已知四面体ABCD(图1),沿AB,AC,AD剪开,展成的平面图形正好是(图2)所示的直角梯形A1A2A3D(梯形的顶点A1A2A3重合于四面体的顶点A).(1)证明:AB⊥CD;(2)当A1D=10,A1A2=8时,求四面体ABCD的体积.9.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图所示.(1)证明:AD⊥平面PBC;(2)求三棱锥D-ABC的体积;(3)在∠ACB的平分线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.高三数学寒假作业(十四)答案解析1.D2 A. 3.A. 4.B. 5.166.由已知,该三棱锥如图所示:则V=11323⨯⨯=,该三棱锥的左视图为△PDC ,其中DC=22⨯=,△PDC 的高3=,于是侧(左)视图面积为S=1232⨯=7.由三视图可知几何体为四棱柱及其上方有一半径为2的半球,其中四棱柱的底面是边长为24,故其表面积S=4×4+2242212)2π⨯+π⨯=π (cm 2).8. (1)在四面体ABCD 中,∵AB ACAB AD AC AD A ⊥⎫⎪⊥⎬⎪⋂=⎭⇒AB ⊥面ACD ⇒AB ⊥CD.(2)在题图2中作DE ⊥A 2A 3于E.∵A 1A 2=8,∴DE=8.又∵A 1D=A 3D=10,∴EA 3=6,A 2A 3=10+6=16. 又A 2C=A 3C,∴A 2C=8,即题图1中AC=8,AD=10,由A 1A 2=8,A 1B=A 2B 得题图1中AB=4, ∴S △ACD =3AC D S =12DE·A 3C=12×8×8=32.又∵AB ⊥面ACD ,∴V B-ACD =13×32×4=1283.9. (1)因为PA ⊥平面ABC,所以PA ⊥BC, 又AC ⊥BC,所以BC ⊥平面PAC,所以BC ⊥AD. 由三视图可得,在△PAC 中,PA=AC=4,D 为PC 中点,所以AD ⊥PC,又BC∩PC=C , 所以AD ⊥平面PBC,(2)由三视图可得BC=4,由(1)知∠ADC=90°,BC ⊥平面PAC , 又三棱锥D-ABC 的体积即为三棱锥B-ADC 的体积, 所以,所求三棱锥的体积V=11164323⨯⨯=.(3)取AB的中点O,连接CO并延长至Q,使得CQ=2CO,点Q即为所求.连接OD,因为O为CQ中点,所以PQ∥OD,因为PQ⊄平面ABD,OD⊂平面ABD,所以PQ∥平面ABD,连接AQ,BQ,四边形ACBQ的对角线互相平分,所以ACBQ为平行四边形,所以AQ=4,又PA⊥平面ABC,所以在直角△PAQ中,=.。
三视图求几何体的表面积与体积

三视图求几何体的表面积与体积一、选择题1.若一个几何体的三视图如图所示,则此几何体的体积为( )(A)112(B)5 (C)92(D)42.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )(A)6 (B)9 (C)12 (D)183.已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为( )(B) (C) (D)4.平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )(A )6π (B )43π (C )46π (D )63π 5.将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为( )6A326.(2012·浙江高考文科·T3)已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )(A)1 cm 3 (B)2 cm 3 (C)3 cm 3 (D)6 cm 3 7.某三棱锥的三视图如图所示,该三棱锥的表面积是( )(A )28+(B )30+(C )56+(D )60+8.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是( )侧(左)视图俯视图10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()(A)球 (B)三棱锥 (C)正方体 (D)圆柱.11.某几何体的三视图如图所示,它的体积为()(A)12π (B)45π (C)57π (D)81π12.某几何的三视图如图所示,它的体积为(A)72π (B)48π (C)30π (D)24π13.已知某几何体的三视图如图所示,则该几何体的体积为( )(A) (B)3π (C) (D)6π二、填空题14.已知某几何体的三视图如图所示则该几何体的体积为 .15.如图,在长方体中,,则四棱锥的体积为 .16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________3cm .17.(2012·天津高考理科·T10)一个几何体的三视图如图所示(单位:),83π103π1111ABCD A B C D -13,2AB AD cm AA cm===11A BB D D-3cm m则该几何体的体积为__________.18.一个几何体的三视图如图所示(单位:),则该几何体的体积为__________.19. (2012·山东高考理科·T14)如图,正方体的棱长为1,,E F 分别为线段上的点,则三棱锥的体积为____________.【解题指南】本题考查利用换顶点法来求三棱锥的体积,只需知道上的任意一点到面 的距离相等.3m m 3m 1111ABCD A B C D -11,AA B C 1D EDF-C B 11DED【解析】的面积为正方形面积的一半,三棱锥的高即为正方体的棱长,所以. 【答案】20.(2012·山东高考文科·T13)如图,正方体的棱长为1,E 为线段上的一点,则三棱锥的体积为_____.【解题指南】本题考查利用换顶点法来求三棱锥的体积,只需知道上的任意一点到面 的距离相等.【解析】以△为底面,则易知三棱锥的高为1,故【答案】21.(2012·安徽高考理科·T12)某几何体的三视图如图所示,该几何体的表面积是 .【解题指南】根据“长对正、宽相等、高平齐”的原则作出几何体的直观图.1DED ∆612131311111=⨯⨯⨯=⋅==∆--AB AD DD h S V V DED DED F EDF D 611111ABCD A B C D -1B C 1A DED-C B 11DAD 1ADD 61【解析】该几何体是底面是直角梯形,高为的直四棱柱,几何体的表面积是.【答案】22.(2012·安徽高考文科·T12)某几何体的三视图如图所示,则该几何体的体积等于_____.【解题指南】根据“长对正、宽相等、高平齐”的原则得出几何体的直观图,进而求得体积.【解析】该几何体是底面是直角梯形,高为的直四棱柱,则该几何体的体积是.【答案】23.(2012·辽宁高考理科·T13)一个几何体的三视图如图所示,则该几何体的表面积为______________.412(25)4(2544922S =⨯⨯+⨯++++⨯=9241(25)44562V =⨯+⨯⨯=56【解题指南】读懂三视图,它是长方体(挖去一个底面直径为2 cm 的圆柱),分别求表面积,注意减去圆柱的两个底面积.【解析】长方体的长宽高分别为4,3,1,表面积为; 圆柱的底面圆直径为2,母线长为1,侧面积为;圆柱的两个底面积.故该几何体的表面积为.【答案】3824. (2012·辽宁高考文科·T13)一个几何体的三视图如图所示,则该几何体的体积为_______________.【解题指南】读懂三视图,它是圆柱和长方体的组合,分别求体积即可. 【解析】该组合体上边是一个圆柱,底面圆直径为2,母线长为1;体积S,下面是一个长方体,长、宽、高分别为4,3,1,体积.故组合体体积. 【答案】25.(2012·辽宁高考文科·T16)已知点P ,A ,B ,C ,D 是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为.若,则△OAB 的面43231241238⨯⨯+⨯⨯+⨯⨯=2112ππ⨯⨯=2212ππ⨯⨯=382238ππ+-=111V sh ππ==⨯⨯=2111V sh ππ==⨯⨯=243112V =⨯⨯=1212V V π+=+12π+积为______________.【解题指南】注意到已知条件中的垂直关系,将点P,A,B,C,D 看作长方体的顶点来考虑.【解析】由题意,PA ⊥平面ABCD ,则点P,A,B,C,D,可以视为球O 的内接长方体的顶点,球O 位于该长方体的对角线的交点处,那么△OAB 的面积为长方体对角面的四分之一.的.【答案】三、解答题26.(2012·新课标全国高考文科·T19)如图,在三棱柱ABC-A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点.(I)证明:平面BDC 1⊥平面BDC ;(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解题指南】(1)证两个平面垂直,可转化为在其中一个平面内找到一条直线与另一个平面垂直,要证平面BDC 1⊥平面BDC ,可证 平面BDC ; (2)平面BDC 1分棱柱下面部分为四棱锥,可直接求体积,上面部分可用间接法求得体积,从而确定两部分体积之比.126=26=34AB PA PB OABD ==∴=∴∆⨯,面积126=4AB PA PB OABD ==∴=∴∆⨯,,面积1DC ⊥1B DACC -【解析】(I)由题设可知,所以平面. 又平面,所以.由题设知,所以,即.又 所以平面.又平面,故平面平面 (II)设棱锥的体积为,.由题意得. 又三棱柱的体积,所以. 故平面分此棱柱所得两部分体积的比为1:1.27.(2012·江西高考文科·T19)如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合于点G ,得到多面体CDEFG.(1) 求证:平面DEG ⊥平面CFG ; (2) 求多面体C DEFG 的体积.【解题指南】(1)证两个平面垂直,可转化为在其中一个平面内找到一条直线与另一个平面垂直,要证平面DEG ⊥平面CFG ,可证EG ⊥平面CFG ;(2)多面体C DEFG 为四棱锥,由平面DEG ⊥平面CFG 得到四棱锥的高,利用体积公式求体积.【解析】(1)由已知可得AE=3,BF=4,则折叠完后EG=3,GF=4,又因为EF=5,所以可得.又因为,可得,即EG ⊥平面CFG,所以平面DEG ⊥平面CFG.11,,BC CC BC AC CC AC C ⊥⊥=BC ⊥11ACC A 1DC ⊂11ACC A 1DC BC ⊥1145A DC ADC ∠=∠=︒190CDC ∠=︒1DC DC ⊥,DC BC C =1DC ⊥BDC 1DC ⊂1BDC 1BDC ⊥.BDC 1B DACC -1V 1AC =1112111322V +=⨯⨯⨯=111ABC A B C -=1V ()11-:=1:1V V V 1BDC EG GF ⊥CF EGF ⊥底面CF EG ⊥(2)过点G作GO垂直于EF,GO即为四棱锥G-EFCD的高,所以所求体积为1 3S长方形DEFC·GO=13×4×5×125=16.。
高三专项训练:三视图练习题(一)

高三专项训练:三视图练习题(一)(带答案)一、选择题1.如图是某几何体的三视图,则此几何体的体积是( )A .36B .108C .72D .1802.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A 、球B 、三棱锥C 、正方体D 、圆柱3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A 、9πB 、10πC 、11πD 、12π4.有一个几何体的三视图及其尺寸如图(单位cm ),则该几何体的表面积及体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cm ππD.以上都不正确5.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.A. B. CD .36.一空间几何体的三视图如图所示,则该几何体的体积为.A. B. C D. [7. 若某空间几何体的三视图如图所示,则该几何体的体积是A .13 B .23C .1D .28.右图是某几何体的三视图,则该几何体的体积为( )A . B.C. D.1362942π+3618π+9122π+9182π+正视图俯视图9.已知一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .43π B . 163π C .1912π D . 193π 10.某几何体的正视图如图所示,则该几何体的俯视图不可能的是11.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )cm 3.A .π+8B .328π+C .π+12D .3212π+侧视图主视俯视第8题图俯视图侧视图 正视图12.已知正六棱柱的底面边长和侧棱长均为2cm ,其三视图中的俯视图如图所示,则其左视图的面积是( )(A )243cm (B )223cm (C )28cm (D )24cm13.下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .6πB .7πC .8πD .9π14.如右图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 ( )A .π3B .π2C .π23 D .π4 15.如图是一个几何体的三视图,若它的体积是33,则图中正视图所标a=( )A .1B 3C 3D .316.已知某几何体的三视图如图所示(单位:cm ),其中正视图、侧视图都是等腰直角三角形,则这个几何体的体积是( )A .338cmB .3316cm C .33216cm D . 3332cm17.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .B .C .D .18.若某空间几何体的三视图如图所示,则该几何体的体积是 ( )A.13 B. 23C. 1D. 2 俯视图侧视图正视图22119.某物体是空心的几何体,其三视图均为右图,则其体积为( )A 、8B 、43π C 、483π+ D 、483π- π12π34π3π312正视图 侧视图俯视图 正视第9题22 4 2侧视图 22俯视20.如图,水平放置的三棱柱ABC-A 1B 1C 1中,侧棱AA 1⊥平面A 1B 1C 1,其正视图是边长为a 的正方形.俯视图是边长为a 的正三角形,则该三棱柱的侧视图的面积为A .a 2B .a 2C a 2D 221.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3π B .24+3π C .20+4π D .24+4π22.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .12πB .π34C .3πD .π312.23.如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( )12正视图 侧视图 俯视图 AC A 11正视图 侧视图俯视图24.图1是设某几何体的三视图,则该几何体的体积为()A.942π+B.3618π+C.9122π+D.9182π+、25.已知某几何体的三视图如图所示,根据图中标注的尺寸(单位cm)可得该几何体的体积是()A.313cm B.323cmC.343cm D.383cm26.小红拿着一物体的三视图(如图所示)给小明看,并让小明猜想这个物件的形状是A. 长方形 B. 圆柱 C. 立方体 D. 圆锥27.一个几何体的三视图如图所示,则这个几何体的体积为()正视图侧视图俯视图332正视图俯视图图1AB .12C .32 D1+28.一个空间几何体的三视图如图(1)所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积和表面积分别为 ( )A 、64,48+B 、32,48+ C 、643,32+D 、332,48+29.若某多面体的三视图(单位: cm )如图所示,则此多面体的体积是( ) A .21cm 3 B .32cm 3 C .65cm 3 D .87cm 3正视图俯视图图(1)侧(左)视图 1111130.一个空间几何体的正视图、侧视图均是长为2、高为3的矩形,俯视图是直径为2的圆(如右图),则这个几何体的表面积为A .12π+B .7πC . π8D .π2031.(一空间几何体的三视图如图所示,则该几何体的体积为( ).A. B.C.D. 32.已知几何体其三视图(如图),若图中圆半径为1,等腰三角形腰为3,则该几何体表面积为 ( ) A .6π B .5π C.4π D.3π2π+4π+2π4π+正视侧视俯视俯视..A .2,23B .22,2D .2,434.如图,有一个几何体的正视图与侧视图都是底为6cm ,腰为5cm 的等腰三角形,俯视图是直径为6cm 的圆,则该几何体的体积为 ( )A .12πcm 3B .24πcm 3C .36πcm 3D .48πcm 335 (A )348cm (B )324cm (C )332cm (D )328cm36. 如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为 ( )A .4B .3C .32D .237.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和是_______.二、填空题 正视图 左视图俯视图正视图侧视图 俯视图 第6题 ·38.一个几何体的三视图如右图所示,主视图与俯视图都是一边长为3cm 的矩形,左视图是一个边长为2cm 的等边三角形,则这个几何体的体积为________.39.如图所示是一个几何体的三视图(单位:cm ),主视图和左视图是底边长为4cm ,腰长为22的等腰三角形,俯视图是边长为4的正方形,则这个几何体的表面积是-__________40.某几何体的三视图如图所示,则该几何体的体积的最大值为 .41.一正多面体其三视图如图所示,该正多面体的体积为___________.主视图 左视图俯视图3主视图 俯视图 侧视图42.若某几何体的三视图(单位:cm )如右图所示,则该几何体的体积为 cm 2.43.已知某几何体的三视图如图所示,其中侧视图是等腰直角三角形,正视图是直角三角形,俯视图ABCD 是直角梯形,则此几何体的体积为 ;44.某四面体的三视图如上图所示,该四面体四个面的面积中最大的是1正视图俯视图左视图45.一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________46.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是_____.47.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为的正三角形,其俯视图轮廓为正方形,则其体积是_________.48. 某几何体的三视图如图所示,则它的体积是___________俯视图m 3m 249.设某几何体的三视图如图所示,则该几何体表面积是50.一个几何体的三视图如右图所示,正视图是一个边长为2的正三角形,侧视图是一个等腰直角三角形,则该几何体的体积为.三视图练习题(一)参考答案1.B【解析】此几何体是一个组合体,下面是一个正四棱柱上面是一个四棱锥.其体积为166********V =⨯⨯+⨯⨯⨯=.2.D【解析】圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆; 三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。
湖南省2020年高考数学第二轮复习 专题五 立体几何第1讲 空间几何体的三视图、表面积及体积 文

专题五立体几何第1讲空间几何体的三视图、表面积及体积真题试做1.(2020·湖南高考,文4)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( ).图12.(2020·天津高考,文10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为__________ m3.3.(2020·湖北高考,文15)已知某几何体的三视图如图所示,则该几何体的体积为______.4.(2020·湖北高考,文19)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCDA2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考向分析通过对近几年高考试题的分析可看出,空间几何体的命题形式比较稳定,多为选择题或填空题,有时也出现在解答题的某一问中,题目常为中、低档题.考查的重点是直观图、三视图、面积与体积等知识,此类问题多为考查三视图的还原问题,且常与空间几何体的表面积、体积等问题交会,是每年的必考内容.预计在2020年高考中:对空间几何体的三视图的考查有难度加大的趋势,通过此类题考查考生的空间想象能力;对表面积和体积的考查,常见形式为蕴涵在两几何体的“切”或“接”形态中,或以三视图为载体进行交会考查,此块内容还要注意强化几何体的核心——截面以及补形、切割等数学思想方法的训练.热点例析热点一空间几何体的三视图与直观图【例1】(1)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的侧(左)视图为( ).(2)若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).规律方法 (1)三视图的正(主)视图、侧(左)视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,反映了一个几何体各个侧面的特点.正(主)视图反映物体的主要形状特征,是三视图中最重要的视图;俯视图要和正(主)视图对正,画在正(主)视图的正下方;侧(左)视图要画在正(主)视图的正右方,高度要与正(主)视图平齐;(2)要注意到在画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线; (3)A .32B .16+16 2C .48 D.16+32 2(2)一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ).A.12+22 B .1+22 C .1+ 2 D .2+ 2 热点二 空间几何体的表面积与体积【例2】(2020·福建高考,文20)如图,在四棱锥P ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,点E 在线段AD 上,且CE ∥AB .(1)求证:CE ⊥平面PAD ;(2)若PA =AB =1,AD =3,CD =2,∠CDA =45°,求四棱锥P ABCD 的体积.规律方法 (1)求几何体的体积问题,可以多角度、多方位地考虑.对于规则的几何体的体积,如求三棱锥的体积,采用等体积转化是常用的方法,转化的原则是其高与底面积易求;对于不规则几何体的体积常用割补法求解,即将不规则几何体转化为规则几何体,以易于求解.(2)求解几何体的表面积时要注意S 表=S 侧+S 底.(3)对于给出几何体的三视图,求其体积或表面积的题目关键在于要还原出空间几何体,并能根据三视图的有关数据和形状推断出空间几何体的线面关系及相关数据,至于体积或表面积的求解套用对应公式即可.变式训练2 已知某几何体的三视图如下图所示,其中正(主)视图中半圆的半径为1,则该几何体的体积为( ).A .24-32πB .24-13πC .24-πD .24-12π热点三 多面体与球【例3】已知正四棱锥的底面边长为a ,侧棱长为2a . (1)求它的外接球的体积; (2)求它的内切球的表面积.规律方法 (1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系.(2)若球面四点P ,A ,B ,C 构成的线段PA ,PB ,PC 两两垂直,且PA =a ,PB =b ,PC =c ,则4R 2=a 2+b 2+c 2,把有关元素“补形”成为一个球内接正方体(或其他图形),从而显示出球的数量特征,这种方法是一种常用的好方法.变式训练3 如图所示,在四棱锥P ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a .若在这个四棱锥内放一球,则此球的最大半径是__________.思想渗透立体几何中的转化与化归思想求空间几何体的体积时,常常需要对图形进行适当的构造和处理,使复杂图形简单化,非标准图形标准化,此时转化与化归思想就起到了至关重要的作用.利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,具体运用如下:(1)补法是指把不规则的(不熟悉或复杂的)几何体延伸或补成规则(熟悉的或简单的)的几何体,把不完整的图形补成完整的图形;(2)割法是指把复杂的(不规则的)几何体切割成简单的(规则的)几何体;(3)等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件转化为易求的面积(体积)问题.【典型例题】如图,在直三棱柱ABC A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E BCD 的体积.(1)证明:取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1BB 1.而D 是AA 1的中点,所以EG AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG . 又DE 平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解:因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E BCD =V D BCE =V A BCE =V E ABC .由(1)知,DE ∥平面ABC ,所以V E ABC =V D ABC =13AD ·12BC ·AG =16×3×6×4=12.1.(2020·山东济南三月模拟,4)如图,正三棱柱ABC A 1B 1C 1的各棱长均为2,其正(主)视图如图所示,则此三棱柱侧(左)视图的面积为( ).A .2 2B .4 C. 3 D .2 32.(2020·安徽安庆二模,7)一空间几何体的三视图如图所示(正(主)、侧(左)视图是两全等图形,俯视图是圆及圆的内接正方形),则该几何体的表面积是( ).A .7π cm 2B .(5π+43)cm 2C .(5π+23)cm 2D .(6π+27-2)cm 23.(2020·北京丰台区三月月考,4)若某空间几何体的三视图如图所示,则该几何体的体积是( ).A .20-2πB .20-23πC .40-23πD .40-43π4.(2020·湖南株洲下学期质检,14)一个三棱锥的正(主)视图、侧(左)视图、俯视图如下,则这个三棱锥的体积为__________,其外接球的表面积为__________.5.已知正四面体的外接球半径为1,则此正四面体的体积为__________.6.正六棱锥P ABCDEF 中,G 为PB 的中点,则三棱锥D GAC 与三棱锥P GAC 体积之比为__________.7.如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED ,EC 向上折起,使A ,B 重合,求形成三棱锥的外接球的体积.参考答案命题调研·明晰考向真题试做1.C 解析:若为C 选项,则主视图为:故不可能是C 选项.2.30 解析:由几何体的三视图可知:该几何体的上部为平放的直四棱柱,底部为长、宽、高分别为4 m,3 m,2 m 的长方体.∴几何体的体积V =V 直四棱柱+V 长方体=(1+2)×12×4+4×3×2=6+24=30(m 3).3.12π 解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π.4.解:(1)因为四棱柱ABCD A 2B 2C 2D 2的侧面是全等的矩形,所以AA 2⊥AB ,AA 2⊥AD .又因为AB ∩AD =A ,所以AA 2⊥平面ABCD . 连接BD ,因为BD ⊂平面ABCD ,所以AA 2⊥BD . 因为底面ABCD 是正方形,所以AC ⊥BD .又已知平面ABCD ∥平面A 1B 1C 1D 1,且平面BB 1D 1D ∩平面ABCD =BD , 平面BB 1D 1D ∩平面A 1B 1C 1D 1=B 1D 1,所以B 1D 1∥BD .于是由AA 2⊥BD ,AC ⊥BD ,B 1D 1∥BD ,可得AA 2⊥B 1D 1,AC ⊥B 1D 1. 又因为AA 2∩AC =A ,所以B 1D 1⊥平面ACC 2A 2.(2)因为四棱柱ABCD A 2B 2C 2D 2的底面是正方形,侧面是全等的矩形,所以S 1=S 四棱柱上底面+S四棱柱侧面=(A 2B 2)2+4AB ·AA 2=102+4×10×30=1 300(cm 2).又因为四棱台A 1B 1C 1D 1ABCD 的上、下底面均是正方形,侧面是全等的等腰梯形(其高为h ),所以S 2=S 四棱台下底面+S 四棱台侧面=(A 1B 1)2+4×12(AB +A 1B 1)h=202+4×12×(10+20)132-⎣⎢⎡⎦⎥⎤12×(20-10)2=1 120(cm 2).于是该实心零部件的表面积为S =S 1+S 2=1 300+1 120=2 420(cm 2), 故所需加工处理费为0.2S =0.2×2 420=484(元). 精要例析·聚焦热点热点例析【例1】 (1)D (2)B 解析:(1)被截去的四棱锥的三条可见侧棱中有两条为正方体的面对角线,它们在右侧面上的投影与右侧面(正方形)的两条边重合,另一条为正方体的对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图及对角线方向,只有选项D 符合.(2)由正(主)视图可排除A ,C ;由侧(左)视图可判断该几何体的直观图是B.【变式训练1】 (1)B (2)D 解析:(1)由三视图知原几何体是一个底面边长为4,高是2的正四棱锥.如图:∵AO =2,OB =2,∴AB =2 2.又∵S 侧=4×12×4×22=162,S 底=4×4=16,∴S 表=S 侧+S 底=16+16 2.(2)如图,设直观图为O ′A ′B ′C ′,建立如图所示的坐标系,按照斜二测画法的规则,在原来的平面图形中,OC ⊥OA ,且OC =2,BC =1,OA =1+2×22=1+2,故其面积为12×(1+1+2)×2=2+ 2.【例2】 (1)证明:因为PA ⊥平面ABCD ,CE ⊂平面ABCD ,所以PA ⊥CE .因为AB ⊥AD ,CE ∥AB ,所以CE ⊥AD . 又PA ∩AD =A ,所以CE ⊥平面PAD . (2)解:由(1)可知CE ⊥AD .在Rt△ECD 中,DE =CD ·cos 45°=1,CE =CD ·sin 45°=1. 又因为AB =CE =1,AB ∥CE , 所以四边形ABCE 为矩形.所以S 四边形ABCD =S 矩形ABCE +S △ECD =AB ·AE +12CE ·DE =1×2+12×1×1=52.又PA ⊥平面ABCD ,PA =1,所以V 四棱锥P ABCD =13S 四边形ABCD ·PA =13×52×1=56.【变式训练2】 A 解析:由三视图可知该几何体为一个长、宽、高分别为4,3,2的长方体,剖去一个半圆柱而得到的几何体,其体积为2×3×4-12π×1×3,即24-32π.【例3】 解:如图所示,△SAC 的外接圆是外接球的一个大圆,∴只要求出这个外接圆的半径即可,而内切球的球心到棱锥的各个面的距离相等,∴可由正四棱锥的体积求出其半径.(1)设外接球的半径为R ,球心为O ,则OA =OC =OS ,∴O 为△SAC 的外心,即△SAC 的外接圆半径就是球的半径. ∵AB =BC =a ,∴AC =2a .∵SA =SC =AC =2a ,∴△SAC 为正三角形.由正弦定理得2R =AC sin∠ASC =2a sin 60°=263a ,因此R =63a ,V 外接球=43πR 3=8627πa 3. (2)如图,设内切球的半径为r ,作SE ⊥底面于E ,作SF ⊥BC 于F ,连接EF , 则有SF =SB 2-BF 2=(2a )2-⎝ ⎛⎭⎪⎫a 22=72a ,S △SBC =12BC ·SF =12a ×72a =74a 2, S 棱锥全=4S △SBC +S 底=(7+1)a 2.又SE =SF 2-EF 2=⎝ ⎛⎭⎪⎫72a 2-⎝ ⎛⎭⎪⎫a 22=62a ,∴V 棱锥=13S 底·SE =13a 2×62a =66a 3,∴r =3V 棱锥S 棱锥全=3×66a 3(7+1)a 2=42-612a ,S 内切球=4πr 2=4-73πa 2. 【变式训练3】 12(2-2)a 解析:当且仅当球与四棱锥的各个面都相切时,球的半径最大.设放入的球的半径为r ,球心为O ,连接OP ,OA ,OB ,OC ,OD ,则把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面分别为原四棱锥的侧面和底面,则V P ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意知PD ⊥底面ABCD ,∴V P ABCD =13S 正方形ABCD ·PD =13a 3.由体积相等,得13r (2+2)a 2=13a 3,解得r =12(2-2)a .创新模拟·预测演练1.D2.D 解析:据三视图可判断该几何体是由一个圆柱和一个正四棱锥组合而成的,直观图如图所示:易求得表面积为(6π+27-2)cm 2.3.B 解析:由三视图可知该几何体的直观图为一个正四棱柱,从上表面扣除半个内切球.易求出正四棱柱的底面边长为2,内切球的半径为1,故体积为2×2×5-23π=20-2π3.4.4 29π 5.827 3 解析:首先将正四面体补形为一个正方体,设正四面体棱长为a ,则其对应正方体的棱长为22a ,且由球与正方体的组合关系易知3⎝ ⎛⎭⎪⎫22a 2=(1×2)2,解得a 2=83, ∴正四面体的体积为V =⎝ ⎛⎭⎪⎫22a 3-4×13×12×⎝ ⎛⎭⎪⎫22a 3=13⎝ ⎛⎭⎪⎫22a 3=827 3.6.2∶1 解析:由正六棱锥的性质知,点P 在底面内的射影是底面的中心,也是线段AD的中点.又G 为PB 的中点,设P 点在底面内的射影为O ,则G 点在底面内的射影为OB 的中点M ,且GM ∥PO .又M 为AC 的中点,则GM ⊂平面GAC ,所以点P 到平面GAC 的距离等于点O 到平面GAC 的距离.又因为OM ⊥平面GAC ,DC ⊥平面GAC ,且DC =2OM ,则V D GAC V P GAC =13S △GAC ×DC13S △GAC ×OM =2.7.解:由已知条件知,平面图形中AE =EB =BC =CD =DA =DE =EC =1,∴折叠后得到一个棱长为1的正三棱锥(如图). 方法一:作AF ⊥平面DEC ,垂足为F , F 即为△DEC 的中心,取EC 中点G ,连接DG ,AG , 过球心O 作OH ⊥平面AEC , 则垂足H 为△AEC 的中心,∴外接球半径可利用△OHA ∽△AFG 求得. ∵AG =32,AF =1-⎝⎛⎭⎪⎫332=63,AH =33, ∴OA =AG ·AHAF =32×3363=64,∴外接球体积为43π×OA 3=43·π·6643=68π.方法二:如图,把棱长为1的正三棱锥放在正方体中,显然,棱长为1的正三棱锥的外接球就是正方体的外接球.∵正方体棱长为22, ∴外接球直径2R =3·22, ∴R =64,∴体积为43π·⎝ ⎛⎭⎪⎫643=68π.。
三视图练习题

三视图练习题三视图练习题1.下图是由哪个平面图形旋转得到的()A B C D2.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对3.下列几何体各自的三视图中,有且仅有两个视图相同的是()A .①②B .①③C .①④D .②④ 4.有一个几何体的三视图及其尺寸如下(单位:cm ),则该几何体的表面积和体积为( )A.3212,24cm cm ππB. 3212,15cm cm ππC. 3236,24cm cmππ D.以上都不正确5.如左图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t变化的可能图象是()侧视正视图俯视图6.正方体的截平面不可能是(1) 钝角三角形 (2) 直角三角形 (3) 菱形 (4) 正五边形 (5) 正六边形下述选项正确的是:()(A) (1)(2)(5) (B) (1)(2)(4) (C) (2)(3)(4) (D) (3)(4)(5) 7.如图,在正方体ABCD —A1B1C1D1中,P 为BD1的中点,则△PAC 在该正方体各个面上的射影可能是()A .①④B .②③C .②④D .①②8.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()俯视图侧视图正视图A.9.一空间几何体的三视图如图所示,则该几何体的体积为( ). A.2π+B. 4π+2π4π+10.如图,是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()侧(左)视图正(主)视图俯视图A B C D1A 1B 1C 1D P① ③ ④ ②俯视图左视图主视图A .5B .6C .7D .811.如果一个几何体的三视图如图所示,其中正视图中ABC 是边长为2的正三角形,俯视图为正六边形,那么该几何体的侧视图的面积为 ( )A .23B .32C .12D .612.用若干个棱长为1的正方体搭成一个几何体,其正视图、侧视图都是如右图形,对这个几何体,下列说法正确的是A .这个几何体的体积一定是7 B .这个几何体的体积一定是10C .这个几何体的体积的最小值是6,最大值是10D .这个几何体的体积的最小值是7,最大值是11 二、填空题13.如图,,E F 分别为正方体的面11A ADD 、面11B BCC的中心,则四边形E B F D1在该正方体的面上的射影可能是____________。
三视图练习题含答案

23正视图侧视图2俯视图 2第3题三视图练习题 (一)1.某几何体的三视图如图所示,则它的体积是( )A.283π-B.83π-C.π28-D.23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32 B.16+162 C.48 D.16322+3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( ) A .43 B .4C .23 D .24.如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+D.9182π+5.一个空间几何体的三视图如图所示,则该几何体的表面积为( ) A. 48 B.32+817C.48+817D.806.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.35233cmB.32033cmC.22433cmD.16033cm7.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.2B.1C.23D.138.某几何体的三视图如图所示,则该几何体的体积为( ) A.π816+ B.π88+ C.π1616+ D.π168+9. 某四棱台的三视图如图所示,则该四棱台的体积是() A.4 B.314 C.316D.610. 某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为( )A .1B .3C .4D .511. 一个几何体的三视图如图所示,则这个几何体的体积为( )332正视图侧视图俯视图第4题第5题第7题 第1题 第2题 第8题第9题第6 题A .(8)36π+B .(82)36π+C .(6)36π+D .(92)36π+12.某几何体的底面为正方形,其三视图如图所示,则该几何体的体积等于( )A .1B .2C .3D .413.某几何体的三视图如图所示,则其体积为______.14.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于______3cm . 15.某几何体的三视图如图所示,则该几何体的体积是______.16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 17.一个空间几何体的三视图如图所示,则这个空间几何体的体积是. 18.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为19.若某空间几何体的三视图如下图所示,则该几何体的表面积是_______________.20.一个正方体的内切球与它的外接球的体积比是( ).A .1∶33B .1∶22C .1∶383 D .1∶4221.已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( )A.π964 B. π38 C. π4 D. π91622. P 、A 、B 、C 是球O 面上的四点,且PA 、PB 、PC 的两两垂直,PA=PB=PC=9,则球心O 到截面ABC 的距离为23.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( ) A.4 B.3 C.2.5 D.224.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 25.答案1.A2.B3.C4.D5.C6.B7.B8.A9.B 10.A 11.A 12.A 13.3π14.24 15.1616-π 16.1 17.67π18.29π 19. 20+82 20.A 21.A 22.233第10题3122正视图侧视图俯视图第11题 211俯视图侧视图正视图13第12题第17题24 3正视图 侧视图俯视图第18题 第15题 第14题第13题 第16题 第19题23.B 24. 2 25. ︒90 26.3500π27.π6 28.π29 29.72 30. 3629+3226-31.2500π 32.π1200。
三视图习题50道(含答案)

word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图与表面积体积练习题(一)
1.如图是一个几何体的三视图,若它的体积是33,则a =__________
2.(2009天津二模) 如下左图,直三棱柱的主视图面积为2a 2,则左视图的面积为( )
A .2a 2
B .a 2
C .2
3a D .24
3a
3.(浙江省温州市啸秋中学2011学年第一学期高三会考模拟试卷)如上右图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为( )
A .π3
B .π2
C .
π2
3
D .π4 4.(2008广东)将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)
得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
5. (2007宁夏理•8) 已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )
20
10
10
E
F
D
I
A H G B
C E
F D
A
B
C
侧视 图1
图2 B
E
A .
B
E
B .
B
E
C .
B E
D .
a
a
a
主视图俯视图
左视图
A.
34000cm 3 B.3
8000cm 3
C.32000cm D.34000cm 6.(2009枣庄市二模)一个几何体的三视图如图所示,则这个几何体的体积等于( )
A .
361a
B .321a
C .332a
D .3
6
5a 7.如右图,是某几何体的三视图,其中正视图是正方形.侧视 图是矩形,俯视图是半径为2的半圆,则该几何体的表面积是 A 、16+12 B 、24
C 、16+4
D 、12
8.(北京龙门育才学校2011届高三上学期第三次月考)如下图,某几何体的正视图与侧视
图都是边长为1的正方形,且体积为
1
2。
则该几何体的俯视图可以是( )
9.(吉林省实验中学2011届高三文)如图是一个几何体的三视图,则此三视图所描述几何体的表面积为 ( ) A .π)3412(+
B .20π
C .π)3420(+
D .28π
20正视图
20侧视图
20俯视图。