北师大版五年级组合图形的面积

合集下载

北师大版五年级上册数学 《组合图形的面积》(课件)

北师大版五年级上册数学 《组合图形的面积》(课件)
4m
图形①的面积是 图形②的面积是 这个图形的总面积是
7m
6m 3m
6m 3m
4m 7m
大长方形的面积 42 平方米 。 小正方形的面积 9平方米 。 这个图形的总面积 33平方米 。
分割法


① ②
① ②
பைடு நூலகம்
添补法
割补法
4m 6m
7m
无法计算
不能任意分割,需要根据 3m 图形特点及已知信息,选
答:队旗的面积是4200平方厘米。
2. 如图,一张硬纸板剪下 4 个边 长是 4 cm 的小正方形后,可以 做成一个没有盖子的盒子。你 知道剪后的硬纸板面积是多少 吗?
用添补法
26×20=520(平方厘米)
4×4×4=64(平方厘米)
520-64=456(平方厘米)
答:面积是456平方厘米。
3.学校要给30扇教室门的正面刷漆。(单位:m)
4、如图,有两个边长是8㎝的正方形卡片叠在一起, 求重叠部分的面积。(单位:㎝)
8-4=4㎝ 4×4=16㎝²
答:重叠部分的面积是16㎝²
4 4
简单 易算
自主探索 合作交流
(1)想一想 画一画 思考可以转化成哪些基本图形?
4m
4m
4m
4m
6m 3m
6m 3m
6m 3m
6m 3m
7m
7m
7m
7m
6m
6m
标一标 标出相应数据
4m
?
7m 4m
? ?
7m
3m
3m
6m 3m
6m 3m
4m
?
7m
4m ? ?
7m
自主探索 合作交流 (3)算一算,选择你最喜欢的一种方法计算 这个图形的面积。

五年级上册数学课件6.1组合图形的面积︳北师大版7

五年级上册数学课件6.1组合图形的面积︳北师大版7

48 ×0.15=7.2(千克)
你有什么收获?请说一说
520 – 64 = 456(平方厘米)
10 m 请你帮忙解决下面的问题 ,求涂色部分的面积(单位:厘米)
15千克涂料,一共要用多少千克涂料?
答:一共要用7.2千克涂料。
2、 淘气家要油漆5扇房间门的外面
(门的形状如下图,单位:米)
(1)需要油漆的面积一共是多少平方米? (2)如果油漆每平方米需要花费5元,
成简单的基本图形来进行计算。
4m 520 – 64 = 456(平方厘米)
你有什么收获?请说一说
7m
26 ×20=520(平方厘米)
大长方形面积=客厅的面积 6、要用铅笔和格尺画图,养成良好的学习习惯。
你有什么收获?请说一说 4 ×4 ×4=64(平方厘米)
(1) 4m
6m
7m
(2)
4m 6m
7m
8dm


12dm
8dm



80cm 70cm

30cm
解决问题 :1、 淘气家有一面墙(如
图),粉刷这面墙每平方米需用0.15
4 ×千4 ×4=6克4(平方涂厘米)料,一共要用多少千克涂料?
计算组合图形的面积,首先要掌握各种简单图形的特征和各自的面积计算公式,运用( )、( )( )等方法,将组合图形分
4m
6m 3m
7m
探究
两长 长正 两梯 补
分类
温馨提示:
1、先独立思考,试一试你能想出几 种方法? 2、再和同桌交流你的想法。 3、再看看周围同学是怎样思考的?有没有值 得你学习的好方法? 4、在多种方法中选择你最喜欢的一种方法计算。 5、最后展示同学们的奇思妙想。 6、要用铅笔和格尺画图,养成良好的学习习惯。

1《组合图形的面积》(教案)五年级上册数学北师大版

1《组合图形的面积》(教案)五年级上册数学北师大版

1《组合图形的面积》(教案)五年级上册数学北师大版今天,我为大家带来的是五年级上册数学北师大版《组合图形的面积》的教案。

一、教学内容本节课的教学内容是北师大版五年级上册数学第107页至108页的“组合图形的面积”。

我们将学习如何通过分割和计算基本图形的面积来求解组合图形的面积。

二、教学目标通过本节课的学习,我希望学生们能够掌握组合图形面积的求解方法,提高空间想象能力和解决问题的能力。

三、教学难点与重点重点:理解组合图形面积的求解方法,能够运用分割和计算基本图形的面积来求解组合图形的面积。

难点:如何将组合图形分割成基本图形,以及如何计算组合图形的面积。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备学具:练习本、尺子、圆规、剪刀、彩笔五、教学过程1. 实践情景引入:我拿出一个由两个不同形状的图形组合而成的图形,让学生观察并思考如何求解这个组合图形的面积。

2. 讲解与演示:我在黑板上展示如何将组合图形分割成基本图形,并利用圆规和剪刀进行实际操作,让学生直观地理解组合图形面积的求解方法。

3. 例题讲解:我选取一道典型的例题,讲解如何将组合图形分割成基本图形,并演示计算过程,让学生跟随我的思路一起解决实际问题。

4. 随堂练习:我设计几道类似的练习题,让学生独立完成,检验他们是否掌握了组合图形面积的求解方法。

5. 作业布置:我布置几道课后作业,让学生巩固所学知识,提高解决问题的能力。

六、板书设计板书设计如下:组合图形的面积 = 基本图形的面积之和七、作业设计1. 计算下列组合图形的面积:(1)一个边长为4厘米的正方形,内部有一个半径为2厘米的圆形。

答案:25.12平方厘米(2)一个长为8厘米,宽为6厘米的长方形,内部有一个边长为4厘米的正方形。

答案:32平方厘米2. 自己设计一个组合图形,并计算其面积。

八、课后反思及拓展延伸本节课通过实践情景引入,让学生直观地理解了组合图形面积的求解方法。

在讲解例题的过程中,我注重了与学生的互动,让他们跟随我的思路一起解决问题。

北师大版五年级数学上册期末复习专题组合图形的面积练习(含答案)

北师大版五年级数学上册期末复习专题组合图形的面积练习(含答案)

北师大版五年级数学上册期末复习专题组合图形的面积【知识点归纳】 方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减. ③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形. 【典例分析】例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个41圆,阴影部分的面积等于梯形的面积减去41圆的面积再加上41圆的面积减去三角形面积的差,列式解答即可得到答案. 解:[(5+8+5)×5÷2-41×3.14×52]+(41×3.14×52-5×5÷2), =[18×5÷2-0.785×25]+(0.785×25-25÷2), =[90÷2-19.625]+(19.625-12.5), =[45-19.625]+7.125, =25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr 2的应用.同步测试一.选择题(共10小题)1.已知长方形和正方形的面积相等,阴影部分A和B的面积不相等是()A.B.C.D.2.如图是一个直角梯形,图中阴影部分面积是100平方厘米,空白部分面积是()平方厘米.A.140 B.120 C.100 D.703.如图中阴影部分的面积是60平方厘米,空白部分的面积是()平方厘米.A.12 B.30 C.60 D.无法判断4.下面三个完全一样的直角梯形中,阴影部分的面积()A.甲最大B.乙最大C.丙最大D.一样大5.在图的平行四边形中,E、F把AB边分成了相等的三段,平行四边形的面积是48平方厘米,阴影三角形的面积是()A.8平方厘米B.12平方厘米C.16平方厘米D.24平方厘米6.如图,平行四边形的面积是24cm2,则阴影部分的面积是()A.2cm2B.4cm2C.10cm2D.12cm27.两个完全一样的正方形,如果①号图形阴影部分的面积是10平方厘米,那么②号图形阴影部分的面积是()平方厘米.A.30 B.25 C.20 D.108.下面两个是完全一样的平行四边形,涂色部分的面积()A.甲大B.乙大C.一样大9.如图中,阴影部分面积与三角形()的面积相等.A.BCD B.BFC C.BCE10.比较下面两个图形,说法正确的是()A.甲、乙的面积相等,周长也相等B.甲、乙的面积相等,但甲的周长长C.甲、乙的周长相等,但乙的面积大D.甲、乙的面积相等,它们周长不一定相等二.填空题(共8小题)11.如图(单位:dm),半圆是长方形内最大的半圆,则这个长方形的面积是dm2.12.如图的面积是平方厘米.13.如果用1厘米表示如图小方格的边长,那么阴影部分的面积是平方厘米.14.如图,平行四边形的面积是20cm2,那么三角形的高是cm,面积是cm2.15.图中四边形的面积是平方厘米.16.如图,阴影部分是面积是平方厘米.(π取3.14)17.某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是.18.如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为.(A)5050m2(B)4900m2(C)5000m2(D)4998m2三.判断题(共5小题)19.图中阴影部分的面积比半圆大..(判断对错)20.如图所示,梯形的上底长等于下底长的一半,空白面积也等于阴影部分面积的一半.(判断对错)21.图中阴影部分的面积为24cm2.(判断对错)22.如图中阴影部分的面积是14平方厘米.(判断对错)23.计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再进行计算..(判断对错)四.计算题(共2小题)24.求阴影部分的面积.(单位:cm)25.计算下面图形的面积.五.解答题(共3小题)26.下面是一个菜园的平面图,算一算这个菜园的面积是多少平方米.27.如图,在平行四边形ABCD中,BC长10厘米,直角三角形BCE的直角边EC长8厘米,已知两块阴影部分的面积和比三角形EFG的面积大10平方厘米,求CF的长.28.李大爷家有一块菜地.(形状如图,单位米)长方形地里种的是圆白菜,右边的梯形地里种的是茄子.(1)每棵圆白菜占地0.15平方米,一共可以种几棵?(2)茄子地一共有多少平方米?参考答案与试题解析一.选择题(共10小题)1.【分析】我们通过对每个选项给出的图形计算可知,A选项中阴影部分A的面积等于正方形的面积的,B的面积等于长方形面积的,而长方形和正方形的面积相等;所以阴影部分A和B的面积;选项B阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的正方形的面积,所以相等;选项C阴影部分A等于长方形的面积减去大的空白部分长方形的面积,B的面积得出正方形减去空白部分小长方形的面积,所以不相等.选项D阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的三角形的面积,所以相等;据此解答.解:A选项中阴影部分A的面积等于正方形的面积的,B的面积等于长方形面积的,而长方形和正方形的面积相等;所以阴影部分A和B的面积;选项B阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的正方形的面积,所以相等;选项C阴影部分A等于长方形的面积减去大的空白部分长方形的面积,B的面积得出正方形减去空白部分小长方形的面积,所以不相等.选项D阴影部分A和B的面积分别等于长方形的面积和正方形的面积减去空白的三角形的面积,所以相等;故选:C.【点评】本题考查了学生的观察能力,考查了学生灵活解决问题的能力.2.【分析】空白三角形、阴影三角形,以及梯形的高相等,根据三角形的面积=底×高÷2可知,先用阴影三角形的面积乘上2,再除以它的底20厘米,即可求出它的高,再用空白三角形的底乘上高,再除以2,即可求出空白部分的面积.解:100÷20×2=5×2=10(厘米)14×10÷2=140÷2=70(平方厘米)答:空白部分的面积是70平方厘米.故选:D.【点评】本题考查了三角形的面积公式,三角形的面积=底×高÷2,关键是得出两个三角形的高相等.3.【分析】先利用三角形的面积公式S=ah÷2计算出三角形的高,也就等于知道了空白部分的高,从而利用三角形的面积公式进行解答即可.解:60×2÷20=120÷20=6(厘米)10×6÷2=30(平方厘米)答:空白部分的面积是30平方厘米.故选:B.【点评】此题主要考查三角形的面积公式的灵活应用.4.【分析】这几个直角梯形中,阴影部分总面积都是以梯形的下底为底,以梯形的高为高的三角形的面积,由此即可判断它们面积的大小.解:三图中,阴影部分总面积都是以梯形的下底为底,以梯形的高为高的三角形的面积,因为三个梯形完全相同,由此可得:阴影部分的面积都相等.故选:D.【点评】此题主要考查等底等高的三角形面积都相等,据图即可以作出判断.5.【分析】根据图得出阴影部分的三角形,与平行四边形的等高,底是平行四边形底的,又三角形的面积是与它底等高平行四边形面积的一半,所以三角形的面积是平行四边形面积的×=,然后解答即可.解:因为E、F把AB边分成了相等的三段,所以阴影部分三角形的底是平行四边形底的,所以三角形的面积是平行四边形面积的×=,阴影三角形的面积是48×=8(平方厘米).答:阴影三角形的面积是8平方厘米.故选:A.【点评】本题关键理解以三角形的面积是与它底等高平行四边形面积的一半.6.【分析】首先根据平行四边形的面积公式:s=ah,那么a=s÷h,已知平行四边形的面积和高求出平行四边形的底,然后用平行四边形的底减去5就是阴影部分三角形的底,然后根据三角形的面积公式:s=ah÷2,把数据代入公式解答.解:24÷4=6(厘米),(6﹣5)×4÷2=1×4÷2=2(平方厘米),答:阴影部分的面积是2平方厘米.故选:A.【点评】此题主要考查平行四边形的面积公式、三角形的面积公式的灵活运用,关键是熟记公式.7.【分析】由正方形的特征可知,①号图中阴影部分的面积等于正方形面积的,因此正方形的面积就等于图①中阴影部分面积的4倍,已知①号图形阴影部分的面积是10平方厘米,用10乘上4即可得到正方形的面积;而②号图中阴影部分的面积是正方形面积的,因此再用正方形的面积乘上即可得到②号图形阴影部分的面积,据此解答.解:由分析知②号图形阴影部分的面积是:10×4×=40×=20(平方厘米);答:②号图形阴影部分的面积是20平方厘米.故选:C.【点评】解决本题的关键是明确各个图中阴影部分的面积和正方形的面积之间的数量关系.8.【分析】甲图中阴影部分的面积可以看作与平行四边形等底等高的三角形,三角形的面积是平行四边形的面积的一半,乙图中的阴影部分面积也可以看作与平行四边形等底等高的三角形,三角形的面积是平行四边形的面积的一半,平行四边形又是完全一样,所以阴影部分的三角形的面积也是一样据此判断.解:甲图中阴影部分的面积和乙图中的阴影部分面积都可以看作与平行四边形等底等高的三角形,平行四边形的面积一样,它们的面积也一样大.故选:C.【点评】此题主要考查等底等高的三角形面积相等及平行四边形的特点.据图即可以作出判断.9.【分析】三角形的面积S=ah,只要是三角形的底和高相等,则它们的面积相等,据此即可得解.解:由图意可知:图中3个三角形的底是相等的,要想面积与阴影部分的三角形面积相等,那么如果高与阴影部分的三角形的高相等即可;再根据平行线间的距离相等,所以△BCE的面积与阴影部分的面积相等.故选:C.【点评】解答此题的主要依据是:等底等高的三角形的面积相等.10.【分析】由图形可知,甲的面积小于长方形面积的一半,乙的面积大于长方形面积的一半,所以乙的面积大于甲的面积;因为甲的周长=长方形的两条邻边的和+中间的曲线的长,乙的周长=长方形的两条邻边和+中间的曲线的长,进行解答继而得出结论.解:因为甲的面积小于长方形面积的一半,乙的面积大于长方形面积的一半,所以甲的面积小于乙的面积;甲的周长=长方形的两条邻边的和+中间的曲线的长,乙的周长=长方形的两条邻边的和+中间的曲线的长,所以甲的周长等于乙的周长;故选:C.【点评】解答此题应根据长方形的特征,并结合周长的计算方法进行解答.二.填空题(共8小题)11.【分析】观察图形可知,长方形的长等于圆的直径是8分米,宽是半圆的半径是8÷2=4分米,据此利用长方形的面积=长×宽计算即可解答问题.解:8÷2=4(分米)8×4=32(平方分米)答:这个长方形的面积是32平方分米.故答案为:32.【点评】掌握长方形内的半圆的特征得出长方形的长与宽的值,是解决本题的关键.12.【分析】根据图示,这个组合图形可以看作由一个梯形和一个长方形拼成的图形,利用长方形和梯形面积公式求解即可.解:如图:该图形可看作一个梯形和一个长方形拼成的图形,其面积为:(12+16)×(10﹣5)÷2+16×5=28×5÷2+80=70+80=150(平方厘米)答:这个图形的面积为150平方厘米.故答案为:150平方厘米.【点评】此题主要考查的是梯形的面积公式:(上底+下底)×高÷2、长方形面积公式:长×宽的应用.13.【分析】右边图形中阴影部分的面积=最上面一行中的2个方格的面积+下面图形中的长方形的面积﹣1个方格的面积,据此即可求解.解:2+4×5﹣1=2+20﹣1=21(平方厘米)答:阴影部分的面积是21平方厘米.故答案为:21.【点评】解答此题的关键是:看利用小方格的边长计算简单还是利用小正方形的面积计算简单,要灵活应对.14.【分析】根据平行四边形的面积变形公式h=S÷a,可求平行四边形的高,根据三角形面积公式S=ah可求三角形的面积;依此即可求解.解:高:20÷5=4(厘米)三角形的面积:3×4÷2=12÷2=6(平方厘米)故答案为:4,6.【点评】本题考查了学生求平行四边形、三角形面积的知识,关键是求出平行四边形的高.15.【分析】根据图意可把这个不规则的四边形,看作是2个直角三角形面积的和来进行解答,然后再根据三角形的面积公式进行计算.解:11×6÷2=66÷2=33(平方厘米)答:这个四边形的面积是33平方厘米.故答案为:33.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.16.【分析】观察图示可知,阴影部分的面积=梯形面积﹣圆面积的,代入数据,解答即可.解:(4+10)×4÷2﹣3.14×42×=28﹣12.56=15.44(平方厘米)答:阴影部分是面积是15.44平方厘米.故答案为:15.44.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.17.【分析】运用面积公式、割补法求阴影部分面积,再与题目的要求比较.解:花坛面积为4m2,一半为2m2,A、阴影部分面积为2×2÷2=2(m2)B、阴影部分面积为1×1+1×1÷2+1×2÷2=2.5(m2)不符合要求;C、阴影部分面积为1×1÷2×4=2(m2)D、把图中上面两个扇形移下来,刚回拼成两个小正方形,面积为2m2;故答案为:B.【点评】本题考查了阴影部分图形面积的计算方法,即规则图形用面积公式求,不规则图形用割补法求解.18.【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102﹣2)米,宽为(51﹣1)米.所以草坪的面积=长×宽=(102﹣2)×(51﹣1)=100×50=5000(米2).故答案为:C.【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.三.判断题(共5小题)19.【分析】分别计算出阴影部分和半圆的面积,再判断.解:设正方形的边长为a,则:阴影部分面积=πa2﹣=a2;半圆的面积为:π×═a2;所以阴影部分面积等于半圆的面积,原说法错误.故答案为:错误.【点评】解决本题的关键是计算出组合图形中相关部分的面积,再比较.20.【分析】分别运用梯形的面积公式和三角形的面积公式进行列式比较就可做出判断.解:设梯形的上底为a,高为h,则下底为2a;梯形的面积=(a+2a)×h÷2=3ah÷2=ah;空白三角形的面积=a×h÷2=ah;则阴影部分的面积=梯形的面积﹣空白三角形的面积=ah﹣ah=ah;由此可以看出:空白面积等于阴影部分面积的一半.故此题是正确的.故答案为:√.【点评】此题主要考查三角形和梯形的面积公式.21.【分析】观察图形可知,可把右侧阴影部分割补到左侧对称的位置,如下图所示:会发现阴影部分是一个上底为4cm、下底为8cm,高为4cm的梯形,利用梯形的面积公式代入数据计算即可.解:由分析知,阴影部分的面积等于上图所示梯形的面积,梯形的上底为:8﹣8÷2=8﹣4=4(cm),高为:8÷2=4(cm),所以面积为:(4+8)×4÷2=12×4÷2=48÷2=24(cm2);答:图中阴影部分的面积为24cm2.所以题干说法正确.故答案为:√.【点评】本题考查了求组合图形的面积,组合图形的面积一般都是转化为规则图形的面积的和或差,再利用规则图形的面积公式进行计算.22.【分析】把这个图形分成三部分计算,上面是底4厘米、高2厘米的三角形,中间是上底2厘米、下底4厘米、高1厘米的梯形,下面是长与宽分别是3厘米、2厘米的长方形,据此计算出它们的面积,再加起来即可判断.解:4×2÷2+(2+4)×1÷2+2×3=4+3+6=13(平方厘米)答:阴影部分的面积是13平方厘米.故答案为:×.【点评】此题考查了不规则图形的周长与面积的计算方法,一般都是转化到规则图形中利用面积公式计算解答.23.【分析】根据组合图形的面积的计算方法可知:计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再利用规则图形的面积公式进行计算,据此即可判断.解:计算组合图形的面积时,可以把组合图形分成几个简单的图形,然后再根据简单图形的计算公式进行计算.故答案为:√.【点评】此题考查组合图形的面积的计算方法:关键是把组合图形的面积转化为我们学过的图形的面积,再利用相应的面积公式与基本的数量关系解决问题.四.计算题(共2小题)24.【分析】(1)通过旋转平移把阴影部分转化为一个半圆,根据圆的面积公式:S=πr2,把数据代入公式解答.(2)阴影部分的面积等于圆的面积减去正方形的面积,根据圆的面积公式:S=πr2,三角形的面积公式:S=ah÷2,把数据代入公式解答.解:(1)3.14×42÷2=3.14×16÷2=50.24÷2=25.12(平方厘米);答:阴影部分的面积是25.12平方厘米.(2)3.14×(10÷2)2﹣10×(10÷2)÷2×2=3.14×25﹣10×5÷2×2=78.5﹣50=28.5(平方厘米);答:阴影部分的面积是28.5平方厘米.【点评】解答求阴影部分的面积关键是观察分析图形是由哪几部分组成的,是各部分的面积和、还是求各部分的面积差,再根据相应的面积公式解答.25.【分析】组合图形的面积等于底为35米,高为12米的三角形面积加上底为50米,高为33米的平行四边形的面积;根据三角形和梯形面积公式解答即可.解:33×50+35×12÷2=1650+210=1860(平方米)答:图形的面积是1860平方米.【点评】本题属于求组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可.五.解答题(共3小题)26.【分析】本题可用长80米、宽40米的长方形面积减去边长10米的正方形面积求出菜园的面积,长方形面积=长×宽,正方形面积=边长×边长.解:80×40﹣10×10=3200﹣100=3100(平方米)答:这个菜园的面积是3100平方米.【点评】本题主要考查了学生利用长方形的面积公式解题的能力,找出正确的计算组合图形的面积的方法是解题关键.27.【分析】根据题意:如图,已知两块阴影部分的面积和比三角形EFG的面积大10平方厘米,则三角形EFG的面积+10平方厘米+梯形BCFG的面积=平行四边形ABCD的面积,又因为三角形EFG的面积+梯形BCFG的面积=三角形BCF的面积,所以三角形BCF的面积+10平方厘米=平行四边形ABCD的面积;CF是平行四边形的高,根据平行四边形的面积=底×高,则高CF=平行四边形的面积÷底即可.解:(10×8÷2+10)÷10=(40+10)÷10=50÷10=5(厘米)答:CF长5厘米.【点评】解决此题的关键用直角三角形的面积+10平方厘米代替平行四边形的面积,根据面积公式求出CF.28.【分析】(1)先利用长方形的面积公式S=ab计算出圆白菜地的面积,再用它的面积除以每棵圆白菜的占地面积,即可得解;(2)依据梯形的面积公式S=(a+b)×h÷2,代入数据即可求解.解:(1)8×4.5÷0.15=36÷0.15=240(棵)答:一共可以种240棵.(2)(4.8+10.5﹣4.5)×(8﹣2)÷2=10.8×6÷2=32.4(平方米)答:茄子地一共有32.4平方米.【点评】此题主要考查长方形和梯形的面积公式的灵活应用.。

北师大五年级上册第六单元《组合图形的面积》教学设计1

北师大五年级上册第六单元《组合图形的面积》教学设计1

北师大五年级上册第六单元《组合图形的面积》教学设计一、教材简析“组合图形的面积”是北师大版小学数学五年级上册的重要内容之一,其核心目标在于引导学生通过实际问题来理解和掌握多边形面积的计算方法。

“组合图形的面积”作为“多边形的面积”章节的最后一个教学主题,可包含前三个小节的教学内容(平行四边形的面积、三角形的面积、梯形的面积)。

基于问题导学,该课程的教学不应仅仅停留在理论和公式的层面,更重要的是引导学生将这些知识应用于解决实际问题过程中,应用于利用平行四边形、三角形、梯形面积的计算公式解决生活中的实际问题中。

二、学情分析五年级学生思维能力、抽象推理能力和解决问题的能力都在快速提升。

在数学学习方面,他们已经掌握了基本的算术运算和初步的几何知识,具备了学习更复杂数学概念如多边形面积的基础。

在学习“组合图形的面积”前,他们已经学习了平行四边形、三角形和梯形的面积计算方法。

另外,他们能够处理稍微复杂的数学问题,并能在一定程度上从实际生活中抽象出数学问题。

三、教学目标1.数学抽象培养学生从具体的几何图形中抽象出关键数学概念的能力。

2.数学建模培养学生将实际问题转化为数学模型的能力。

3.数学运算引导学生练习和应用多种数学运算知识解决实际问题的能力,特别是与计算多边形面积相关的公式和方法,包括对基础算术运算法则的应用和理解。

四、教学重难点教学重点:掌握组合图形的计算与画图方法,并能将这些技能应用于解决实际问题中。

教学难点:引导学生从实际问题中抽象出数学模型,并正确运用组合图形的相关知识计算其面积。

五、教学过程(一)课程导入:引入实际问题在“组合图形的面积”的课程导入阶段,教师可以提出一个与学生生活紧密相关的问题作为切入点。

教师:同学们,今天我们学习“组合图形的面积”。

请大家看看教室,它是一个标准的矩形吗?这对计算其面积有何影响?学生甲:老师,教室不是标准矩形,有些角落凸出来了。

教师:很好!那我们该如何计算它的面积呢?有什么想法吗?学生乙:我们可以把教室分成几个矩形和三角形,单独计算它们的面积,然后加起来。

《组合图形的面积》教学设计优秀4篇

《组合图形的面积》教学设计优秀4篇

《组合图形的面积》教学设计优秀4篇《组合图形的面积》数学教案篇一教材分析:《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

教学目标:知识目标1、在自主探索的活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中有关组合图形的实际问题。

过程和方法让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

情感、态度与价值观1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

2、渗透转化的数学思想和方法。

教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

教学准备:多媒体课件和组合图形图片。

教学过程:一、激趣导入、复习铺垫、认识组合图形1、介绍笑笑和她家的新房子师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)2、引导学生观察,复习有关平面图形面积的计算公式师:从这座房子中可以找到哪些平面图形?会求它们的。

面积吗?3、欣赏图片(课件出示一组图片)师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)4、教师总结,揭示课题并板书师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)二、创设情境、探究新知笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。

北师大版数学五年级上册第六单元《组合图形的面积》教学设计

北师大版数学五年级上册第六单元《组合图形的面积》教学设计

北师大版数学五年级上册第六单元《组合图形的面积》教学设计一. 教材分析北师大版数学五年级上册第六单元《组合图形的面积》是本册教材的重要内容。

通过本节课的学习,学生需要掌握组合图形的概念,能够正确计算组合图形的面积,培养学生的空间观念和逻辑思维能力。

本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣,提高学生的学习积极性。

二. 学情分析五年级的学生已经掌握了基本的几何图形知识和面积计算方法,具备了一定的空间观念和逻辑思维能力。

但是,对于组合图形的理解和计算仍然存在一定的困难。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学,引导学生主动探究,提高学生的学习效果。

三. 教学目标1.知识与技能目标:学生能够理解组合图形的概念,掌握计算组合图形面积的方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生的空间观念和逻辑思维能力,提高学生的解决问题能力。

3.情感态度与价值观目标:激发学生的学习兴趣,培养学生的合作意识,使学生感受到数学与生活的紧密联系。

四. 教学重难点1.重点:学生能够理解组合图形的概念,掌握计算组合图形面积的方法。

2.难点:学生能够灵活运用所学知识,解决实际问题。

五. 教学方法1.情境教学法:通过生活实际问题,引导学生理解组合图形的概念,激发学生的学习兴趣。

2.启发式教学法:教师提出问题,引导学生主动思考、探究,培养学生的空间观念和逻辑思维能力。

3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作意识和沟通能力。

4.实践操作法:学生动手操作,实际测量和计算组合图形的面积,提高学生的实践能力。

六. 教学准备1.教师准备:准备好组合图形的实物模型、图片、幻灯片等教学资源。

2.学生准备:提前让学生收集生活中的组合图形实例,准备进行课堂交流。

七. 教学过程1.导入(5分钟)教师通过展示生活中的组合图形实例,引导学生关注组合图形,激发学生的学习兴趣。

北师大版五年级数学上册第六单元 组合图形的面积 知识点总结

北师大版五年级数学上册第六单元 组合图形的面积 知识点总结
一、组合图形的面积
1.组合图形的意义:几个简单的图形,通过不同的方式组合而成的图形。
2.求组合图形的面积的方法:分割法,添补法、割补法。
(1)分割法:将组合图形分割成已经学过的基本图形,分别计算出所分割的图形的面积,再相加。
(2)添补法:通过添补将组合图形化成所学过的基本图形,然后减去所添图形的面积,即得组合图形的面积。
(3)割补法:将组合图形的某一部分割下来,补在具有相同边长的部分重新组合成所学过的基本图形(面积不变),再计算。
二、估算与计算不规则图形的面积
1.数方格:数方格时,把大于半格的按1格来算,小于半格的不算。
2.把原图形近似看作某个基本图形,用方格纸量出计算基本图形面积的条件,算出面积。
三、公顷、平方千米
1.公顷是测量和计算土地面积常用的单位,边长是100米的正方形土地,它的面积是1公顷,即1公顷=10000平方米。
2.平方米和公顷之间的换算方法:平方米换算成公顷时,把小数点向左移动四位。公顷换算成平方米时,把小数点向右移动四位。
3.平方千米是比公顷还大的面积单位。边长是1000米的正方形,它的面积是1平方千米。
1km2=100公顷1km2=100000的已经学过的基本图形,再进行计算。
易错题:
求图中的空白处的面积。
18×18-2×18×2=252
错因分析:做题时容易忽略中间的重叠部分的面积。
案:18×18-2×18×2+2×2=256
易混点:
高级单位转化成低级单位,要乘进率;低级单位转化成高级单位,要除以进率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版五年级组合图形的面积
复习
1.我们学过哪些平面图形?这些平面图形的 面积公式还记得吗?
长方形的面积: 长×宽 正方形的面积: 边长×边长 平行四方形的面积:底×高 三角形的面积: 底×高÷2 梯形的面积: (上底+下底)×高÷2
学习目标:
1.在探索组合图形面积计算公式的 方法中,体会割补法的应用。
4cm
6cm 3cm
7cm
小组合作
1.在图上画一画、分一分,找到尽可能 多的方法,并列式计算组合图形的面积。
2.组内比较各种方法,找出你认为比较 简单合理的方法。 4cm
6cm 3cm
7cm
4cm
4cm


6cm
6cm
3cm
3cm
7cm
4cm

7cm
4cm

6cm
6cm
3cm
3cm
7cm
7cm
拓展提升
如图:有两个边长是8cm的正方形重叠 在一起,求重叠部分的面积。(单位: cm)
(8-4)×(8-4) =16(平方厘米)
拓展提升
两个相同的平行四边形重叠在一起,阴 影部分的面积是多少平方米?
8×9=72(平方米)
9m 8m谢谢!来自关于计算组合图形的面积还有其他 方法吗?大胆的说出来。
4cm
6cm 3cm
7cm
1.把下面各个图形分成已学过的图形, 并与同伴交流你的想法。
2.中国少年先锋队的中 队旗是五角星加火炬的 红旗,如右图。(单位: cm) ⑴估一估,这面中队旗 的面积大约有多大?与 同伴交流你的想法。 ⑵计算中队旗的面积, 说一说你是怎么想的。
2.能根据组合图形的条件,灵活运 用割补法正确计算其面积。
3.能解决生活中与组合图形有关的 实际问题,认识数学的价值。
说说这些图案像什么?是由哪几种基本图形构成的?
由两个或两个以上的基本图形组合而 成的新图形叫组合图形。
看图回答下面问题
1.这是一个什么图形? 2.根据图中的数据估一估大约需要多少平方米的地板?
相关文档
最新文档