高考数学复习第九章算法初步、统计与统计案例算法初步课时作业理

合集下载

高考数学总复习第九章算法初步、统计、统计案例课时作业62理(含解析)新人教A版

高考数学总复习第九章算法初步、统计、统计案例课时作业62理(含解析)新人教A版

高考数学总复习第九章算法初步、统计、统计案例课时作业62理(含解析)新人教A 版课时作业62 变量间的相关关系与统计案例1.(2019·辽宁丹东教学质量监测)某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是:有 的把握认为“学生性别与支持该活动没有关系”.( C )附:P (K 2≥k )0.100 0.050 0.025 0.010 0.001 k2.7063.8415.0246.63510.828C .1%D .0.1%解析:因为6.635<6.705<10.828,因此有1%的把握认为“学生性别与支持该活动没有关系”,故选C.2.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( C )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关解析:由y =-0.1x +1,知x 与y 负相关,即y 随x 的增大而减小,又y 与z 正相关,所以z 随y 的增大而增大,减小而减小,所以z 随x 的增大而减小,x 与z 负相关,故选C.3.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其线性回归方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( B )A.116 B .18 C.14D .12解析:依题意可知样本点的中心为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ^,解得a ^=18. 4.为考察A 、B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法正确的是( C ) A .药物A 、B 对该疾病均没有预防效果 B .药物A 、B 对该疾病均有显著的预防效果 C .药物A 的预防效果优于药物B 的预防效果 D .药物B 的预防效果优于药物A 的预防效果解析:根据两个等高条形图知,药物A 实验显示不服药与服药时患病的差异较药物B 实验显示明显大,∴药物A 的预防效果优于药物B 的预防效果.故选C.5.(2019·河南焦作一模)已知变量x 和y 的统计数据如下表:x 3 4 5 6 7 y2.5344.56根据上表可得回归直线方程为y =b x -0.25,据此可以预测当x =8时,y ^=( C ) A .6.4 B .6.25 C .6.55D .6.45解析:由题意知x =3+4+5+6+75=5,y =2.5+3+4+4.5+65=4,将点(5,4)代入y ^=b ^x -0.25,解得b ^=0.85,则y ^=0.85x -0.25, 所以当x =8时,y ^=0.85×8-0.25=6.55,故选C.6.(2019·南昌模拟)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.非一线 一线 总计 愿生 45 20 65 不愿生 13 22 35 总计5842100附表:P (K 2≥k 0)0.050 0.010 0.001 k 03.8416.63510.828由K 2=n ad -bc 2a +bc +d a +cb +d算得,K 2=100×45×22-20×13258×42×35×65≈9.616,参照附表,得到的正确结论是( C )A .在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别无关”C .在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别有关”D .在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别无关” 解析:由题意K 2的观测值≈9.616>6.635,所以在犯错误的概率不超过0.01的前提下认为“生育意愿与城市级别有关”.7.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.77x +52.9.单价x (元) 13 17 30 40 50 销量y (件)62■758090解析:由已知可计算求出x =30,而线性回归方程必过点(x ,y ),则y =0.77×30+52.9=76,设模糊数字为a ,则a +62+75+80+905=76,计算得a =73.8.(2019·赣中南五校联考)心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)几何题 代数题 总计 男同学 22 8 30 女同学 8 12 20 总计302050过 0.025 .附表:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828解析:由列联表计算K 2的观测值k =30×20×20×30≈5.556>5.024,∴推断犯错误的概率不超过0.025.9.(2019·安徽蚌埠段考)为了研究工人的日平均工作量是否与年龄有关,从某工厂抽取了100名工人,且规定日平均生产件数不少于80件者为“生产能手”,列出的2×2列联表如下:生产能手 非生产能手 总计25周岁以上 25 35 6025周岁以下10 30 40 总计3565100有解析:由2×2列联表可知,K 2=100×25×30-10×35240×60×35×65≈2.93,因为2.93>2.706,所以有90%以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”.10.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:价格x 9 9.5m10.5 11 销售量y11n865由散点图可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是y ^=-3.2x +40,且m +n =20,则其中的n = 10 .解析:x =9+9.5+m +10.5+115=8+m 5,y =11+n +8+6+55=6+n 5,回归直线一定经过样本点中心(x ,y ),即6+n5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42.又因为m +n =20,即⎩⎪⎨⎪⎧3.2m +n =42,m +n =20,解得⎩⎪⎨⎪⎧m =10,n =10,故n =10.11.(2019·重庆调研)某厂商为了解用户对其产品是否满意,在使用该产品的用户中随机调查了80人,结果如下表:满意 不满意 男用户 30 10 女用户2020(1)5人中任选2人,求被选中的恰好是男、女用户各1人的概率;(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.P (K 2≥k 0) 0.100 0.050 0.025 0.010k 02.7063.841 5.024 6.635注:K 2=n ad -bc 2a +bc +d a +cb +d,n =a +b +c +d .解:(1)用分层抽样的方法在满意产品的用户中抽取5人,则抽取比例为550=110.所以在满意产品的用户中应抽取女用户20×110=2(人),男用户30×110=3(人).抽取的5人中,三名男用户记为a ,b ,c ,两名女用户记为r ,s ,则从这5人中任选2人,共有10种情况:ab ,ac ,ar ,as ,bc ,br ,bs ,cr ,cs ,rs .其中恰好是男、女用户各1人的有6种情况:ar ,as ,br ,bs ,cr ,cs . 故所求的概率为P =610=0.6.(2)由题意,得K 2的观测值为k =8030×20-20×10230+2010+2030+1020+20=163≈5.333>5.024. 又P (K 2≥5.024)=0.025.故有97.5%的把握认为“产品用户是否满意与性别有关”.12.(2016·全国卷Ⅲ)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17y i -y2=0.55,7≈2.646.参考公式:相关系数r=∑i=1nt i-t yi-y∑i=1nt i-t2∑i=1ny i-y2,回归方程y^=a^+b^t中斜率和截距的最小二乘估计公式分别为:b^=∑i=1nt i-t y i-y∑i=1nt i-t2,a^=y-b^t-.解:(1)由折线图中数据和附注中参考数据得t=4,∑i=17(t i-t)2=28,∑i=17y i-y2=0.55,∑i=17(t i-t)(y i-y)=∑i=17t i y i-t∑i=17y i=40.17-4×9.32=2.89,r≈2.890.55×2×2.646≈0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.(2)由y=9.327≈1.331及(1)得b^=∑i=17t i-t y i-y∑i=17t i-t2=2.8928≈0.10,a^=y-b^t-=1.331-0.10×4≈0.93.所以y关于t的回归方程为y^=0.93+0.10t.将2016年对应的t=9代入回归方程得:y^=0.93+0.10×9=1.83.所以预测2016年我国生活垃圾无害化处理量将约为1.83亿吨.13.(2019·湖南张家界一模)已知变量x,y之间的线性回归方程为y^=-0.7x+10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误的是( C )A.变量x ,B .可以预测,当x =20时,y ^=-3.7 C .m =4D .该回归直线必过点(9,4)解析:由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x =14×(6+8+10+12)=9,y =14(6+m +3+2)=11+m 4,则11+m 4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y =6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.14.(2019·湖南永州模拟)已知x 与y 之间的几组数据如下表:假设根据上表数据所得的线性回归方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( C )A.b ^>b ′,a ^>a ′ B .b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D .b ^<b ′,a ^<a ′解析:由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑i =16x i y i -6 x·y∑i =16x 2i -6 x 2=58-6×72×13691-6×⎝ ⎛⎭⎪⎫722=57,a ^=y -b ^x =136-57×72=-13,所以b ^<b ′,a ^>a ′.15.(2019·青岛模拟)针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的12,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数23.若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有 12 人.P (K 2≥k 0)0.050 0.010 0.001 k 03.8416.63510.828x喜欢韩剧 不喜欢韩剧总计男生 x65x 6x 女生 x3x6x2总计x2x3x 2则k >3.841,即k =3x 2⎝ ⎛⎭⎪⎫x 6·x 6-5x 6·x 32x ·x 2·x 2·x =3x8>3.841,解得x >10.243.因为x 6,x2为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有12人.16.(2019·包头一模)如图是某企业2010年至2016年的污水净化量(单位:吨)的折线图.注:年份代码1~7分别对应年份2010~2016.(1)由折线图看出,可用线性回归模型拟合y 和t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程,预测2017年该企业的污水净化量; (3)请用数据说明回归方程预报的效果.参考数据:y -=54,∑i =17(t i -t -)(y i -y -)=21,14≈3.74,∑i =17(y i -y ^i )2=94. 参考公式:相关系数r =∑i =1nt i -ty i -y∑i =1nt i -t2∑i =1n y i -y2,线性回归方程y ^=a ^+b ^t ,b ^=∑i =1nt i -ty i -y∑i =1n t i -t2,a ^=y -b ^t -.反映回归效果的公式为:R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2,其中R 2越接近于1,表示回归的效果越好.解:(1)由折线图中的数据得,t =4,∑i =17(t i -t -)2=28,∑i =17(y i -y -)2=18,所以r =2128×18≈0.935. 因为y 与t 的相关系数近似为0.935,说明y 与t 的线性相关程度相当大,所以可以用线性回归模型拟合y 与t 的关系.(2)因为y -=54,b ^=∑i =17t i -ty i -y∑i =17t i -t2=2128=34, 所以a ^=y -b ^t =54-34×4=51,所以y 关于t 的线性回归方程为y ^=b ^t +a ^=34t +51.将2017年对应的t =8代入得y ^=34×8+51=57,所以预测2017年该企业污水净化量约为57吨.(3)因为R 2=1-∑i =17y i -y ^i2∑i =17y i -y2=1-94×118=1-18=78=0.875,所以“污水净化量的差异”有87.5%是由年份引起的,这说明回归方程预报的效果是良好的.。

高考数学总复习第九章算法初步、统计、统计案例课时作业59理

高考数学总复习第九章算法初步、统计、统计案例课时作业59理

课时作业59 算法与程序框图、基本算法语句1.某程序框图如图所示,现输入如下四个函数,则可以输出的函数为( B )A .f (x )=cos x x ⎝ ⎛⎭⎪⎫-π2<x <π2且x ≠0 B .f (x )=2x-12x +1C .f (x )=|x |xD .f (x )=x 2ln(x 2+1)解析:由程序框图知该程序输出的是存在零点的奇函数,选项A 、C 中的函数虽然是奇函数,但在给定区间上不存在零点,故排除A 、C.选项D 中的函数是偶函数,故排除D.选B.2.(2019·莆田质检)我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为 ( B )A.121 B.81C.74 D.49解析:a=1,S=0,n=1,第一次循环:S=1,n=2,a=8;第二次循环:S=9,n=3,a=16;第三次循环:S=25,n=4,a=24;第四次循环:S=49,n=5,a=32;第五次循环:S=81,n=6,a=40>32,输出S=81.3.(2019·合肥质检)执行如图所示的程序框图,如果输出的k的值为3,则输入的a的值可以是 ( A )A.20 B.21C.22 D.23解析:根据程序框图可知,若输出的k=3,则此时程序框图中的循环结构执行了3次,执行第1次时,S=2×0+3=3,执行第2次时,S=2×3+3=9,执行第3次时,S=2×9+3=21,因此符合题意的实数a 的取值范围是9≤a <21,故选A.4.根据如图算法语句,当输入x 为60时,输出y 的值为( C )INPUT xIF x <=50 THEN y =0.5 * x ELSE y =25+-END IF PRINT y ENDA .25B .30C .31D .61解析:通过阅读理解知,算法语句是一个分段函数y =f (x )=⎩⎪⎨⎪⎧0.5x ,x ≤50,25+x -,x >50,∴y =f (60)=25+0.6×(60-50)=31.5.(2019·湖南长沙模拟)如图,给出的是计算1+14+17+…+1100的值的一个程序框图,则图中判断框内(1)处和执行框中的(2)处应填的语句是( C )A .i >100,n =n +1B .i <34,n =n +3C .i >34,n =n +3D .i ≥34,n =n +3解析:算法的功能是计算1+14+17+…+1100的值,易知1,4,7,…,100成等差数列,公差为3,所以执行框中(2)处应为n =n +3,令1+(i -1)×3=100,解得i =34,∴终止程序运行的i 值为35,∴判断框内(1)处应为i >34,故选C.6.(2019·大连联考)如果执行如图的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( C )A .A +B 为a 1,a 2,…,a N 的和 B.A +B2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 解析:不妨令N =3,a 1<a 2<a 3, 则有k =1,x =a 1,A =a 1,B =a 1;k =2,x =a 2,A =a 2; k =3,x =a 3,A =a 3.故输出A=a3,B=a1,故选C.7.(2019·湖南郴州一模)秦九韶是我国南宋时期著名的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入x的值为3,每次输入a的值均为4,输出s的值为484,则输入n的值可为 ( C )A.6 B.5C.4 D.3解析:模拟程序的运行,可得x=3,k=0,s=0,a=4,s=4,k=1,不满足条件k>n;执行循环体,a=4,s=16,k=2,不满足条件k>n;执行循环体,a=4,s=52,k=3,不满足条件k>n;执行循环体,a=4,s=160,k=4,不满足条件k>n;执行循环体,a=4,s=484,k=5,由题意,此时应该满足条件k>n,退出循环,输出s的值为484,可得5>n≥4,所以输入n的值可为4.故选C.8.(2017·山东卷)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为( D )A.0,0B.1,1C.0,1D.1,0解析:当x=7时,∵b=2,∴b2=4<7=x.又7不能被2整数,∴b=2+1=3.此时b2=9>7=x,∴退出循环,a=1,∴输出a=1.当x=9时,∵b=2,∴b2=4<9=x.又9不能被2整除,∴b=2+1=3.此时b2=9=x,又9能被3整除,∴退出循环,a=0. ∴输出a=0.9.(2017·江苏卷)如图是一个算法流程图.若输入x 的值为116,则输出y 的值是 -2 .解析:本题考查算法与程序框图. ∵x =116<1,∴y =2+log 2116=-2.10.(2016·山东卷)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为 3 .解析:i =1,a =1,b =8;i =2,a =3,b =6;i =3,a =6,b =3,a >b ,所以输出i =3.11.(2019·石家庄模拟)程序框图如图,若输入的S =1,k =1,则输出的S 为 57 .解析:执行程序框图,第一次循环,k =2,S =4; 第二次循环,k =3,S =11; 第三次循环,k =4,S =26; 第四次循环,k =5,S =57. 此时,终止循环,输出的S =57.12.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为 24 .(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)解析:n =6,S =12×6×sin 60°=332≈2.598<3.1,不满足条件,进入循环;n =12,S =12×12×sin 30°=3<3.1,不满足条件,继续循环;n =24,S =12×24×sin 15°≈12×0.258 8=3.105 6>3.1,满足条件,退出循环,输出n 的值为24.13.如图(1)是某县参加2017年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm)在[150,155)内的学生人数).图(2)是统计图(1)中身高在一定范围内学生人数的一个程序框图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,则在流程图中的判断框内应填写( C )图(1)图(2)A .i <6?B .i <7?C .i <8?D .i <9?解析:统计身高在160~180 cm 的学生人数,则求A 4+A 5+A 6+A 7的值.当4≤i ≤7时,符合要求.14.(2019·河南开封一模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是 ( D )A .i <7,s =s -1i,i =2iB .i ≤7,s =s -1i,i =2iC .i <7,s =s2,i =i +1D .i ≤7,s =s2,i =i +1解析:由题意可知第一天后剩下12,第二天后剩下122,……,由此得出第7天后剩下127,则①应为i ≤7,②应为s =s2,③应为i =i +1,故选D.15.(2019·福州模拟)如图是“二分法”求方程近似解的流程图,在①,②处应填写的内容分别是 ( B )A .f (a )·f (m )<0?;b =mB .f (b )·f (m )<0?;b =mC .f (a )·f (m )<0?;m =bD .f (b )·f (m )<0?;m =b解析:用二分法求方程x 5-2=0的近似解,在执行一次m =a +b2运算后,分析是f (a )f (m )<0还是f (b )f (m )<0,所得新的区间应该保证两端点处的函数值的乘积小于0,从框图中给出的满足判断框中的条件执行以a =m 可知,判断框中的条件即①处应是“f (b )f (m )<0?”,若该条件不满足,应执行“否”路径,该路径中的②处应是“b =m ”,然后判断是否满足精度或是否有f (m )=0,满足条件算法结束,输出m ,不满足条件,继续进入循环.15题图16.(2019·惠州模拟)执行如图所示的程序框图,则输出的结果为 9 .16题图解析:法一:i =1,S =lg 13=-lg 3>-1; i =3,S =lg 13+lg 35=lg 15=-lg 5>-1;i =5,S =lg 15+lg 57=lg 17=-lg 7>-1;i =7,S =lg 17+lg 79=lg 19=-lg 9>-1;i =9,S =lg 19+lg 911=lg 111=-lg 11<-1,故输出的i =9.法二:因为S =lg 13+lg 35+…+lg i i +2=lg 1-lg 3+lg 3-lg 5+…+lg i -lg (i +2)=-lg(i +2),当i =9时,S =-lg(9+2)<-lg 10=-1,所以输出的i =9.。

(新课标)高考数学大一轮复习第九章算法初步、统计与统计案例第1节算法初步课件理

(新课标)高考数学大一轮复习第九章算法初步、统计与统计案例第1节算法初步课件理
【例 5】 设计一个计算 1×3×5×7×9×11×13 的算 法.图中给出了程序的一部分,则在横线①上不能填入的数 是( )
温馨 提 示
请 做:课 时 作 业 63
(点击进入)
3.算法与不等式的交汇问题 【例 3】 执行如图所示的程序框图,若输入 x=10, 则输出 y 的值为________.
输出语句
达式
_____________来自赋值语句变量=表达式
_____________ _____________
顺序结构和条件结构
【例 1】 如图中 x1,x2,x3 为某次考试三个评阅人对 同一道题的独立评分,p 为该题的最终得分.当 x1=6,x2 =9,p=8.5 时,x3 等于( )
A.11 C.8
A.s≤34 C.s≤1112
B.s≤56 D.s≤2254
考向 3 确定循环变量 【例 4】 (2015·安徽卷)执行如图所示的程序框图(算法 流程图),输出的 n 为________.
某程序框图如图所示,若该程序运行后输出的值是95, 则( )
A.a=4 C.a=6
B.a=5 D.a=7
基本算法语句
B.10 D.7
(2015·课标全国卷Ⅱ)如图程序框图的算法思路源于我 国古代数学名著《九章算术》中的“更相减损术”.执行该 程序框图,若输入的 a,b 分别为 14,18,则输出的 a=( )
循环结构
循环结构是高考命题的一个热点问题,多以选择题、填 空题的形式呈现,试题难度不大,多为容易题或中档题,且 主要有以下几个命题方向:
考向 1 求输出的结果 【例 2】 (2015·福建卷)阅读如图所示的程序框图,运 行相应的程序,则输出的结果为 ( )
A.2 B.1 C.0 D.-1

高考数学大一轮总复习第九章算法初步统计统计案例课时作业62算法初步课件新人教B版

高考数学大一轮总复习第九章算法初步统计统计案例课时作业62算法初步课件新人教B版

二、填空题
11.如图是一个算法流程图.若输入 x 的值为116,则输出 y 的值是 -2 .
解析:由流程图可得 y=22x+,lox≥g2x1,,0<x<1. 所以当输入的 x 的值为116时,y=2+log2116=2-4=-2.
12.(2019·江苏卷)如图是一个算法流程图,则输出的 S 的值 是 5.
3.(2020·东北四市教研联合体检测)执行如图所示的程序框 图,如果输入 N=4,则输出的 p 为( B )
A.6 C.120
B.24 D.720
解析:初始值,N=4,k=1,p=1,进入循环,p=1,k<N, k=2;p=2,k<N,k=3;p=6,k<N,k=4;p=24,k=N,此 时不满足循环条件,退出循环体.输出的 p=24,故选 B.
复习课件
高考数学大一轮总复习第九章算法初步统计统计案例课时作业62算法初步 课件新人教B版
2021/4/17
高考数学大一轮总复习第九章算法初步统计统计案例课时 作业62算法初步课件新人教B版
课时作业62 算法初步
一、选择题 1.已知一个算法的程序框图如图所示,当输出的结果为 0 时,输入的实数 x 的值为( B )
A.62 C.53
B.59 D.50
解析:解法 1:m1=112,m2=120,m3=105,n=2×112 +4×120+5×105=1 229,1 229>168,n=1 229-168=1 061;1 061>168,n=1 061-168=893;…;221>168,n=221-168= 53,53<168,所以输出的 n=53,故选 C.
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~

高考数学一轮复习第九章算法初步统计统计案例课时作业63算法初步课件理新人教A版

高考数学一轮复习第九章算法初步统计统计案例课时作业63算法初步课件理新人教A版

A.k<n? C.k≥n?
B.k>n? D.k≤n?
解析 执行程序框图,输入的 a=2,s=0×2+2=2,k=1;输入的 a =2,s=2×2+2=6,k=2;输入的 a=5,s=2×6+5=17,k=3,此时 结束循环,又 n=2,所以判断框中可以填“k>n?”。故选 B。
答案 B
9.执行如图所示的程序框图,若输入 m=1,n=3,输出的 x=1.75, 则空白判断框内应填的条件为( )
A.1 C.3
B.2 D.4
解析 依据程序框图可知,程序运行如下:初始化数据:n=0,x=1132π, 第一次循环:a=sinx=sin1132π≠ 23,n=n+1=1,x=x-2n1-2 1π=π;第二 次循环:a=sinx=sinπ≠ 23,n=n+1=2,x=x-2n1-2 1π=π-132π=192π; 第三次循环:a=sinx=sin91π2≠ 23,n=n+1=3,x=x-2n1-2 1π=192π-152π
答案 B
14.执行如图所示的程序框图,若输出的结果为 4,则输入的实数 x 的 取值范围是( )
A.-217,89 C.-2,19
B.-89,217 D.-19,2
解析 第一次循环:n=1,x=3x+1,n=2;第二次循环:x=(3x+1)×3 +1=9x+4,n=3;第三次循环:x=(9x+4)×3+1=27x+13,n=4,x≥12, 循环结束。可得不等式组29x7+x+4<131≥2,12, 解得-217≤x<89,所以若输出的
解析 根据程序框图进行运算:a=0,S=0,i=1,a=1,S=1,i=2; a=4,S=1+4,i=3;a=9,S=1+4+9,i=4;a=16,S=1+4+9+16, i=5……依次写出 S 的表达式,发现规律,满足 C。

高考数学总复习第九章算法初步、统计、统计案例课时作业60理

高考数学总复习第九章算法初步、统计、统计案例课时作业60理

课时作业60 随机抽样1.以下抽样方法是简单随机抽样的是( D )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D.用抽签方法从10件产品中选取3件进行质量检验解析:选项A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的;选项C不是简单随机抽样,因为总体的个体有明显的层次;选项D是简单随机抽样.2.(2019·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是( B ) A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样解析:因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的15名艺术特长生中选出3名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法.3.(2019·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( A )A.100 B.150C.200 D.250解析:法一:由题意可得70n-70=3 5001 500,解得n=100.法二:由题意,抽样比为703 500=150,总体容量为3 500+1 500=5 000,故n=5 000×150=100.4.(2019·湖南怀化模拟)某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为( B )A.90 B.180C.270 D.360解析:设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y 320,得y =180.故选B.5.去年“3·15”,某报社做了一次关于“虚假广告”的调查,在A ,B ,C ,D 四个单位回收的问卷数依次成公差为正数的等差数列,共回收1 000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽取30份问卷,则在D 单位抽取的问卷份数是( C )A .45B .50C .60D .65解析:由于B 单位抽取的问卷是样本容量的15,所以B 单位回收问卷200份.由等差数列知识可得C 单位回收问卷300份,D 单位回收问卷400份,则D 单位抽取的问卷份数是B 单位的2倍,即为60份.6.(2019·泉州质检)某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有1人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有( A )A .36人B .30人C .24人D .18人解析:设持“喜欢”“不喜欢”“一般”态度的人数分别为6x ,x,3x ,由题意可得3x -x =12,x =6.∴持“喜欢”态度的有6x =36(人).7.(2019·石家庄模拟)某校为了解1 000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1 000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为( C )A .16B .17C .18D .19解析:因为从1 000名学生中抽取一个容量为40的样本,所以系统抽样的分段间隔为1 00040=25,设第一组随机抽取的号码为x ,则抽取的第18组编号为x +17×25=443,所以x =18.8.采用系统抽样方法从1 000人中抽取50人做问卷调查,将他们随机编号1,2,…,1 000.适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.若抽到的50人中,编号落入区间[1,400]的人做问卷A ,编号落入区间[401,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( A )A .12B .13C .14D .15解析:根据系统抽样的特点可知,所有做问卷调查的人的编号构成首项为8,公差d =1 00050=20的等差数列{a n },∴通项公式a n =8+20(n -1)=20n -12,令751≤20n -12≤1000,得76320≤n ≤2535,又∵n ∈N *,∴39≤n ≤50,∴做问卷C 的共有12人.9.(2019·江苏南京联合体学校调研)为检验某校高一年级学生的身高情况,现采用先分层抽样后简单随机抽样的方法,抽取一个容量为210的样本,已知每个学生被抽到的概率为0.3,且男女生的比是4∶3,则该校高一年级女生的人数是 300 .解析:抽取的高一年级女生的人数为210×37=90,则该校高一年级女生的人数为90÷0.3=300,故答案为300.10.(2019·湖北重点中学适应模拟)某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为 3 .解析:系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.11.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是 76 .解析:由题意知m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.12.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为 50 ;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为 1 015 小时.解析:第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为 1 020×0.5+980×0.2+1 030×0.3=1 015.13.(2019·安徽安庆一中模拟)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于 ( D )A .12B .18C .24D .36解析:根据分层抽样方法知n960+480=24960,解得n =36.14.(2019·安徽淮北模拟)某单位员工按年龄分为A ,B ,C 三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C 组中甲、乙二人均被抽到的概率是145,则该单位员工总数为( B )A .110B .100C .900D .800解析:∵员工按年龄分为A ,B ,C 三组,其人数之比为5∶4∶1,∴从中抽取一个容量为20的样本,则抽取的C 组人数为11+4+5×20=110×20=2,设C 组员工总数为m ,则甲、乙二人均被抽到的概率为C 22C 2m =2mm -=145,即m (m -1)=90,解得m =10.设员工总数为x ,则由10x =15+4+1=110,可得x =100,故选B.15.为了调研雄安新区的空气质量状况,某课题组对雄县、容城、安新三县空气质量进行调查,按地域特点在三县内设置空气质量观测点.已知三县内观测点的个数分别为6,y ,z ,依次构成等差数列,且6,y ,z +6成等比数列,若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为( C )A .8B .6C .4D .2解析:∵6,y ,z 依次构成等差数列,且6,y ,z +6成等比数列,∴⎩⎪⎨⎪⎧6+z =2y ,y 2=z +,解得⎩⎪⎨⎪⎧y =12,z =18.若采用分层抽样的方法抽取12个观测点的数据,则应从容城抽取的观测点的数据个数为126+12+18×12=4,故选C.16.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的5.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为 36 .解析:根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.。

2020高考数学理科大一轮复习课时作业:第九章 算法初步、统计、统计案例课时作业60

2020高考数学理科大一轮复习课时作业:第九章 算法初步、统计、统计案例课时作业60

课时作业60用样本估计总体一、选择题1.容量为20的样本数据,分组后的频数如下表:分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70) 频数23454 2A.0.35B.0.45C.0.55D.0.65解析:求得该频数为2+3+4=9,样本容量是20,所以频率为920=0.45.2.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为(B)A.95,94 B.92,86C.99,86 D.95,91解析:由茎叶图可知,此组数据由小到大排列依次为76,79,81,83,86,86,87,91,92,94,95,96,98,99,101,103,114,共17个,故92为中位数,出现次数最多的为众数,故众数为86,故选B.3.(2019·贵阳市监测考试)在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是(A)A.15 B.18 C.20 D.25解析:根据频率分布直方图,得第二小组的频率是0.04×10=0.4,∵频数是40,∴样本容量是400.4=100,又成绩在80~100分的频率是(0.01+0.005)×10=0.15,∴成绩在80~100分的学生人数是100×0.15=15.故选A.4.将甲、乙两名同学8次数学测试成绩统计如茎叶图所示,若乙同学8次数学测试成绩的中位数比甲同学8次数学测试成绩的平均数多1,则a等于(C)A .4B .5C .6D .7解析:甲同学8次数学测试成绩的平均数为 78+77+85+84+84+83+91+908=84, 所以84+80+a 2=84+1⇒a =6.选C. 5.(2019·成都诊断性检测)空气质量指数AQI 是检测空气质量的重要参数,其数值越大说明空气污染状况越严重,空气质量越差.某地环保部门统计了该地区12月1日至12月24日连续24天的空气质量指数AQI ,根据得到的数据绘制出如图所示的折线图.则下列说法错误的是( D )A .该地区在12月2日空气质量最好B.该地区在12月24日空气质量最差C.该地区从12月7日到12月12日AQI持续增大D.该地区的空气质量指数AQI与这段日期成负相关解析:12月2日空气质量指数最低,所以空气质量最好,A正确;12月24日空气质量指数最高,所以空气质量最差,B正确;12月7日到12月12日AQI在持续增大,所以C正确;在该地区统计这段时间内,空气质量指数AQI整体呈上升趋势,所以空气质量指数与这段日期成正相关,D错误.6.从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x甲、x乙,中位数分别为m甲,m乙,则(B)A.x甲<x乙,m甲>m乙B.x甲<x乙,m甲<m乙C.x甲>x乙,m甲>m乙D.x甲>x乙,m甲<m乙解析:由茎叶图知m甲=22+182=20,m乙=27+312=29,∴m甲<m乙;x甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516,x乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716,∴x 甲<x 乙.二、填空题7.(2018·江苏卷)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.解析:由茎叶图可得分数的平均数为 89+89+90+91+915=90. 8.某同学在高三学年五次阶段性考试中的数学成绩(单位:分)依次为110,114,121,119,126,则这组数据的方差是30.8.解析:这组数据的平均数x =110+114+121+119+1265=118,所以这组数据的方差s 2=15×[(110-118)2+(114-118)2+(121-118)2+(119-118)2+(126-118)2]=30.8.9.设样本数据x 1,x 2,…,x 2 017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2 017的方差为16.解析:设样本数据的平均数为x ,则y i =2x i -1的平均数为2x -1,则y 1,y 2,…,y 2 017的方差为12 017[(2x 1-1-2x +1)2+(2x 2-1-2x +1)2+…+(2x 2 017-1-2x +1)2]=4×12 017[(x 1-x )2+(x 2-x )2+…+(x2 017-x)2]=4×4=16.三、解答题10.为迎接即将举行的集体跳绳比赛,高一年级对甲、乙两个代表队各进行了6轮测试,测试成绩(单位:次/分钟)如下表:轮次一二三四五六甲736682726376乙837562697568(1)补全茎叶图,并指出乙队测试成绩的中位数和众数;(2)试用统计学中的平均数和方差知识对甲、乙两个代表队的测试成绩进行分析.解:(1)补全茎叶图如图.乙队测试成绩的中位数为72,众数为75.(2)x甲=63+66+72+73+76+826=72,s2甲=16×[(63-72)2+(66-72)2+(72-72)2+(73-72)2+(76-72)2+(82-72)2]=39;x乙=62+68+69+75+75+836=72,s2乙=16×[(62-72)2+(68-72)2+(69-72)2+(75-72)2+(75-72)2+(83-72)2]=44.因为x甲=x乙,s2甲<s2乙,所以甲乙两队水平相当,但甲队发挥较稳定.11.(2019·西安八校联考)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X>182的概率;(3)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A 在这10天投递的快递件数的平均数为36,众数为33.(2)设a 为乙公司员工B 每天的投递件数,则当a =35时,X =140,当a >35时,X =35×4+(a -35)×7,令X =35×4+(a -35)×7>182,得a >41,则a 的取值为44,42,所以X >182的概率为410=25.(3)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为4.5×36×30=4 860(元),易知乙公司员工B 每天所得劳务费X 的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为110×(136×1+147×3+154×2+189×3+203×1)×30=165.5×30=4 965(元).12.(2019·郑州市第一次质量预测)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a ,b 满足a ,G ,b 成等差数列且x ,G ,y 成等比数列,则1a +4b 的最小值为( C )A.49B .2 C.94 D .9解析:由甲班学生成绩的中位数是81,可知81为甲班7名学生的成绩按从小到大的顺序排列的第4个数,故x =1.由乙班学生成绩的平均数为86,可得(-10)+(-6)+(-4)+(y -6)+5+7+10=0,解得y =4.由x ,G ,y 成等比数列,可得G 2=xy =4,由正实数a ,b满足a ,G ,b 成等差数列,可得G =2,a +b =2G =4,所以1a +4b =(1a +4b )×(a 4+b 4)=14(1+b a +4a b +4)≥14×(5+4)=94(当且仅当b =2a 时取等号).故1a +4b 的最小值为94,选C.13.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未被污损,即9,10,11,1■■,那么这组数据的方差s 2可能的最大值是32.8.解析:设这组数据的最后两个分别是10+x ,y ,则9+10+11+(10+x )+y =50,得x +y =10,故y =10-x ,故s 2=1+0+1+x2+(-x)25=25+25x2,显然x取9时,s2有最大值32.8.尖子生小题库——供重点班学生使用,普通班学生慎用14.(2019·昆明市调研测试)某商家为了解“双十一”这一天网购者在其网店一次性购物的情况,从这一天交易成功的所有订单中随机抽取了100份,按购物金额(单位:元)进行统计,得到的频率分布直方图如图所示.(1)该商家决定对这100份订单中购物金额不低于1 000元的订单按区间[1 000,1 200),[1 200,1 400]采用分层抽样的方法抽取6份,对买家进行售后回访,再从这6位买家中随机抽取3位赠送小礼品.求获赠小礼品的3位买家中,至少有1位买家的购物金额位于区间[1 200,1 400]内的概率.(2)若该商家制订了两种不同的促销方案:方案一:全场商品打八折;方案二:全场购物每满200元减40元,每满600元减150元,每满1 000元减300元,以上减免只享受最高优惠.例如:购物金额为500元时,可享受最高优惠80元;购物金额为900元时,可享受最高优惠190元.利用直方图中的数据,计算说明哪种方案的优惠力度更大(同一组中的数据用该组区间中点值作代表).解:(1)在这100份订单中,购物金额位于区间[1 000,1 200)的有0.000 50×200×100=10份,位于区间[1 200,1 400]的有0.000 25×200×100=5份,则购物金额位于区间[1 000,1 400]的订单共有15份,利用分层抽样抽取6份,则位于区间[1 000,1 200)的有4份,位于区间[1 200,1 400]的有2份,设事件A 表示“获赠小礼品的3位买家中,至少有1位买家的购物金额位于区间[1 200,1 400]”,则P (A )=1-C 34C 36=45. (2)由直方图知,各组的频率依次为0.1,0.2,0.25,0.3,0.1,0.05, 方案一:最高优惠的平均值为(300×0.1+500×0.2+700×0.25+900×0.3+1 100×0.1+1 300×0.05)×0.2=150(元);方案二:最高优惠的平均值为40×0.1+80×0.2+150×0.25+190×0.3+300×0.1+340×0.05=161.5(元).由于150<161.5,所以方案二的优惠力度更大.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

高考数学总复习第九章算法初步、统计、统计案例课时作业62理

高考数学总复习第九章算法初步、统计、统计案例课时作业62理

课时作业62 变量间的相关关系与统计案例1.(2019·辽宁丹东教学质量监测)某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是:有 的把握认为“学生性别与支持该活动没有关系”.( C )附:C .1%D .0.1%解析:因为6.635<6.705<10.828,因此有1%的把握认为“学生性别与支持该活动没有关系”,故选C.2.已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( C )A .x 与y 正相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 负相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关解析:由y =-0.1x +1,知x 与y 负相关,即y 随x 的增大而减小,又y 与z 正相关,所以z 随y 的增大而增大,减小而减小,所以z 随x 的增大而减小,x 与z 负相关,故选C.3.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其线性回归方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( B )A.116 B .18 C.14D .12解析:依题意可知样本点的中心为⎝ ⎛⎭⎪⎫34,38,则38=13×34+a ^,解得a ^=18.4.为考察A 、B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:根据图中信息,在下列各项中,说法正确的是( C ) A .药物A 、B 对该疾病均没有预防效果 B .药物A 、B 对该疾病均有显著的预防效果 C .药物A 的预防效果优于药物B 的预防效果 D .药物B 的预防效果优于药物A 的预防效果解析:根据两个等高条形图知,药物A 实验显示不服药与服药时患病的差异较药物B 实验显示明显大,∴药物A 的预防效果优于药物B 的预防效果.故选C.5.(2019·河南焦作一模)已知变量x 和y 的统计数据如下表:根据上表可得回归直线方程为y =b x -0.25,据此可以预测当x =8时,y ^=( C ) A .6.4 B .6.25 C .6.55D .6.45解析:由题意知x =3+4+5+6+75=5,y =2.5+3+4+4.5+65=4,将点(5,4)代入y ^=b ^x -0.25,解得b ^=0.85,则y ^=0.85x -0.25, 所以当x =8时,y ^=0.85×8-0.25=6.55,故选C.6.(2019·南昌模拟)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.附表:由K 2=a +bc +d a +cb +d算得,K 2=258×42×35×65≈9.616,参照附表,得到的正确结论是( C )A .在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.001的前提下,认为“生育意愿与城市级别无关”C .在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别有关”D .在犯错误的概率不超过0.01的前提下,认为“生育意愿与城市级别无关” 解析:由题意K 2的观测值≈9.616>6.635,所以在犯错误的概率不超过0.01的前提下认为“生育意愿与城市级别有关”.7.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^=0.77x +52.9.解析:由已知可计算求出x =30,而线性回归方程必过点(x ,y ),则y =0.77×30+52.9=76,设模糊数字为a ,则a +62+75+80+905=76,计算得a =73.8.(2019·赣中南五校联考)心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)过 0.025 .附表:解析:由列联表计算K 2的观测值k =30×20×20×30≈5.556>5.024,∴推断犯错误的概率不超过0.025.9.(2019·安徽蚌埠段考)为了研究工人的日平均工作量是否与年龄有关,从某工厂抽取了100名工人,且规定日平均生产件数不少于80件者为“生产能手”,列出的2×2列联表如下:有解析:由2×2列联表可知,K 2=-240×60×35×65≈2.93,因为2.93>2.706,所以有90%以上的把握认为“工人是否为‘生产能手’与工人的年龄有关”.10.在2018年1月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是y ^=-3.2x +40,且m +n =20,则其中的n = 10 .解析:x =9+9.5+m +10.5+115=8+m 5,y =11+n +8+6+55=6+n 5,回归直线一定经过样本点中心(x ,y ),即6+n5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42.又因为m +n =20,即⎩⎪⎨⎪⎧3.2m +n =42,m +n =20,解得⎩⎪⎨⎪⎧m =10,n =10,故n =10.11.(2019·重庆调研)某厂商为了解用户对其产品是否满意,在使用该产品的用户中随机调查了80人,结果如下表:(1)5人中任选2人,求被选中的恰好是男、女用户各1人的概率;(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.注:K 2=a +bc +d a +cb +d,n =a +b +c +d .解:(1)用分层抽样的方法在满意产品的用户中抽取5人,则抽取比例为550=110.所以在满意产品的用户中应抽取女用户20×110=2(人),男用户30×110=3(人).抽取的5人中,三名男用户记为a ,b ,c ,两名女用户记为r ,s ,则从这5人中任选2人,共有10种情况:ab ,ac ,ar ,as ,bc ,br ,bs ,cr ,cs ,rs .其中恰好是男、女用户各1人的有6种情况:ar ,as ,br ,bs ,cr ,cs . 故所求的概率为P =610=0.6.(2)由题意,得K 2的观测值为k =-2++++=163≈5.333>5.024. 又P (K 2≥5.024)=0.025.故有97.5%的把握认为“产品用户是否满意与性别有关”.12.(2016·全国卷Ⅲ)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008~2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17y i -y2=0.55,7≈2.646.参考公式:相关系数r=∑i =1nt i -ty i -y∑i =1nt i -t2∑i =1n y i -y2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1nt i -ty i -y∑i =1nt i -t2,a ^=y -b ^t -.解:(1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17y i -y2=0.55,∑i =17(t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17t i -ty i -y∑i =17t i -t2=2.8928≈0.10, a ^=y -b ^ t -=1.331-0.10×4≈0.93. 所以y 关于t 的回归方程为 y ^=0.93+0.10t .将2016年对应的t =9代入回归方程得:y ^=0.93+0.10×9=1.83. 所以预测2016年我国生活垃圾无害化处理量将约为1.83亿吨.13.(2019·湖南张家界一模)已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误的是( C )A.变量x ,B .可以预测,当x =20时,y ^=-3.7 C .m =4D .该回归直线必过点(9,4)解析:由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x =14×(6+8+10+12)=9,y =14(6+m +3+2)=11+m 4,则11+m 4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y =6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.14.(2019·湖南永州模拟)已知x 与y 之间的几组数据如下表:假设根据上表数据所得的线性回归方程为y =b x +a .若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( C )A.b ^>b ′,a ^>a ′ B .b ^>b ′,a ^<a ′ C.b ^<b ′,a ^>a ′D .b ^<b ′,a ^<a ′解析:由两组数据(1,0)和(2,2)可求得直线方程为y =2x -2,b ′=2,a ′=-2.而利用线性回归方程的公式与已知表格中的数据,可求得b ^=∑i =16x i y i -6 x·y∑i =16x 2i -6 x 2=58-6×72×13691-6×⎝ ⎛⎭⎪⎫722=57,a ^=y -b ^x =136-57×72=-13,所以b ^<b ′,a ^>a ′.15.(2019·青岛模拟)针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的12,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数23.若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有 12 人.则k >3.841,即k =3x 2⎝ ⎛⎭⎪⎫x 6·x 6-5x 6·x 32x ·x 2·x 2·x =3x8>3.841,解得x >10.243.因为x 6,x2为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有12人.16.(2019·包头一模)如图是某企业2010年至2016年的污水净化量(单位:吨)的折线图.注:年份代码1~7分别对应年份2010~2016.(1)由折线图看出,可用线性回归模型拟合y 和t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程,预测2017年该企业的污水净化量;(3)请用数据说明回归方程预报的效果.参考数据:y -=54,∑i =17(t i -t -)(y i -y -)=21,14≈3.74,∑i =17(y i -y ^i )2=94. 参考公式:相关系数r=∑i =1nt i -ty i -y∑i =1nt i -t2∑i =1n y i -y2,线性回归方程y ^=a ^+b ^t ,b ^=∑i =1nt i -ty i -y∑i =1n t i -t2,a ^=y -b ^t -.反映回归效果的公式为:R 2=1-∑i =1ny i -y ^i2∑i =1ny i -y2,其中R 2越接近于1,表示回归的效果越好.解:(1)由折线图中的数据得,t =4,∑i =17(t i -t -)2=28,∑i =17(y i -y -)2=18,所以r =2128×18≈0.935. 因为y 与t 的相关系数近似为0.935,说明y 与t 的线性相关程度相当大,所以可以用线性回归模型拟合y 与t 的关系.(2)因为y -=54,b ^=∑i =17t i -ty i -y∑i =17t i -t2=2128=34, 所以a ^=y -b ^t =54-34×4=51,所以y 关于t 的线性回归方程为y ^=b ^t +a ^=34t +51.将2017年对应的t =8代入得y ^=34×8+51=57,所以预测2017年该企业污水净化量约为57吨.(3)因为R 2=1-∑i =17y i -y ^i2∑i =17y i -y2=1-94×118=1-18=78=0.875,所以“污水净化量的差异”有87.5%是由年份引起的,这说明回归方程预报的效果是良好的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 算法初步、统计与统计案例
课时作业63 算法初步
一、选择题
1.(2015·陕西卷)根据框图,当输入x 为2 006时,输出的y =( )
错误!
A .2
B .4
C .10
D .28
解析:从2 006开始依次减少2,当x =0时,判断x ≥0?是,则x =0-2=-2,∴x <0时取的第一个值为-2,此时y =3
-(-2)
+1=10,故输出的值为10.
答案:C
2.(2015·四川卷)执行如图所示的程序框图,输出S 的值为( )
,)
A .-
3
2
B.32
C .-12
D.12
解析:开始→k =1→k =k +1=2→k >4?否→k =k +1=3→k >4?否→k =k +1=4→k >4?否→k =k +1=5→k >4?是→S =sin
k π
6=sin 5π6=12→输出S =12
. 答案:D
3.(2015·北京卷)执行如图所示的程序框图,输出的结果为( )
A .(-2,2)
B .(-4,0)
C .(-4,-4)
D .(0,-8)
解析:第一次执行程序k =0,s =0,t =2,x =0,y =2,k =1<3;第二次执行程序s =-2,t =2,x =-2,y =2,k =2<3;第三次执行程序s =-4,t =0,x =-4,y =0,k =3成立故输出(-4,0).
答案:B
4.(2016·四川成都诊断检测)执行如图所示的程序框图,若输入的x 的值为-3
2,则输
出的i 的值为( )
A .4
B .3
C .2
D .1
解析:由框图可得x =-32,i =1,进入循环,a =3-32,b =2-3
2
,此时a <b ;
i =2,x =-12,进入循环,a =3-12,b =2-12
,此时a <b ;
i =3,x =1
2,进入循环,a =312,b =21
2,此时a >b ,
输出i =3. 答案:B
5.(2016·江西南昌一模)下列程序框图中,输出的B 是( )
A .- 3
B .-33
C .0
D. 3
解析:A =π3+π3+π3+…+π3,\s \do 4(2 016))=2 016×π
3=672π,B =tan672π=0.
答案:C
6.(2016·广东深圳调研)如图所示的程序框图的功能是求2+2+2+2+2的
值,则框图中的①,②两处应分别填写( )
A .i <5?,S =2+S
B .i ≤5?,S =2+S
C .i <5?,S =2+S
D .i ≤5?,S =2+S
解析:由题意知,当i =2时,S =2+2;当i =3时,S =2+2+2;当i =4时,S =2+
2+2+2;当i =5时,S =2+
2+2+2+2;当i =6时,显然已经不符
合判断框中的条件了.
故①处为i ≤5?,②处为S =2+S .故选D. 答案:D 二、填空题
7.(2016·湖南岳阳检测)运行如图程序后,输出的值是________.
A =5
B =9
IF A>B THEN x =A +B ELSE x =A -B END IF PRINT x
END
解析:依题意知,题中的条件语句所表述的是一个分段函数:x =⎩
⎪⎨⎪⎧A +B ,A >B ,
A -
B ,A ≤B .由于
A
=5,B =9,故x =5-9=-4.
答案:-4
8.(2016·江苏南京一模)如图是一个算法流程图,如果输入的x 的值是1
4,则输出的S
的值是________.
解析:由算法流程图可知:S =⎩
⎪⎨⎪⎧x -1,x >1,
log 2x ,x ≤1,
∴当x =14时,S =log 21
4=-2.
答案:-2
9.执行如图所示的程序框图,若输入的a 值为2,则输出的P 值是________.
解析:第一次循环,P =1+1=2,S =1+12=32;第二次循环,P =2+1=3,S =32+13=11
6;
第三次循环,P =3+1=4,S =116+14=25
12
>2,因此输出的P 值为4.
答案:4
10.若k 进制数123(k )与十进制数38(10)相等,则k =________.
解析:由k 进制数123可判断k ≥4,若k =4,=212(4)不成立.若k =5,
=123(5)成立.∴k =5. 答案:5
1.(2015·全国卷Ⅰ)执行如图的程序框图,如果输入的t =0.01.则输出的n =( )
A .5
B .6
C .7
D .8
解析:该程序框图的运行过程如下:①S =12,m =14,n =1;②S =14,m =1
8,n =2;③S
=18,m =116,n =3;④S =116,m =132,n =4;⑤S =132,m =164,n =5;⑥S =164,m =1
128,n =6,⑦S =
1128,m =1256,n =7,此时S =1
128
<t ,故输出结果n =7. 答案:C
2.(2016·江西九江一模)在如下程序框图中,输入f 0(x )=sin(2x +1),若输出的f i (x )是28
sin(2x +1),则程序框图中的判断框应填入( )
A .i ≤6
B .i ≤7
C .i ≤8
D .i ≤9
解析:i =1时,f 1(x )=2cos(2x +1);i =2时,f 2(x )=-22
sin(2x +1);i =3时,f 3(x )=-23
cos(2x +1);i =4时,f 4(x )=24
sin(2x +1)……;i =8时,f 8(x )=28
sin(2x +1),循环结束,故选B.
答案:B
3.(2016·吉林长春质监二)下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( )
A .6
B .10
C .91
D .92
解析:由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出的结果为10.故选B.
答案:B
4.(2016·广东广州一测)一算法的程序框图如图,若输出的y =1
2,则输入的x 的值可
能为( )
A .-1
B .0
C .1
D .5
解析:由程序框图知:y =⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫π6x ,x ≤2,2x ,x >2.
当x >2时,y =2x =1
2
,解得x =-1(舍去);
当x ≤2时,y =sin ⎝ ⎛⎭⎪⎫π6x =1
2
,解得x =12k +1(k ∈Z )或x =12k +5(k ∈Z ),当k =0时,x
=1或x =5(舍去),所以输入的x 的值可能是1,故选C.
答案:C
5.(2016·乌鲁木齐测验)执行下边的程序语句,若输出S 为127,则在①处应填入( )
n =1,S =1
WHILE __①__ S =S +2^n n =n +1 WEND PRINT S END A .n ≤5 B .n ≤6 C .n ≤7
D .n ≤8
解析:依题意有S =1+2+22
+ (2)
=2
n +1
-1,因为S =127,所以2
n +1
-1=127,故
n +1=7,因此n =6,故选B.
答案:B。

相关文档
最新文档