五年级数学组合图形的面积(一)

合集下载

北师版五年级数学上册第6单元 组合图形的面积第1课时 组合图形的面积

北师版五年级数学上册第6单元 组合图形的面积第1课时 组合图形的面积

当堂练习 此内容源于《典中点》
1.下图是由两个正方形拼成的,求图中阴影部分的面积。(单 位:cm)(用两种方法解决) 方法1: 9×9+5×5-9×9÷2-(9+5)× 5÷2=30.5(cm2) 方法2:9×9÷2+5×5-(9+5)× 5÷2=30.5(cm2)
当堂练习
2.两个长和宽分别是8 dm和6 dm的长方形按如图所示的方法 重叠在一起,求重叠后整个图形的面积。 8×6×2-3×4=84(dm2) 答:重叠后整个 图形的面积是 84 dm2。
探索新知
2.医用口罩是一种用于医疗防护的口罩,具有抵抗液体、过滤 颗粒物和细菌等效用。下面是一款儿童医用口罩的平面图 (单位:cm)。这款儿童医用口罩的面积是多少平方厘米? (5+11)×6÷2×2=96(cm2) (8+11)×1.5÷2×2=28.5(cm2) 96+28.5=124.5(cm2) 答:这款儿童医用口罩的面积是124.5 cm2。
六 组合图形的面积
第1课时 组合图形的面积
北师版数学五年级上册课件

复习导入
我们已经掌握了哪些图形的面积计算方法?
正方形的面积=边长×边长 长方形的面积=长×宽 平行四边形的面积=底×高 三角形的面积=底×高÷2 梯形的面积=(上底+下底)×高÷2
探索新知
组合图形面积的计算方法
智慧老人准备给客厅铺上地板,
课堂总结
组合图形面积的计算方法: (1)运用分割、添补等方法,将组合图形转化
为已经学过的图形; (2)分别计算基本图形的面积; (3)通过加法或减法计算出组合图形的面积。
课后作业
作 业 1.请完成教材第89页练一练第1题到第5题。 2.请完成“ ”剩余习题。
4m
客厅的平面图如右图所示。

统编教材小学五年级数学上册《组合图形的面积》名师教案(1)

统编教材小学五年级数学上册《组合图形的面积》名师教案(1)

《组合图形的面积》名师教案一、学习目标(一)学习内容《义务教育教科书数学》(人教版)五年级上册第99页例题4,是学生在学习了长方形、正方形、平行四边形、三角形和梯形面积后进行教学的。

(二)核心能力在运用转化的思想,将组合图形面积转化为计算简单图形面积的过程中,进一步发展空间观念。

(三)学习目标1.结合生活实例认识组合图形,自主地能够将组合图形分解成已学过的平面图形。

2.结合具体情境,通过小组合作交流掌握“割”、“补”等方法来计算组合图形的面积,发展空间观念。

3.运用所学到的知识和方法,根据问题和具体数据选择适当方法解决实际问题。

(四)学习重点探索并掌握组合图形的面积计算方法。

(五)学习难点理解并掌握组合图形的组合及分解方法。

(六)配套资源实施资源:《组合图形的面积》名师课件二、学习设计(一)课前设计1.复习任务(1)整理已经学过了哪些平面图形面积的计算,写出它们的面积公式。

(2)分别编一道这些图形在生活中应用的题目,并解答。

【设计意图:复习已有的平面图形面积计算公式,可以帮助激活旧知在接下来的教学中,较容易的认识组合图形的组成及其之后的计算。

】(二)课堂设计1.导入(1)认识组合图形交流复习任务。

师:像这些比较简单的图形,我们把它叫做简单图形。

而生活中可不是只有简单图形,还有着更复杂的图形,他们叫做组合图形。

同学们请看大屏幕。

这三个图形就是组合图形。

我们把由几个简单图形组合而成的图形叫组合图形。

(板书:组合图形)这节课我们就一起来探究组合图形的有关知识。

师:认真观察这三个图形,同桌之间说一说它们分别是由哪些简单图形组成的?预设:第一个三角形和长方形。

追问第二个呢?三角形、两个梯形和长方形。

最后一个呢?三角形和长方形。

【设计意图:通过出示简单的组合图形分隔情况,为接下来的正式教学打下铺垫,利于学生更易掌握组合图形面积计算方法。

考察目标1】师:同学们,开动脑筋想想:生活中哪些地方还有组合图形?你能给大家举个例子吗?预设:远处的楼房、窗户框等等。

五年级数学 组合图形的面积(一)

五年级数学 组合图形的面积(一)

第6讲组合图形的面积(一)月日姓名【知识要点】1、组合图形的意义:由几个简单的图形,通过不同的方式组合而成的图形。

2、求组合图形面积的方法:(1)分割法:根据图形和所给条件的关系,将图形进行合理分割,形成基本图形,基本图形的面积和就是组合图形的面积。

(2)添补法:将图形所缺部分进行添补,组成几个基本图形。

几个基本图形的面积减去添补图形的面积就是组合图形的面积。

(3)割补法3、分割规则:分得越少,计算越简单。

4、不规则图形面积的估计与计算的方法:(1)数格子:数格子时,不满一格的可采用凑整法将几个合拼成一格。

(2)根据图形确定近似基本图,量出基本图计算面积的条件算出面积。

5、常见基本图形的面积。

长方形的面积=()正方形的面积=()平行四边形的面积=()。

三角形的面积公式:()梯形的面积=()。

【典型题例】例1、如图,梯形的高为4米,下底长度为5米.空白部分大的三角形的高为3米.分别求出图中阴影部分的两个三角形的面积.4m 3m5m例2、1、小丽家装修需要30块木板,木板的形状如下图。

(1)1块木板的面积是多少?30cm72cm48cm(2)如果每块木板需要15元,那么小丽需要花多少钱?例3、一块平行四边形的草坪中有一条长8米、宽1米的小路,草坪的面积是多少。

如果铺每平方米草坪的价格是16元,那么铺好这些草坪需要多少钱?例5、如下图所示,长方形的长是10厘米,宽是5厘米,三角形的底边与长方形的长重合,高是3厘米,阴影部分的面积是多少?10cm5cm【课堂练习】一、估计下面图形的面积。

(每个小方格的面积表示1cm2)11面积约为()面积约为()面积约为()2、甲、乙两个工程队修一条长2100米的公路,他们从两端同时开工,甲队每天修80米,乙队每天修60米,多少天后能够修完这条公路?3、在公路中间有一块三角形草坪(见右图),1m2 草坪的价格是12元,种这块草坪需要多少钱?(8分)4、一张正方形红纸,边长66厘米,可用它做成底是33厘米,高是22厘米的三角形小红旗,最多可以做多少面?(8分)5、下图中正方形的周长是32cm。

第1课时 组合图形的面积五年级上册数学北师大版

第1课时 组合图形的面积五年级上册数学北师大版

大长方形的面积 42m2 。
小正方形的面积 9m2 。
这个图形总面积
7m
33m2 。
答:智慧老人家客厅的面积有33m²。
还有其他方法计算客厅的面积吗?试一试, 与同伴交流。
4m
6×4=24(m2)
7-4=3(m)
① ②
3×3=9(m2) 24+9=33(m2)
6m 3m
7m
6m 3m
4m
① ②
7m
义务教育北师大版五年级上册
六 组合图形的面积
第1课时 组合图形的面积
情境导入
智慧老人准备给客厅 铺上地板,客厅的平 面图如右图所示。
6m 3m
4m 7m
探究新知
估一估,客厅的面积约有多大?与同伴交流
你的想法。
4m
6×7=42, 不到42m²。
6m 3m
大约36m²。 7m
如何计算智慧老人家 客厅的准确面积呢?
课堂小结
通过这节课的学习, 你有什么收获?
答:需要刷漆的面积一共是50.4 m²。
(2)如果刷漆每平方米需要花 费5元,那么刷漆共要花 费多少元?
5×50.4=252(元) 答:刷漆共要花费252元。
(教材P89 练一练T5)
5.如图,有两个边长是8cm的正方形卡片叠在一 起,求重叠部分的面积。(单位:cm)
(8-4)×(8-4)=16(cm2) 答:重叠部分的面积是16 cm²。
20cm
4×4×4=64(cm2) 26×20-64=456(cm2)
答:剪后的硬纸板面积 是456cm2。
26cm
(教材P89 练一练T4)
4.学校要给30扇教室门的正面刷漆。(单位:m) (1)需要刷漆的面积一共是多少?

五年级《组合图形的面积》教学设计4篇

五年级《组合图形的面积》教学设计4篇

五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。

教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。

学生在解决问题的过程中,获得数学学习方法。

在对学习过程与结果的反思中,提高解决问题的能力。

【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。

3.自主探索,合作交流。

养成认真思考,团结协作的能力。

4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。

【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。

【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。

(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。

2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。

)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。

小学五年级奥数 举一反三课件组合图形的面积(一)(附讲解步骤及答案)

小学五年级奥数 举一反三课件组合图形的面积(一)(附讲解步骤及答案)

解析:
A
B F
4×4=16(平方厘米)□ABCD的面积
16+6=22(平方厘米)△ACE的面积
22×2÷4=11(厘米)线段CE的长度
C D E 11-4=7(厘米)线段DE的长度
3
如图所示,大正方形和小正方形的边长分别是4cm、3cm,求阴影部分的面积。 解析:两个正方形的面积之和
减去空白部分的面积 正方形面积之和:
B
则:a+b=16÷2=8; a²+b²=68÷2=34。 ab=[(a+b)²-( a²+b² )]÷2
D
C
68÷2=34
16÷2=8
(8×8-34)÷2=15(平方厘米)
5
如图所示,在边长为12cm的正方形ABCD中,E、F是BC边上的三等分点, M、N是对角线BD上的三等分点,求三角形EMN的面积。
A
D
解析: 12÷3=4(厘米) 线段MF的长度 12÷3=4(厘米) △MNE的高
N M
4×4÷2=8(平方厘米) △MNE的面积 B E F C
6 A
梯形ABCF的下底BC是12cm,高AB是18cm,CE=2DE,求DF。 D F
18÷(1+2)×2=12(厘米) 线段CE的长度 12×18÷2=108(平方厘米) △BCF的面积
E
12×12÷2=72(平方厘米) △BCE的面积
108-72=36(平方厘米)
36×2÷12=6(厘米)
ቤተ መጻሕፍቲ ባይዱ△CEF的面积
线段DF的长度
B
C
□ABCD的面积为:4×8=32(平方厘米)
C
G
D
6
如图所示,长方形的长是8cm,宽是6cm,A、B是宽的中点, 求长方形内阴影部分的面积。

【期末专项复习】北师大版小学五年级上册数学《组合图形的面积 》期末专项强化突破卷(一)含答案

【期末专项复习】北师大版小学五年级上册数学《组合图形的面积  》期末专项强化突破卷(一)含答案

北师大版2021~2022学年上册期末专项强化突破卷(一)组合图形的面积(考试时间 90分钟全卷满分 100分)学校:___________姓名:___________班级:___________考号:___________ 题号一二三四五总分得分亲爱的同学们,学期末的智慧之旅马上就要开始了!只要你认真地分析每一道题,你一定能获得一次难忘的旅途记忆!一、选择题(满分16分)1.组合图形面积的计算方法,老师向我们介绍过的方法有()A.分割法B.填补法C.平行移动法2.已知如图阴影部分的面积是3平方厘米,则两个正方形中较小的正方形的面积为.()A.3平方厘米B.6平方厘米C.12平方厘米D.无法确定3.下面的面积单位中,最大的面积单位是(),最小的是()。

A.平方千米;平方分米B.平方米;平方分米 C.公顷;平方分米D.平方分米;平方分米4.已知长方形和正方形的面积相等,阴影部分A和B的面积不相等是()A.B.C.D.5.下图中的梯形是由等底等高的三角形和平行四边形拼成的,已知三角形的面积是20平方厘米,那么梯形的面积是( ).A .40平方厘米B .60平方厘米C .80平方厘米6.一块长方形菜地,长50米,宽40米,( )块这样大的菜地面积是1公顷。

A .5B .50C .207.张爷爷家的池塘占地面积约是15( )。

A .公顷B .平方米C .平方千米8.一所新建学校占地面的长200米,宽150米,它的占地面积是( )。

A .3平方千米B .3公顷C .3000平方米D .3万米二、填空题(满分16分)9.一块长方形菜地,长是200米,宽是50米,面积是(________)公顷。

10.200000平方米=(________)公顷 (________)平方千米=600公顷1个平角=(________)个直角 70°+(________)°=90°11.国家休育馆(鸟巢)的占地面积约为20(______);5个“鸟巢”的占地面积约为(______)平方千米。

吴正宪组合图形的面积 [组合图形的面积教学设计]

吴正宪组合图形的面积 [组合图形的面积教学设计]

吴正宪组合图形的面积 [组合图形的面积教学设计] 组合图形的面积教学设计(一)教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。

教学目标:1、认识组合图形,会把组合图形分解成已学过的平面图形。

2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。

教学重点:探索并掌握组合图形的面积计算方法。

教学难点:理解并掌握组合图形的组合及分解方法。

教具准备:多媒体课件学具准备:各种有色卡纸、胶水、剪刀等。

教学过程:一、复习铺垫:同学们,老师想知道你们已经学会了计算哪些平面图形的面积?二、创设情境,激趣导入。

根据已知条件进行分解师:大家学会的知识可真多。

为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:(课件展示)我们学过这些图形吗?请同学们认真观察,这些图形有什么共同的特征?左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?三、自主学习,探究新知。

1、组合图形的分解:师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。

(1)电脑出示书第92页的四幅主题图。

师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。

比比看哪一个小组的分法最简单?(2)小组讨论。

(3)让学生举例说说生活中的组合图形。

同学们,开动脑筋想想:生活中哪些地方还有组合图形?2、自主解决例题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第18讲组合图形面积(一)
一、知识要点
组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几
点:
八、、・
1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;
2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;
3.适当采用增加辅助线等方法帮助解题;
4.采用割、补、分解、代换等方法,可将复杂问题变得简单。

二、精讲精练
【例题1】一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?
练习1:1.求四边形ABCD勺面积。

(单位:厘米)
2.已知正方形ABCD勺边长是7厘米,求正方形EFGH勺面积
3.有一个梯形,它的上底是5厘米,下底7厘米。

如果只把上底增加3厘米, 那么面积就增加
4.5平方厘米。

求原来梯形的面积。

【例题2】正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。

求中间长方形的面积。

练习2:
1.(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。

2.正图长方形ABCD勺面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积
3.求下图(上右图)长方形ABCD勺面积(单位:厘米)
【例题3】四边形ABCD和四边形DEFGfE是正方形,已知三角形AFH的面积是7平方厘米。

三角形CDH的面积是多少平方厘米?
练习3:
1.图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积
6 4
2.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。

(单位:厘米)
3.下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?
【例题4】下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF勺面积是
练习4:
1.如下图,正方形ABCD中AB=4厘米,EC=10厘米,求阴影部分的面积
2.在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方 形的面积是多少?(单位:厘米)
3.图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形 EFG 的面积大10平方 厘米。

求平行四边形的面积。

【例题5】图中ABCD 是长方形,三角形EFD 的面积比三角形ABF 的面积大6平
练习5: 1.如图,平行四边形BCE 冲,BC=8厘米,直角三角形中, 分面积比三角形ADH 勺面积大8平方厘米。

求AH 长多少厘米?
方厘米,AB=4厘米,BC=6厘米。

求ED 的长
AC=10厘米,阴影部
C 10 B
G
A
D
D C
第]

2.图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面
3.正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A 和C的和是多少平方厘米?
C。

相关文档
最新文档