植物生理学实验-3

合集下载

植物生理学实验 实验报告

植物生理学实验 实验报告

植物生理学实验实验报告植物生理学实验实验报告摘要:本实验旨在探究植物的生理反应和适应机制。

通过观察植物在不同环境条件下的生长和生理指标的变化,我们可以更好地理解植物的生理过程和适应策略。

本实验采用了盆栽植物的生长观察和测量方法,结合实验室中的设备和技术手段,得出了一系列有关植物生理学的结论。

1. 引言植物生理学是研究植物生长、发育和适应环境的科学,它涉及植物的生理过程、代谢调节、信号传导等方面。

通过实验研究,我们可以揭示植物在不同环境条件下的生理反应和适应机制,为植物的生产和保护提供理论依据。

2. 材料与方法本实验选取了常见的盆栽植物作为实验对象,包括绿萝、仙人掌和吊兰。

为了模拟不同环境条件,我们设置了三组实验组:阳光组、阴影组和干旱组。

每组实验设置五个重复,以保证实验结果的可靠性。

3. 结果与讨论3.1 生长观察在阳光组中,绿萝的叶片呈现出深绿色,茂密且向阳生长;仙人掌的刺变得更加粗壮,颜色也更加鲜艳;吊兰的叶片展开较大,叶色浅绿。

而在阴影组中,绿萝的叶片变得较为苍白,茂密度下降;仙人掌的刺变得细长,颜色较为暗淡;吊兰的叶片展开较小,叶色深绿。

在干旱组中,绿萝的叶片开始出现萎蔫现象;仙人掌的刺变得干瘪,颜色变得暗淡;吊兰的叶片开始卷曲,叶色变黄。

3.2 生理指标测量我们通过测量叶片的光合速率、蒸腾速率和叶绿素含量等指标,来进一步了解植物在不同环境条件下的生理变化。

在阳光组中,绿萝的光合速率较高,蒸腾速率也较高;仙人掌的光合速率较低,蒸腾速率也较低;吊兰的光合速率和蒸腾速率处于中等水平。

而在阴影组中,绿萝的光合速率和蒸腾速率下降明显;仙人掌的光合速率和蒸腾速率几乎停止;吊兰的光合速率和蒸腾速率也有所下降。

在干旱组中,绿萝的光合速率和蒸腾速率急剧下降;仙人掌的光合速率和蒸腾速率几乎停止;吊兰的光合速率和蒸腾速率也有所下降。

叶绿素含量的测量结果与光合速率和蒸腾速率的变化趋势一致。

4. 结论通过本实验的观察和测量,我们可以得出以下结论:1) 植物在阳光充足的环境下生长更加茂盛,叶片颜色更加鲜艳。

植物生理学实验报告

植物生理学实验报告

首都师范大学生命科学学院实验报告课程名称植物生理学实验成绩姓名苗雪鹏班级 1班学号 1080800021 实验题目实验三植物体中N、P、K主要养分的速测【实验目的】1.了解植物体内N、P、K测定的意义和方法2.掌握如何测定植物体中N、P、K的实验技能【实验原理】植物体主要由C、H、O、N、P、K、Ca、Mg、S、Fe等十几种元素组成,除此以外还包括Ca、Zn、Mn、B、Mo,但需要量较少。

在通常条件下,植物利用太阳光能,从空气中获得C,从水中获得氢和氧,而N、P、K等元素则是来源土壤肥力。

在栽培过程中,能够知道植物的需要和土壤内N、P、K变动的情况,对考虑施肥措施是有帮助的,因此测定土壤及植物体内的N、P、K是很重要的。

硝态N测定:硝态N是硝酸的阴离子(NO3-),它是强氧化剂,所以鉴定N-离子几乎都用氧化反应,用二苯胺(C6H5)2NH的方法,这个方法的原理是在NO3-存在时二苯胺被硝酸氧化而显蓝色。

有效P和无机P测定:P与钼酸铵反应生成磷钼酸铵,然后以氧化亚锡作为还原剂时,使磷钼酸铵还原为“磷钼兰”(低价钼化合物混合物)溶液呈兰色。

此法能测土壤有效P,过磷酸钙中有效P和植物体内的无机磷。

速效K的测定:四苯硼钠〔NaB(C6H5)4〕与钾离子生成白色沉淀为四苯硼酸钾〔KB(C6H5)4〕【实验材料和试剂】在完全培养液、缺乏N、P、K、Fe的营养液中培养四周的玉米苗硝态氮试剂、磷试剂Ⅰ、磷试剂Ⅱ、K试剂、标准溶液1、5、10、20、40ppm【实验方法】1.植物组织浸提液制备将植物剪成小块,称取1g,迅速倒入已沸腾的蒸馏水(约10ml)烧杯中,用毛细玻璃棒经常搅动,小火煮十分钟,煮液倒入10ml容量瓶中,另加少量蒸馏水,继续小火煮植物材料5分钟,浸提液倒入上述容量瓶内,再以少量蒸馏水洗植物材料,使最后容量为10ml。

植物组织在计算含量时要乘以10,因每克鲜组织稀释了10倍。

2.硝态N测定在白瓷板的凹内分别滴入1、5、10、20、40ppm的混合标准液1滴,然后将待测液(植物浸提液)分别滴入其他凹内,最后每个凹内各加5滴二苯胺硫酸溶液,用毛细玻璃棒搅匀,3-5分钟,观察标准液与待测液蓝色变化,待测液的蓝色近似于某标准液的蓝色,就是待测液的硝态N含量。

植物生理学实验

植物生理学实验

实验一植物细胞渗透势的测定(质壁分离法)一、原理将植物组织放入一系列不同浓度的蔗糖溶液中,经过一段时间后,植物细胞与蔗糖溶液之间将达到平衡状态。

如果在某一溶液中细胞脱水达到平衡时刚好处于临界质壁分离状态,则细胞的压力势ψp将下降为零,此时细胞液的渗透势ψπ等于外液的渗透势ψπ′,即ψπ=ψπ′。

此溶液称为该组织的等渗溶液,其浓度称为该组织的等渗浓度,即可计算出细胞液的渗透势。

实际上临界质壁分离状态镜下很难看到,一般以初始质壁分离作为判断等渗浓度的标准。

(细胞水势=渗+压+衬,其中渗=外渗=-iCRT)(注:内外浓度差不一定质壁分离,因为外高内低才会分离)二、器材、试剂与材料1、器材:显微镜,小培养皿(60mm),载盖玻片,温度计,试剂瓶,吸水纸等。

2、试剂:1mol/L蔗糖溶液,蔗糖系列标准溶液。

3、材料:洋葱。

三、操作步骤1、取干燥、洁净培养皿9套,顺序编号,顺序加入蔗糖系列标准溶液,呈一薄层,盖好皿盖。

(为什么?)2、用镊子撕取材料内表皮(0.5cm见方即可),吸去表面水分,迅速浸入上述培养皿中,每皿4—5片。

3、经20~30min(为什么等这么长时间?因为达渗透平衡)记录室温,同时从高浓度开始依次取出材料放于载片上,滴一滴同浓度的蔗糖溶液,盖上盖片,显微镜下观察。

若所有细胞都发生质壁分离现象,则取相邻低浓度的材料观察,并记录质壁分离的相对程度。

若有50%左右细胞发生初始质壁分离(即原生质体刚从细胞壁的角隅处分离),则该浓度就是等渗浓度。

若两个相邻浓度的材料中,一个未发生质壁分离,另一个发生质壁分离数超过50%,则两浓度平均值即为等渗浓度。

4、由所得的等渗浓度和室温计算细胞液的渗透势:ψπ=ψπ′=-iCRT(MPa),其中:ψπ——细胞的渗透势,MPa;ψπ′——供试溶液的渗透势,MPa;C——供试溶液的浓度,moL/L;R——气体常数,0.008314·L·MPa/(moL·K);T——绝对温度,(273十t℃)K;i——等渗系数,蔗糖为1。

植物生理学实验报告

植物生理学实验报告

实验一植物组织水势的测定(小液流法)——2013.3.11 一、目的用小液流法(落滴法)测定植物组织的水势,由水势大致了解植物体内的水分状况二、原理水势表示水分的化学势,象电流由高电位处流向低电位处一样,谁从水势高处流向低处。

植物体细胞之间,组织之间以及植物体和环境间的水分移动方向都由水势插决定。

三、材料与设备植物材料:阔叶树叶片(大叶女贞)实验器具:细滴管一支;试管及指形管各五支(带塞);100mL烧杯一只;镊子、剪刀各一把;2mL、5mL移液管各一支;标签纸;钻孔器;木板试剂:1ml/L蔗糖溶液;甲烯蓝溶液四、操作步骤1.用短滴管吸取1,mol/L蔗糖液配制一系列浓度递增的蔗糖溶液(0.05,0.1,0.2,0.3,0.4mol/L)各10 ml,加入干燥刻度试管内,各管都加上塞子,充分混合,并编号。

用移液管从浓度各试管中吸取1ml注入第二指形管内,各管均加塞,并贴上标签。

2.用钻孔器(取相同部位)钻取同大小叶片。

每支指形管中放入10片,加塞,放置20~30分钟(期间摇动2~3次),到时间后,加入2~3滴甲烯蓝溶液于指形管中,使其溶液呈蓝色,以区别原来的颜色。

3.用细长滴管从各指形管中依次吸取着色的液体少许,然后伸入相同编号(原相同浓度)试管的中部,缓慢从细长滴管尖端横向放出一滴蓝色试验溶液,在无色透明背景上观察小液滴移动的方向。

如果有色液滴向上移动,说明细胞液中水分外流,试验比重比原来小;如果有色液向下移动,则说明细胞从溶液中吸收了水分,溶液变浓,比重变大;如果液滴不动,向外扩散则说明两者的浓度相等或接近,即植物组织的水势等于溶液的渗透势。

记录液滴不动的试管中蔗糖溶液的浓度,若找不到改浓度,取在下降上升转变时量浓度的均值。

五、作业1.记录小液流在试管内的移动方向2.按下列公式计算组长的水势:ψW(细胞水势)=ψs=-CRT式中:ψs——溶液的渗透势,以Mpa为单位R——气体常数,为0.008314Mpa*L/(mol*K)。

植物生理学实验报告

植物生理学实验报告

植物生理学实验报告摘要:本实验旨在通过一系列实验来研究植物的生理特性及其对外界环境的响应。

我们使用了单子叶植物蔗糖苦苣菜(Saccharum officinarum L.)作为研究对象,并分别对其光合作用、光反应及水分运输进行了分析。

通过实验结果,我们得出了一些重要结论,对于深入了解植物生理学及其应用具有重要的意义。

引言:植物生理学是研究植物如何在内外环境的调节下进行生长和发育的科学。

通过对植物的生理特性进行研究,我们可以更好地了解植物生活的基本规律。

因此,本实验旨在通过一系列实验来深入研究植物的生理学特性。

材料与方法:1. 实验材料:蔗糖苦苣菜植株、草状质量秤、光谱辐射计、叶绿素荧光仪、离心机等。

2. 实验步骤:- 实验一:光合作用a. 将蔗糖苦苣菜植株放置在恒温暗房内恢复一段时间。

b. 将光谱辐射计放在适当位置,记录光照强度和光质。

c. 将一片健康的叶片置于夹层式草状质量秤上,记录叶片重量。

d. 将叶片暴露在光源下,测量一定时间内的叶片重量。

e. 重复实验步骤c和d,以获得多组数据并进行统计分析。

- 实验二:光反应a. 将蔗糖苦苣菜叶片置于叶绿素荧光仪上,等待测量稳定。

b. 记录初始叶绿素荧光(F_o)值。

c. 迅速打开强光源,记录最大叶绿素荧光(F_m)值。

d. 计算有效光能利用率(Yield)和光化学淬灭(qP)等参数。

- 实验三:水分运输a. 随机选取两片蔗糖苦苣菜叶片,将其离枝并切割横截面。

b. 快速将一片叶片放置在自来水中,随即用另一片叶片封住叶脉。

c. 将样品放置在离心机上,启动离心机以模拟植物体内水分运输。

d. 一段时间后,观察叶片的水分状态,并记录数据。

结果与讨论:1. 实验一的结果显示,蔗糖苦苣菜的光合作用明显受到光照强度和光质的影响。

光照强度越高,光合速率越快。

同时,特定波长范围的光对光合作用的促进作用更为明显。

2. 实验二的结果表明,蔗糖苦苣菜的光反应能力非常高,有效光能利用率和光化学淬灭都表现出良好的性能。

本科课件-植物生理学实验(完整)

本科课件-植物生理学实验(完整)
平衡。 3. 往乙组溶液(白色)中释
放蓝色液流时,不可震动小瓶。
12
根系活力的测定(TTC法)
植物生理生化教研室 曾汉来 2012.03.12
一、实验目的 • 理解植物根系活力的内涵 • 掌握TTC法测根系活力的原理与方法
提供合成所需能量; 合成氨基酸和植物激素 (ABA、CTK、GA等)
H2O 无机盐
硫酸,其他 操作相同。
加入1mol/L硫酸2ml
取出根吸 干水分
与3~4ml乙酸乙酯在研钵 内磨碎
查标准曲线, TTC还原量(mg)
空白试验作参比测 红色提取液移入试管且 485nm下吸光度 用乙酸乙酯定容到10ml
五、实验结果
TTC还原能力 (mg/g(根鲜重)/h)

四氮唑还原量(mg) [根重(g)×时间(h)]
(5)手持测糖仪4 分别测定蔗糖原液浓度(C )
四、结果计算 自由水的含量(%)=
植物组织中束缚水的含量(%) = 组织总含水量 - 组织中自由水含量
5
注意事项: 1. 清洗植物组织后应注意用
吸水纸擦干其表面的游离水分。 2. 植物组织与外部溶液之间
达到充分平衡。
6
实验01-2 植物组织水势的测定 (小液流法)
根的生长情况和活力水平直接影响地上部的生长 测定根系活力,为植物生长状况、营养供应研究提供依据。
二、验原理
氯化三苯基四氮唑(TTC)的标准氧化电位为80mV的氧化还 原物质,获得H的能力强。溶于水为无色溶液,还原后即生成 红色而不溶于水的三苯基甲腙 (TTF)。

生成的TTF比较稳定,不会被空气中的氧自动氧化,可用 分光光度法定量测定。
实验01-1 植物组织中自由水和束缚水 含量的测定

植物生理学实验 实验报告

植物生理学实验 实验报告

植物生理学实验实验报告
《植物生理学实验实验报告》
实验目的:
本实验旨在探究植物生长过程中的生理学特性,通过实验观察和数据分析,了
解植物对外界环境的适应能力。

实验材料:
本次实验所需材料包括小麦种子、培养皿、水、土壤、温度计、光照计、湿度
计等。

实验步骤:
1. 将小麦种子放置于培养皿中,分别在不同的条件下进行实验观察。

其中包括
不同的温度、光照和湿度条件。

2. 记录每组实验条件下小麦种子的发芽率、生长速度、叶片颜色等生理学特征。

3. 对实验数据进行统计分析,比较不同条件下植物生长的差异,分析植物对外
界环境的适应能力。

实验结果:
经过实验观察和数据分析,我们发现在不同的温度、光照和湿度条件下,小麦
种子的生长状况存在显著差异。

在适宜的温度和湿度条件下,小麦种子的发芽
率和生长速度较高,叶片颜色也更加翠绿。

而在极端的温度和湿度条件下,小
麦种子的生长受到抑制,甚至出现枯萎现象。

实验结论:
通过本次实验,我们深刻认识到植物对外界环境的适应能力,以及不同环境条
件对植物生长的影响。

这不仅有助于我们更好地了解植物生理学特性,也为农
业生产和植物保护提供了重要的理论依据。

总结:
植物生理学实验是深入了解植物生长过程和生理特性的重要手段,通过实验观察和数据分析,我们可以更加全面地了解植物对外界环境的适应能力,为植物生长和保护提供科学依据。

希望本次实验能够对植物生理学研究和相关领域的发展起到一定的推动作用。

植物生理学实验报告植物组织水势测定

植物生理学实验报告植物组织水势测定

植物生理学实验报告植物组织水势测定实验目的:本实验旨在通过测量植物组织的水势,了解植物在不同生理状态下的水分状况和水分调节能力。

实验原理:植物组织的水势是一个重要的生理指标,用来描述植物的水分状态。

水势的测定是通过测量植物组织与纯水之间的压力差来实现的。

当植物组织的水势为负值时,说明组织在吸水,而正值则表明组织有排水的趋势。

实验步骤:1.准备材料:取一盆植物,将其叶片切下并放入离心管中;准备一些试管和纯水。

2.测量植物组织的水势:将离心管放入测水袋中,并将测水袋连至一根透气玻璃管,然后将试管插入水槽中以保持温度恒定。

通过气压计记录水势值。

3.测量植物组织在不同条件下的水势:可以在不同的实验条件下测量植物组织的水势,如在光照、温度变化或干旱条件等。

4.数据记录与分析:记录测得的水势数值,并进行统计和比较,以检验不同条件对植物组织水势的影响。

实验结果与讨论:通过对植物组织水势的测定,我们可以得到一些有意义的结果。

首先,测量不同植物组织在水势上的差异。

由于植物不同部位的组织结构和功能不同,其水分状况也会有差异。

比如,叶片的水势可能会更高,因为它们是光合作用和气体交换的主要结构。

其次,测定不同环境条件下植物组织的水势变化。

例如,在干旱条件下,植物会通过减少蒸腾作用和调节根部的水分吸收来保持水势平衡。

因此,测量植物组织在干旱条件下的水势,可以帮助我们了解植物对干旱的应对机制。

此外,还可以通过对不同温度和光照条件下植物组织水势的测定,来研究植物的生长和适应性。

不同的温度和光照条件会影响植物的光合作用和蒸腾作用,从而改变植物的水分平衡。

综上所述,植物组织水势的测定是一个重要的植物生理学实验,在研究植物的水分状况和水分调节能力方面具有重要意义。

通过进行多方面的测定和分析,我们可以更好地了解植物的生理机制和适应性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称:植物生理学及实验实验类型:探索、综合或验证实验项目名称:
叶绿体色素的提取、分离、理化性质和叶绿素含量的测定学生姓名:专业:农业资源与环境学号:
同组学生姓名:
指导老师:
实验地点:实验日期:2019年10月9日
一、实验目的和要求
掌握植物中叶绿体色素的提取分离和性质鉴定、定量分析的原理和方法
二、实验内容和原理
以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。

原理如下:
1.叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂.常用95%的乙醇或80%的丙
酮提取。

2.皂化反应。

叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机
溶剂中的类胡萝卜素分开。



线
3.取代反应。

在酸性或加温条件下,叶绿素卟啉环中的Mg2+可依次被H+和Cu2+取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。

H+取代Mg2+, Cu2+ (Zn2+)取代H+。

4.叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。

透射光下呈绿色,反射光下呈红色。

5.光谱分析。

叶绿素吸收红光和兰紫光,红光区可用于定量分析,其中645和
663用于定量叶绿素a,b及总量,而652可直接用于总量分析。

三、主要仪器设备
1.天平(万分之一)、可扫描分光光度计(UV-1240)、离心机
2.研具、各种容(量)器、酒精灯等
四、操作方法与实验步骤
1.定性分析
a)称取鲜叶3-5g,并逐步加入乙醇15ml,磨成匀浆
取匀浆过滤,并倒入三角瓶中,同时观察荧光现象。

b)取三角瓶中约1ml溶液于小试管。

加KOH数片剧烈摇均,加石油醚
O 1ml分层后观察。

1ml和H
2
c)取代反应:加醋酸约
1ml,取1/2加醋酸铜粉加热。

观察颜色变化。

2.叶绿素和类胡萝卜素的吸收光谱测定:
a)取皂化反应的上层黄色石油醚溶液→稀释(470nm OD 0.5-1)
b)取下层绿色溶液(留1/3),反复用石油醚粹取,直到无类胡萝卜素,离
心得叶绿素(盐)→稀释(663nm OD 0.5-1)
c)两者在400-700nm处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收

3.叶绿素定量分析:
鲜叶0.1g,加1.9mlH
2
O,磨成匀浆,取2份0.2ml 加95%酒精4.8ml,摇匀,8000转离心5min,上清液在645,652,663测定OD,计算Chla,Chlb 和Chl总量的值。

五、实验数据记录和处理
1、定性分析:
观察荧光现象,透射光为绿色,反射光为红褐色光。

皂化反应(3ml) :上层呈黄色,为类胡萝卜素,吸收蓝紫光。

下层呈绿色,为叶绿素,吸收红光和蓝紫光。

2、叶绿素和类胡萝卜素的吸收光谱测定:
图表4
图表1
图表3
图表2。

相关文档
最新文档