关于油田开发化学控水技术的探讨

关于油田开发化学控水技术的探讨
关于油田开发化学控水技术的探讨

关于油田开发化学控水技术的探讨

【摘要】稳油控水是提高油田开发效益的有效措施,现广泛使用的封堵技术多样,本文选取化学控水技术的角度来探究。

【关键词】油田开发控水渗透率

1 前言

高含水后期油田的开发效益提高和油气成本控制的关键是“稳油控水”。油井产水会使得磁化井产生结垢,从而进一步破坏砂层表面或运移细颗粒,管壁的侵蚀更严重,再加上其他问题,油井就可能遭受到静液压负载的破坏。为延缓石油生产中的产水开始时间或产水量的上升,控水措施也多就从化学和机械两方面来进行研究,而本文对油田开发中的化学控水技术进行探究。

2 化学处理措施概述

2.1 渗透率封堵剂或胶凝剂

为堵塞孔隙空间以达到阻止流体流动的目的,一般的做法是利用控制化学反应的形式在三维凝胶反应形成前,就要把该材料投放到深处地层。其中硅酸钠溶液就不失为一种良好的材料,它通过氨基塑料树脂或尿素脂来进行内部催化。与戊二醛交联的聚醋酸乙烯酯和与铬交联的聚丙烯酰胺材料是最著名的体系,它们都是低浓度溶液,泵入地层的溶液都黏度低,因为它们的注入状态是非交联的。注入地下的溶液受到缓冲液和温度触发的控制后被激活,从而高黏度的堵塞凝胶就这样形成了。由于这些材料会把含水或油的空隙都给堵塞上,因而,为防止产油带被封堵就需要充填辅助物进去。

油田采出水处理工艺概述

油田采出水处理工艺概述 摘要:我国油田广泛采用采出水有效回注对油田进行高效开采,因此,油田采出水处理技术的发展对油田的再开发和可持续发展意义重大。本文概述油田采出水处理的发展历程,并对油田采出水处理的现状和水处理存在的问题进行阐述,并提出建议,以期为油田水处理的发展提出帮助。 关键词:油田采出水水处理现状及问题 一、概述 我国大部分油田采用注水开发方式,随着油田的不断开发,油井采水液的含水率不断上升,一些区块的含水率已达80%以上,对采出水进行处理、有效回注成为解决油田污水既经济又实用的途径[1,2]。目前,含油采出水已成为油田主要的注水水源,尤其是在延长油田等缺水油区。随着油田外围低渗透油田和表外储层的连续开发,为保证油田的高效注采开发,对油田注水水质的要求不断提高。因此,油田水处理技术已成为我国石油生产中一项重要技术。 二、采出水处理工艺 1.采出水处理现状 油田采出水成分比较复杂,含油量及油在水中存在形式有差异,且常与其它污水混合处理,单一采出水处理设备处理效果不佳;在实际应用中,通常是两三种水处理设备联合使用,才能确保出水水质达到回注标准。另外,不同油田的生产方式、环保要求及净化水的用途等不同,造成油田采出水处理工艺技术的差别比较明显。 2.采出水处理的发展历程 在油田采出水处理工艺中,通常采用“预处理+深度处理”方式处理。进入深度处理设备前的一系列处理方法称为预处理,包含一级处理与二级处理。常见的一级处理有重力分离、浮选及离心分离,主要除去浮油及颗粒固体;二级处理主要有过滤、粗粒化、化学处理等,主要是破乳和去除分散油。深度处理有超滤、活性炭吸附、生化处理等,主要去除溶解油。 采出水处理工艺具有明显的时代特征,主要分四个阶段: 2.1沉降除油+石英砂过滤 油田开发初期(1978~1985年),原油脱水采用两段电化学处理流程;污水处理工艺采用自然浮升、混凝沉降、压力过滤等流程,采出水主要以排放为主。

油田污水处理技术发展趋势

油田污水处理技术发展趋势 在原油生产的过程中会产生大量的污水,如果这部分污水不经过处理就排放到外界环境中,会给外界环境产生极大的污染。在另一方面,目前我国政府十分重视环境保护以及水资源保护工作,在这一背景下,油气生产公司只有采取一切措施对污水进行处理才符合我国的相关要求,处理后的污水不但可以排放到外界环境中,而且还可以用于油井回注,由此可见,污水处理可以为油气生产企业带来一定的经济利益。目前,油田污水处理技术已经取得了较大的进步,但是各种污水处理技术仍然存在一定的缺陷,针对此问题,本次研究首先对污水处理的重要性以及发展现状进行简单分析,在此基础上,提出污水处理技术的未来发展趋势,为推动污水处理技术的进一步发展奠定基础。 一、油田污水处理重要性分析 我国属于世界石油大国之一,经过多年的发展,石油已经成为我国经济发展的动力,目前,新能源正在如火如荼的发展,但是仍然无法动摇石油资源的地位。对于石油产业而言,其产业链相对较长,产业链的任何一部分都会对社会产生较大的影响。我国的石油产业已经进入到了成熟阶段,大多数油田已经进入到了开发的中后期阶段,在原油开发的中后期阶段中,原油的含水量相对较高,原油被开采出地面以后需要对其进行油水分离,进而会产生大量的污水,污水的组成十分复杂,部分污水中含有大量的重金属离子,这部分离子会对土壤产生极大的破坏。在原油生产过程中,还有一定污水称之为含油污水,所谓含油污水主要指的是含有原油的污水,这部分污水的排水量相对较大,也会对周围的环境产生较大的破坏。为了推动我国能源的可持续发展,同时达到环境保护的基本目标,对油田的污水进行处理十分重要。 二、油田污水处理技术现状 油田污水处理主要指的是采取一切方法将污水中的有害成分除去,或者将有害成分的含量降至某一标准,使得污水可以得到循环利用或者可以达到排放标准。目前,我国油田在进行污水处理的过程中所采取的方法相对较多,针对污水中有害成分的不同,可以采取不同的污水处理方法。 物理分离是油田常见的污水处理方法,该种方法就是采用物理手段将污水中的水分和悬浮物分离,一般情况下,物理分离方法所使用的设备都相对较为简单,设备的操作难度相对较低,其中,重力分离技术、气浮分离技术都属于物理分离技术。重力分离技术主要是利用水分子与油分子密度的不同,进而将两者分离,该种分离方法可以对油田污水进行大量处理。气浮分离技术主要是在污水中充入一定量的气体,进而使得污水中产生一定量的气泡,原油可以附着于气泡上,然后被气泡携带出水面,该种方法进行油水分离的效果相对较好。 由于物理分离技术很难将污水中的有害物质全部除去,因此,大多数油田也引进了化学处理技术,所谓的化学处理技术就是向污水中添加一定量的化学试剂,通过化学反应的方式将污水中的有害物质除去,常见的化学处理技术有絮凝技术、缓蚀技术、阻垢技术以及电脱技术。絮凝技术主要是对污水进行过滤之前,向污水中加入一定量的试剂,进而可以使得有害物质呈现出絮状结构存在于污水中,此时受到重力的影响,絮状物将会下沉,然后通过污水过滤就可以将其除去,该种方法还可以用于污水中的细菌处理。污水中含有部分腐蚀性物质会对金属产生腐蚀,腐蚀产物也属于有害物质,通过向污水中加入一定量的缓蚀剂,能有效避免污水的腐蚀作用,防止污水中的有害物质增加,该项技术就是缓蚀技术。通过对污水中的成分进行分析后发现,污水中含有大量的碳酸盐,这部分物质会在物体的表面形成垢,通过向污水中加入一定量的阻垢剂能有效避免出现结垢现象。电脱技术主要是通过电化学的方式对污水中的有害成分进行处理,其主要原理就是向污水中增加电流,通过氧化还原反应的方式将污水中有机物或某些重金属离子除去。

电厂化学水处理工艺流程

电厂化学水处理工艺流程 Final approval draft on November 22, 2020

化学水处理系统 一.从给水品质标准看化学水处理的必要性 下表是锅炉给水品质标准。 总硬度 (μmol/L) 溶解氧 (μg/L) 电导率 (μs/cm) 二氧化硅 (μg/L) PH值 (25℃) 二氧化碳 (μg/L) 标准≤30 ≤50 10 ≤20 ~≤20 我国北方多采用深井水源,其水质超标最严重的是总硬度,总硬度是指溶液中钙离子(Ca2+)和镁离子(Mg2+)摩尔浓度的平均值。所谓摩尔浓度指每升溶液中溶质含量的毫摩尔数。例如Ca的原子量为40,1mol Ca2+的质量是80g (其化学意义是:1mol Ca2+内含×1023个钙离子)。如果1L溶液中含有1g Ca2+,那么它的摩尔浓度是1/80=L=L。 给水水质不良,特别是钙、镁、钠、硅酸根离子超标,会给热力设备造成如下危害: 1. 热力设备的结垢:如果进入锅炉或其它热交换器的水质不良,则经过一段时间运行后,在和水接触的受热面上,会生成一些固体附着物,这种现象称为结垢,这些固体附着物称为水垢。因为水垢的导热性比金属差几百倍,而这些水垢又极易在热负荷很高的锅炉炉管中生成,所以结垢对锅炉(或热交换器)的危害性很大;它可使结垢部位的金属管壁温度过高,引起金属强度下降,这样在管内压力的作用下,就会发生管道局部变形、产生鼓包,甚至引起爆管等严重事故。结垢不仅危害安全运行,而且还会大大降低发电厂的经济性。例如,热力发电厂锅炉的省煤器中,结有1mm厚的水垢时,其燃料用量就比原来的多消耗%~%。因此有效防止或减少结垢,将会产生很大的经济效益。另外,循环水的水质不良,在汽轮机凝汽器内结垢会导致凝汽器真空度降低,从而使汽轮机的热效率和出力下降;过热器的结垢会使蒸汽温度达不到设计值,使整个热力系统的经济性降低。热力设备结垢以后,必须及时进行清洗工作,这就要停运设备,减少了设备的年利用小时数;此外,还要增加检修工作量和费用等。 2.热力设备及其系统的腐蚀:发电厂热力设备的金属经常和水接触,若水质不良,则会引起金属腐蚀,如给水管道,省煤器、蒸发器、加热器、过热器和汽轮机凝汽器的换热管,都会因水质不良而腐蚀。腐蚀不仅要缩短设备本身的使用期限,造成经济损失;而且腐蚀产物转入水中,使给水中杂质增多,从而加剧在高热负荷受热面上的结垢过程,结成的垢又会加速炉管的垢下腐蚀。此种恶性循环,会迅速导致爆管等事故。 3. 过热器和汽轮机流通部分的积盐:水质不良还会使蒸汽溶解和携带的杂质(主要是Na+和HSiO3-离子)增加,这些杂质会沉积在蒸汽的流通部位,如过热器和汽轮机,这种现象称为积盐。过热器管内积盐会引起金属管壁过热甚至爆管;阀门会因积盐而关闭不严;汽轮机内积盐会大大降低汽轮机的出力和效率,即使少量的积盐也会显着增加蒸汽流通的阻力,使汽轮机的出力下降。当汽轮机积盐严重时,还会使推力轴承负荷增大,隔板弯曲,造成事故停机。

水的物理、化学及物理化学处理方法

水的物理、化学及物理化学处理方法简介 (一)物理处理方法 利用固体颗粒和悬浮物的物理性质将其从水中分离去除的方法称为物理处理方法。物理处理法的最大优点是简单易行,效果良好,费用较低。 物理处理法的主要处理对象是水中的漂浮物、悬浮物以及颗粒物质。 常用的物理处理法有格栅与筛网、沉淀、气浮等。 (1)格栅与筛网 格栅是用于去除水中较大的漂浮物和悬浮物,以保证后续处理设备正常工作的一种装置。格栅通常有一组或多组平行金属栅条制成的框架组成,倾斜或直立地设立在进水渠道中,以拦截粗大的悬浮物。 筛网用以截阻、去除水中的更细小的悬浮物。筛网一般用薄铁皮钻孔制成,或用金属丝编制而成,孔眼直径为0.5~1.0mm。 在河水的取水工程中,格栅和筛网常设于取水口,用以拦截河水中的大块漂浮物和杂草。在污水处理厂,格栅和筛网常设于最前部的污水泵之前,以拦截大块漂浮物以及较小物体,以保护水泵及管道不受阻塞。 (2)沉淀 沉淀是使水中悬浮物质(主要是可沉固体)在重力作用下下沉,从而与水分离,使水质得到澄清。这种方法简单易行,分离效果良好,是水处理的重要工艺,在每一种水处理过程中几乎都不可缺少。按照水中悬浮颗粒的浓度、性质及其絮凝性能的不同,沉淀现象可分为:自由沉淀、絮凝沉淀、拥挤沉淀、压缩沉淀。 水中颗粒杂质的沉淀,是在专门的沉淀池中进行的。按照沉淀池内水流方向的不同,沉淀池可分为平流式、竖流式、辐流式和斜流式四种。 (3)气浮 气浮法亦称浮选,它是从液体中除去低密度固体物质或液体颗粒的一种方法。通过空气鼓入水中产生的微小气泡与水中的悬浮物黏附在一起,靠气泡的浮力一起上浮到水面而实现固液或液液分离的操作。其处理对象是:靠自然沉降或上浮难以去除的乳化油或相对密度接近于1的微小悬浮颗粒。 浮选过程包括微小气泡的产生、微小气泡与固体或液体颗粒的粘附以及上浮分离等步骤。实现浮选分离必须满足两个条件:一是必须向水中提供足够数量的

(环境管理)工业废水的物理化学处理

第13章工业废水的物理化学处理 13.1 混凝 处理环节:预处理、中间处理、最终处理、三级处理、污泥处理、除油、脱色。 胶体:憎水性对混凝敏感,亲水性需特殊处理 高分子絮凝剂:分子量大的水溶性差,分子量小的水溶性好,故分子量要适当。 混凝的操作程序:里特迪克程序。 1)提高碱度:加重碳酸盐(增加碱度但pH值不提高)――快速搅拌1~3min 2)投加铝盐或铁盐――快速搅拌1~3min 3)投加活化硅酸和聚合电解质之类的助凝剂――搅拌20~30min 应用:1)造纸和纸板废水:加入少量的硫酸铝即可有效地混凝。如表13-1 2)滚珠轴承制造厂含乳化油废水:用CaCl2破除乳化,用硫酸铝去除油脂、悬浮物、Fe、PO4。 13.2气浮 13.2.1 气浮的基本原理 气浮=固液分离+液液分离――用于悬浮物、油类、脂肪、污泥浓缩 原理:微气泡――粘附微粒――气浮体(密度小于水)――去除浮渣。 探讨: 1、水中颗粒与气泡粘附条件 (1)界面张力、接触角和体系界面自由能 任何不同介质的相表面上都因受力不均衡而存在界面张力 气浮的情况涉及:气、水、固三种介质,每两个之间都存在界面张力σ。 三相间的吸附界面构成的交界线称为润湿周边。通过润湿周边作水、粒界面张力作用线和水、气界面张力作用线,二作用线的交角称为润湿接触角θ。见图13-3和13-4。 θ>90,疏水性,易于气浮 θ<90, 亲水性 悬浮物与气泡的附着条件: 按照物理化学的热力学理论, 任何体系均存在力图使界面能减少为最小的趋势。 界面能W =σS S:界面面积;σ:界面张力 附着前W1 =σ水气+σ水粒(假设S 为1) 附着后W2=σ气粒 界面能的减少△W= W1-W2=σ水气+σ水粒-σ气粒 图13-4,σ水粒=σ气粒+σ水气COS(180?-θ) 所以: △W=σ水气(1-COSθ) 按照热力学理论, 悬浮物与气泡附着的条件:△W>0 △W越大,推动力越大,越易气浮。 (2)气-粒气浮体的亲水吸附和疏水吸附 由于水中颗粒表面性质的不同,所构成的气一粒结合体的粘附情况也不同。 亲水吸附:亲水性颗粒润湿接触角(θ)小,气粒两相接触面积小,气浮体结合不牢,易脱落。 疏水吸附:疏水性颗粒的接触角(θ)大,气浮体结合牢固。 根据△W=σ水气(1-COSθ),得: 1) θ→0, COSθ→1, △W= 0 气浮 θ<90, COSθ<1, △W<σ水气颗粒附着不牢 θ>90, △W>σ水气气浮――疏水吸附 θ→180 △W=2σ水气最易被气浮

某油田采出水处理技术

2014年第1期(总第447期 )上C H IN E SE &FO R E IG N E N T R E PR E N E U R S 1油田采出水处理的技术现状 在采油过程中需要大量的清水回注到地下油层中,以保证其稳定的采油压力。如果对采出水进行处理,并用于回注,则不仅可以满足石油开采中注水量不断增长的需要,同时节约大量水资源,既经济又环保。此外,由于采出水具有水温高、矿化度较高、与地层配伍性好等特点有利于驱油。 “十五及十一五前三年”,中国石油所属各油气田对采出水处理空前重视。在重力沉降、气浮等传统处理工艺的基础上对新工艺、新设备、高效化学药剂等进行了积极的研究和应用,使采出水达标率不断提高。但就目前来看,我国油田采出水技术仍处在初级阶段,其处理技术仍比较单一,在实际应用过程中仍有很多不足之处,加上没有完善的配套体系没有结合国外先进技术对油田原油过滤技术进行改进.使得现有油田采水技术在一定程度上缺乏深度处理。 由于各油田采出水的物理及化学性质差异较大,注水岩层的性质不同,回注水的水质标准是由地层的渗透率决定的。目前国内用于回注的油田采出水处理一般以《碎屑岩油注水水质推荐指标及分析方法》(SY/T5329-1994)作为指导,主要控制目标为油,悬浮物及悬浮物粒径。油田常用的采出水处理方法包括重力分离、化学凝聚、粗粒化、膜过滤与生物法等[1-3]。尽管含油废水的处理方法有多种,但各种方法都有其局限性,在实际应用中通常是2、3种方法联合分级使用,使出水水质达到排放标准。如大港王徐庄油田南一污水处理流程为:油田采出水→粗粒化→浮选→核桃壳过滤器→双滤料过滤器→注水站;新疆东河油田采用的工艺为:油田采出水→水力旋流→深床过滤器→注水站[4]。 2改造前处理工艺 此次改造油田属于低渗透油田,其第三采油工区东16污水处理站处理量为500m3/d ,处理工艺采用典型的两级沉降+两级压力过滤的处理工艺。 此种采出水回注处理工艺处理后水质能达到回注水的A3“8.3.2”(含油量≤8mg/L 、悬浮物固体含量≤3mg/L 、悬浮物粒径 中值≤2μm )标准。 然而随着聚合物驱采油技术的大规模推广应用,其在有效地提高原油采收率的同时,也导致油、水分离和含油废水处理的难度加大[5]。一方面由于聚合物驱采出水水质成份复杂,阴离子型聚合物的存在会严重干扰絮凝剂的使用效果,导致两级沉降工艺段未能有效地实现含油粗粒化和悬浮物凝聚并沉淀;另一方面由于-COO -基团的亲水水溶极化作用,导致对W/O 型乳状液具有一定的破坏作用,阻碍W/O 型乳状液的生成,却有助于O/W 型乳状液的生成,在带有大量负电荷的颗粒外围又包裹了一层水化壳,从而增强了水中油滴等颗粒的乳化稳定性,使得工艺除油的效果不佳;此外,由于聚合物吸附性较强,携带的泥沙量较大,也增大了压力滤器的负荷,从而导致过滤效果变差,反洗周期缩短等问题。最终导致出水水质无法达标的现象。随着该油田专项治理工作的开展,为解决现有的问题,在对油田进行出水处理时,就应尽可能的采用新的处理技术,将油田采出水问题降至最低,进而使油田采出水水质达到正常标准。 3处理工艺流程改造 3.1工艺流程 针对上述传统的回注水处理工艺无法达标的现状,结合油田管理层提出的改造后回注水标准达到特低渗透油层回注水的A1“5.1.1”(含油量≤5mg/L 、悬浮物固体含量≤1mg/L 、悬浮物粒径中值≤1μm )水质标准的要求,参考国内外油田污水处理技术的发展趋势[6],确定了一套含油污水处理新工艺。 在本油田采出水处理新工艺中首次将CAF 涡凹气浮技术、高效流砂过滤器技术与超滤膜分离技术应用于油田回注水的预处理与深度处理中。首先,氧化曝气去除废水中的硫化物,降低其对混凝药剂的干扰;其次气浮和流砂过滤系统有效去除了污水中油污和悬浮物,减少膜的负荷,最后废水经过超滤系统,水质达到“5.1.1”标准。3.2氧化曝气除硫装置 通过对来水检测,发现水中硫化物含量平均值为40.2mg/L ,水中过高的含硫量会影响系统的出水水质。在现场实验中,不 收稿日期:2013-12-20 作者简介:张晓蕾(1982-),女,湖北宜昌人,销售经理,中级工程师,研究方向:项目管理。 某油田采出水处理技术 张晓蕾 (英国海诺威有限公司, 上海201199)摘 要:在原有油田采出水处理工艺的技术基础上进行改造,设计并构建了新的采出水处理工艺,该工艺采用了先 进高效的涡凹气浮系统和连续流砂过滤器,并引入PVC 合金超滤膜技术,工艺流程为:三相分离器来水→氧化曝气除硫→涡凹气浮系统→高效流砂过滤器→PVC 合金超滤膜→注水站。工艺出水达到了油田回注水中A1“5.1.1”(含油量≤5mg/L 、悬浮物固体含量≤1mg/L 、悬浮物粒径中值≤1?m )标准。 关键词:油田采出水;涡凹气浮;流砂过滤器;超滤膜中图分类号:TE3 文献标志码:A 文章编号:1000-8772(2014)01-0211-02 【科技与管理】Technology And Management 211

2020年承德石油高等专科学校招生专业目录 附各学院专业设置 .doc

2020年承德石油高等专科学校招生专业目 录附各学院专业设置 2020年承德石油高等专科学校招生专业目录附各学院专业设置 更新:2019-12-27 13:50:06 每个大学开始的专业都不相同,本文为大家介绍关于承德石油高等学校招生专业的相关知识。 包含承德石油高等专科学校有哪些系、承德石油高等专科学校各个系有什么专业和承德石油高等专科学校相关文章推荐的文章。 一、承德石油高等专科学校有哪些系和学院学院机械工程系电气与电子系热能工程系化学工程系计算机与信息工程系汽车工程系石油工程系建筑工程系管理工程系外语与旅游系二、承德石油高等专科学校各个系有哪些专业学院专业机械工程系机械制造与自动化(专) 机械制造与自动化(与德国安哈尔特应用技术大学合办)(专)焊接技术与自动化(专) 化工装备技术(专) 数控技术(专) 工业设计(专) 机械设计制造及其自动化(工程教育本科)(专)

机械设计制造及其自动化(专)电气与电子系电子产品营销与服务(专) 工业过程自动化技术(专) 应用电子技术(与德国安哈尔特应用技术大学合办)(专) 电气自动化技术(专) 应用电子技术(专) 工业自动化仪表(专) 电气工程及其自动化(工程教育本科)(专)热能工程系建筑智能化工程技术(专) 电厂热能动力装置(专) 油气储运技术(城市燃气方向)(专) 油气储运技术(专) 供热通风与空调工程技术(专) 电厂热工自动化技术(专)化学工程系环境工程技术(专)石油化工技术(专) 工业分析技术(专) 药品生产技术(专) 精细化工技术(专) 应用化工技术(与德国安哈尔特应用技术大学合办)(专) 化学工程与工艺(工程教育本科)(专)计算机与信息工程系云计算技术与应用(校企合作办学)(专) 计算机网络技术(校企合作办学)(专) 计算机应用技术(校企合作办学)(专) 软件技术(校企合作办学)(专) 数字媒体应用技术(校企合作办学)(专) 软件技术(与韩国新罗大学合办)(专)

电厂化学水处理完整版

第一章水质概述 第一节天然水及其分类 一、水源 水是地面上分布最广的物质,几乎占据着地球表面的四分之三,构成了海洋、江河、湖泊以及积雪和冰川,此外,地层中还存在着大量的地下水,大气中也存在着相当数量的水蒸气。地面水主要来自雨水,地下水主要来自地面水,而雨水又来自地面水和地下水的蒸发。因此,水在自然界中是不断循环的。 水分子(H2O)是由两个氢原子和一个氧原子组成,可是大自然中很纯的水是没有的,因为水是一种溶解能力很强的溶剂,能溶解大气中、地表面和地下岩层里的许多物质,此外还有一些不溶于水的物质和水混合在一起。 水是工业部门不可缺少的物质,由于工业部门的不同,对水的质量的要求也不同,在火力发电厂中,由于对水的质量要求很高,因此对水需要净化处理。 电厂用水的水源主要有两种,一种是地表水,另一种是地下水。 地表水是指流动或静止在陆地表面的水,主要是指江河、湖泊和水库水。海水虽然属于地表水,但由于其特殊的水质,另作介绍。 天然水中的杂质 要有氧和二氧化碳天然水中的杂质是多种多样的,这些杂质按照其颗粒大小可分为悬浮物、胶体和溶解物质三大类。 悬浮物:颗粒直径约在10-4毫米以上的微粒,这类物质在水中是不稳定的,很容易除去。水发生浑浊现象,都是由此类物质造成的。 胶体:颗粒直径约在10-6---10-4毫米之间的微粒,是许多分子和离子的集合体,有明显的表面活性,常常因吸附大量离子而带电,不易下沉。 溶解物质:颗粒直径约在10-6毫米以上的微粒,大都为离子和一些溶解气体。呈离子状态的杂质主要有阳离子(钠离子Na+、钾离子K+、钙离子Ca2+、镁离子Mg2+),阴离子(氯离子CI -、硫酸根SO42-、碳酸氢根HCO3-);溶解气体主。 水质指标 二、水中的溶解物质 悬浮物的表示方法:悬浮物的量可以用重量方法来测定(将水中悬浮物过滤、烘干后称量),通常用透明度或浑浊度(浊度)来代替。 溶解盐类的表示方法: 1.含盐量:表示水中所含盐类的总和。 2.蒸发残渣:表示水中不挥发物质的量。 3.灼烧残渣:将蒸发残渣在800℃时灼烧而得。 4.电导率:表示水导电能力大小的指标。 5.硬度的表示方法:硬度是用来表示水中某些容易形成垢类以及洗涤时容易消耗肥皂得一类物质。对于天然水来说,主要指钙、镁离子。硬度按照水中存在得阴离子情况。划分为碳酸盐硬度和非碳酸盐硬度两类。

高分子吸水树脂在油田化学中的应用_周效全

油田化学 高分子吸水树脂在油田化学中的应用 周效全 (四川石油管理局天然气研究院,646002泸州邻玉场) 摘 要 高分子吸水树脂因其奇特的性能在工业、农业、日常生活等应用领域得到迅速发展。 本文主要探讨高分子吸水树脂在油田化学中开发应用的可能性。 主题词 高分子化合物 树脂 油田化学 应用 分析 高分子吸水树脂是由美国农业部北方研究中心的范特(Fanta)等人在60年代末期首先开发研究成功的,它是用铈盐作引发剂合成的淀粉 丙烯腈接枝共聚物的水解产物。因高分子吸水树脂奇特的性能和可观的应用前景,30年来发展极其迅速,由一般的应用性能、功能,向智能化多功能材料高层次开发发展,其应用领域已经渗透到国民经济的各行各业。然而,在石油工业的油田化学领域的开发应用未见报道,故本文旨在油田化学相关专业领域对高分子吸水树脂的应用作些探讨,以期引起油田化学工作者的兴趣。 高分子吸水树脂技术发展概况 高分子吸水树脂是一种含有强亲水性基团和疏水性基团,通常具有一定交联度的三维高分子材料。它不溶于水和有机溶剂,通过物理化学作用,吸水能力可达自身重量的几十倍甚至上千倍,迄今为止,研制成功的高分子吸水树脂最高吸水倍数可达5000倍。高分子吸水树脂达到吸水平衡后就成为高聚物水凝胶。高分子吸水树脂具有高吸水性、高保水性、高增稠性三大功能,并且已向着智能性高聚物水凝胶发展。其类型有天然聚合物接枝共聚物类、半合成聚合物类和合成聚合物类三大类,产品形态有粉状、颗粒状、球形状、薄片状、纤维状、胶乳状等。高分子吸水树脂是高分子电解质,水溶液中盐类物质的存在、pH值的变化都可能显著影响高分子吸水树脂的吸水能力。这就限制了高分子吸水树脂在含盐流体领域内的应用。如何改变高分子吸水树脂对盐类物质、pH值的敏感性,增强其对盐、pH值的抗敏性,这是今后研究高分子吸水树脂要解决的重大课题。90年代以来,这类研究尤其活跃,取得一些突破性进展。如美国专利文献 1 上报道的采用相当量的摩尔数的氨基或季铵基与羧基反应生成的聚合物树脂,可吸收大量含二价阳离子(如Ca2+,Mg2+)等的水溶液。 油田化学应用高分子吸水树脂的探讨 1 在油气田地面管输建设中作密封材料 将高分子吸水树脂与塑料或橡胶等材料混合,采用添加表面活性剂的方法,使树脂与塑料或橡胶的不相容性得到明显的改善,制成密封材料。也可经过特殊处理制成特殊的密封材料,这种特殊材料遇到水或其它水性流体就急速发生膨胀,因此具有很好的密封性。在石油工业中,油气管输或其它流体管输是很常见的,要过江过河,为了防止油气渗漏、废水渗漏等污染环境,减少资源浪费,必须在管输连接处,甚至整条管输线作密封或包装密封处理,高分子吸水树脂类密封材料是理想的选择。 2 在油气田钻探中用作化学堵漏材料 化学堵漏在油气田钻探过程中是一种重要的技术措施。80年代以来,油田化学工作者开展了化学堵漏材料的研究和现场应用,取得了较大进展,但因价格昂贵等因素,在一定程度上又阻碍了化学堵漏剂技术的发展 2 。目前,现场已开发应用的高分子吸水树脂类的堵漏剂有SYZ,PAT和TP 9010型品牌。然而因其吸淡水倍数不高,一般只有30倍~ 70倍,以及其它方面的技术因素,致使堵漏作业效果不甚理想,成本上升。因此,应大力研究开发高吸水倍数的,耐压性好的,并能抗一定电解质浓度的高分子吸水树脂类堵漏剂,并降低堵漏成本。开发合成型高浓度胶乳(W/O)型(乳液或微乳液型)高分子吸水树脂类堵漏剂预计有较大的应用前景。 3 在油气田钻探中作钻井液处理剂 七五 、 八五 以来,水溶性高分子在油气田钻 66 钻 采 工 艺 1998年 第21卷 第5期

油田含油污水处理工艺

油田含油污水处理工艺 目前我国很多陆地油田都属于渗透性油藏,在油田生产开采中后期阶段,这种情况下都会采取注水开发工艺,而注水工艺的水源主要是来自油田含油污水处理后的净化水,而少量经过生化处理后的水进行外排,但是根据相关水质标准要求,油田含油污水外排一定要达到污水综合排放相关排放标准的具体要求。这就要求油田企业必须要针对污水处理工艺进行不断改进,这样才能满足生产实际需求。 1 污水处理工艺改进 1.1 增加预脱水器 由于目前油田生产规模在不断扩大,导致来液量急剧增加,联合站的原油脱水处理工艺流程经常会处在超负荷运行状态下。针对这种现象,可以通过现有的脱水系统进行扩建改造,在其中引入与脱水器,来针对来液进行预处理,这样就能够有效提升油田脱水处理系统出口处的含油标准,保证整个生产系统实现正常运行。 易脱水处理主要具有以下一些优点:首先,预脱水技术采用了范围相对比较大的油水液面调节技术,从而使得预脱水器实际的分离适应力得到有效提升,能够完全满足油田在不同生产开采阶段油水分离的实际需求。其次,充分运用了中间层洗涤技术。根据来液物性的差异,针对中间层的厚度进行合理控制,以此来充分保证油水实现有效分离。最后,通过设置水力排砂机构,针对脱水器进行定期冲砂处理,这样就能够充分保证实现正常运转。 1.2 污水处理系统改进 在实际进行污水处理的过程中,通常情况下都会采取多个核桃壳过滤器并联运行的方式,并且在每个核桃壳过滤器把顶部设置了相应的加油口,而且在核桃壳过滤器的进出口位置要分别设置相应的取样点。当整个过滤系统在投产使用后,由于进入过滤器内部的油污以及一些胶质物质会对核桃壳滤料产生较大的影响,从而导致滤料出现被污染现象,甚至出现板结或者滤速降低、水质变化等现象,在经过过滤后,水质不能满足实际要求。他这种情况在一些联合站超负荷运行状态下表现得尤为明显,如果来液中含有大量的杂质、乳化液、油污,就会导致在整个处理过程中整体处理质量,甚至在一些情况下经过过滤后的污水水质出现变坏现象。

第二章习题--水的物理化学处理方法

第二章 水的物理化学处理方法 2-1 自由沉淀、絮凝沉淀、拥挤沉淀与压缩沉淀各有什么特点?说明它们的内在区别和特点。 悬浮颗粒在水中的沉降,根据其浓度及特性,可分为四种基本类型: 自由沉淀:颗粒在沉降过程中呈离散状态,其形状、尺寸、质量均不改变,下沉速度不受干扰。 絮凝沉淀:沉降过程中各颗粒之间相互粘结,其尺寸、质量会随深度增加而逐渐增大,沉速亦随深度而增加。 拥挤沉淀:颗粒在水中的浓度较大,颗粒间相互靠得很近,在下沉过程中彼此受到周围颗粒作用力的干扰,但颗粒间相对位置不变,作为一个整体而成层下降。清水与浑水间形成明显的界面,沉降过程实际上就是该界面下沉过程。 压缩沉淀:颗粒在水中的浓度很高时会相互接触。上层颗粒的重力作用可将下层颗粒间的水挤压出界面,使颗粒群被压缩。 2-2 水中颗粒的密度s =2.6 3 /g cm ,粒径d=0.1 mm ,求它在水温10 ℃情况下的单颗粒沉 降速度。 解:6.7×10-3m/s 。 2-3 非絮凝性悬浮颗粒在静止条件下的沉降数据列于表2-22中。试确定理想式沉淀池过流率为1.8m 3/m 2h 时的悬浮颗粒去除率。试验用的沉淀柱取样口离水面120cm 和240cm 。ρ表示在时间t 时由各个取样口取出的水样中悬浮物的浓度,ρ0代表初始的悬浮物浓度。 2-4 生活污水悬浮物浓度300mg/L ,静置沉淀试验所得资料如表2-23所示。求沉淀效率为65%时的颗粒截留速度。

2-5 污水性质及沉淀试验资料同习题2-4,污水流量1 000m 3/h ,试求: (1)采用平流式、竖流式、辐流式沉淀池所需的池数及澄清区的有效尺寸; (2)污泥的含水率为96%时的每日污泥容积。 解:以平流式沉淀池为例:6座池子,长24m ,宽5m ,有效水深1.8m 。 污泥的含水率为96%时的每日污泥容积19.5m 3。 2-6 已知平流式沉淀池的长度L=20m ,池宽B=4m ,池深 H=2m 。今欲改装成斜板沉淀池,斜板水平间距10cm ,斜板长度l =1 m ,倾角60°。如不考虑斜板厚度,当废水中悬浮颗粒的截留速度0u =1 /m h 时,改装后沉淀池的处理能力与原池相比提高多少倍? 解:提高了5倍。 2-7 试叙述脱稳和凝聚的原理。 胶体脱稳的机理可归结为以下四种: A 压缩双电层:带同号电荷的胶粒之间存在着范德华引力和由ζ电位引起的静电斥力。这两种力抗衡的结果决定胶体的稳定性。一般当两胶体颗粒表面距离大于3nm 时,两个颗粒总处于相斥状态(对憎水胶体颗粒而言,两胶核之间存在两个滑动面内的离子层,使颗粒保持稳定的相斥状态;对于亲水胶体颗粒而言,其表面吸附了大量的水分子构成水壳,使彼此不能靠近而保持稳定。) 在水处理中使两胶体颗粒间距减少,发生凝聚的主要方法是在水中投加电解质。电解质在水中电离产生的离子可与胶粒的反离子交换或挤入吸附层,使胶粒带电荷数减少,降低ζ电位,并使扩散层厚度减小。 B 吸附电中和:胶粒表面对异号离子、异号胶粒或链状高分子带异号电荷的部位有强烈的吸附作用,使得胶粒表面的部位或全部电荷得以中和,减少静电斥力,致使颗粒间易于接近而相互吸附。 C 吸附架桥:如果投加的化学药剂是能吸附胶粒的链状高分子聚合物,或者两个同号胶粒吸附在同一异号胶粒上,胶粒就能连结、团聚成絮凝体而被除去。 D 网捕作用:含金属离子的化学药剂投入水中后,金属离子会发生水解和聚合,并以水中的胶粒为晶核形成胶体状沉淀物,或者沉淀物析出时吸附和网捕胶粒与之共同沉降下来。 2-8 铝盐的混凝作用表现在哪些方面? 铝盐/铁盐在水处理中发挥的三大作用: A pH 值偏低,胶体及悬浮物浓度高,投药量尚不足的反应初期,以Al 3+或Fe 3+和低聚合度高电荷的多核羟基配合物的脱稳凝聚作用为主; B pH 值和投药量适中时,以高聚合度羟基配合物的桥连絮凝作用为主; C pH 值较高,胶体及悬浮物浓度较低,投药充分时,以氢氧化物沉淀形式存在的网捕絮凝作用为主。 2-9 混合和絮凝反应主要作用是什么?对搅拌各有什么要求? 混合的目的是迅速均匀地将药剂扩散于水中,溶解并形成胶体,使之与水中的悬浮微粒等接触,生成微小的矾花。这一过程的要求:搅拌强度大,产生激烈湍流,混合时的流速应在1.5m/s 以上,混合时间短(不超过2分钟),一般为10~30s 。 反应设备的任务是使细小的矾花逐渐絮凝成较大颗粒,以便于沉淀除去。反应设备要求水流有适宜的搅拌强度,既要为细小絮体的逐渐长大创造良好的碰撞机会和吸附条件,又要防止已形成的较大矾花被碰撞打碎。因此,搅拌强度比在混合设备中要小,但时间比较长,常为10~30min 。

化学水处理专业设计统一规定

化学水处理专业 设计统一规定 版次 REV. 升版日期 DATE 说 明 DESCRIPTION 设计阶段 DES.PHASE 初步设计 项目代号 PROJECT CODE : 201521 装置: JOB 业主 OWNER : 山东晋煤明升达化工有限公司 编制: DESIGNED 项目 PROJECT : 晋煤明升达40.60项目 校核: CHECKED 审核: APPROVED 日期: DRAWN DATE 编号 DWG.NO.: 该文件所含内容未经本公司授权不得复制、泄露、或供他人使用。 THIS DOC. IS THE PROPERTY OF EAST CHINA ENGINEERING SCIENCE AND TECHNOLOGE CO. LTD UNAUTHORIZED DISCLOSURE TO ANY THIRD PARTY OR DUPLICATION IS NOT PERMITTED

版次修订说明 REV.0 暂无修订

目录 1总则 (3) 1.1 目的 (3) 1.2 适用范围 (3) 1.3 设计范围 (3) 2设计基础数据 (4) 2.1 概述 (4) 2.2 设计条件 (4) 3设计原则 (10) 4工程设计规定 (11) 5 系统选择规定 (12) 5.1 反渗透装置 (12) 5.2 超滤装置 (13) 5.3 离子交换器 (13) 5.4 水箱类 (13)

1 总则 1.1 目的 为统一山东晋煤明升达化工有限公司退城进园、等量替代、原料路线及节能技术改造暨年产40万吨合成氨60万吨尿素项目化学水处理专业在工程设计工作中的的设计基础、设计原则和采用标准,提高设计文件的标准化程度以及设计质量,特制订本规定。 1.2 适用范围 本文件适用于山东晋煤明升达化工有限公司退城进园、等量替代、原料路线及节能技术改造暨年产40万吨合成氨60万吨尿素项目各装置院化学水处理专业设计文件的编制。本工程的设计承包商均应执行本规定。 本规定若有不完善之处,可参照执行相关的国家、行业的标准、规范和规定,同时本规定将不断加以补充、完善和修改。 本规定执行过程中,当出现下列情况时,各设计承包商有义务提出修改或补充的建议,经确认后生效: (1) 完善或修订某条款时; (2) 执行指定规范产生矛盾时; (3) 遇特殊情况不能执行某条款时。 1.3 设计范围 本工程化学水处理专业的设计范围包括山东晋煤明升达化工有限公司退城进园、等量替代、原料路线及节能技术改造暨年产40万吨合成氨60万吨尿素项目化工装置、配套公用工程以及锅炉装置所用脱盐水、回收的工艺冷凝凝和透平冷凝液的处理系统

油田采出水处理工艺技术进展

油田采出水处理工艺技术进展 发表时间:2019-07-03T12:02:40.443Z 来源:《基层建设》2019年第10期作者:孙丽 [导读] 摘要:随着我国的发展,我国科技不断进步,各行各业对于石油的需求也越来越高,现在油田的开采进入中后期,提取液的含水量越来越高,提取水处理量也相应增加。 大庆油田采油一厂第六油矿609站所队605污水站 163000 摘要:随着我国的发展,我国科技不断进步,各行各业对于石油的需求也越来越高,现在油田的开采进入中后期,提取液的含水量越来越高,提取水处理量也相应增加。如果没有适当地进行水处理,注入将导致注水管网腐蚀和结垢,对地层造成污染并影响注水效果。本文介绍了油田提取水的组成,梳理了主要处理方法和工艺流程的技术和应用,并提出了今后提取水处理的研究方向。 关键词:工艺技术;油田;采出水处理 水驱是补充地层能量的重要手段。水质处理和注水系统作为油田生产的重要组成部分,对维持稳产,节约水资源,保护生态环境起着决定性的作用。随着相关法律法规的颁布和实施,气田水的处理尤为重要。本文综述了近年来油田水处理技术的发展,并根据油田水处理现状提出了今后的研究方向,对今后的水处理具有一定的指导意义。 1概述油田采出水 从油层中提取油田水和原油,并通过原油的初始处理去除废水。因此,这部分废水不仅携带原油,而且还溶解在高温高压油层中的各种盐和气体中。在采油过程中,地层中含有大量的悬浮物质。在石油和天然气的收集和运输过程中,增加了一些化学品。由于产出水中含有大量有机物,适合微生物的环境,因此废水中会有大量的细菌繁殖。因此,从油田产生的水是含有大量杂质的废水。特点:水温高,盐度高,细菌,溶解氧低,破乳剂。 2水质指标确定 表 2 碎屑岩油藏注水水质推荐指标 3采出水常用处理方法 重力分离法主要使用天然沉淀池和混凝沉淀池。天然除油沉淀池主要用于去除浮油和分散的油。除了上部罐流量之外,进水管由油水分离密度的差异分开。根据水质特征,通过一般经验估算沉淀时间,并且上部流中的浮油和分散的油在上部流中被分离和释放。在将过滤器ER设置在提取水的底部之后,水从管道流出到下一个处理装置中。凝结沉淀池主要通过外部压力进行。将絮凝剂,杀真菌剂,水净化剂和其他试剂加入水中以除去悬浮液。它大大缩短了结算时间,提高了生产时间。凝结沉淀物包括:漂浮以除去油和悬浮液;少量相对密集的悬浮液沉入池底。也就是说,从罐排出的废水在进入二级罐之前进入二级罐。在入口管中加入凝结剂后,沿切线方向将其加入二次反应中。除了水箱的中心,它从底部向上旋转并流动。凝结剂完全混合。来自关节头的反应均匀地进入罐中,然后从顶部到底部缓慢移动,沉淀并分离。在流动过程中,脏油携带的大部分悬浮物质上升到油层并通过管道流出。油滴和一些杂质凝结成一大群并沉到底部。伞下的水通过出口斜管进入调节槽,然后通过排放管流出调节槽进入缓冲调节池。 目前,离心分离技术已广泛应用于国内外大多数海上和陆上油田。主要原理是高速射流产生的水在装置中高速旋转产生离心力,悬浮物和其他粗颗粒被抛入装置内壁并被收集和流出。水从溢洪道流出,进入下一个过程。 粗粒的原理是找到一种方法,使水中的油滴直径更大(粗粒度),以达到油水分离的目的。粗提处理后的提取水,水质不变化是这个方法的原则,使水中的油滴直径更大(粗粒),以达到油水分离的目的。在对提取的水进行粗粒处理之后,水质不会改变每种组分含量的性质。只有数量级的油才会变得更大,更容易应用于自然或重力沉降分离过程。这是一个分离和预处理的过程。粗粒材料应使用油湿敏感性。OBIC材料如石英砂,无烟煤,蛇纹石,树脂等材料。根据斯托克定律,油滴在水中上升的速度与油滴直径的平方成正比。并发冷凝理论:小颗粒团聚和生长的影响是流体扰动导致颗粒之间碰撞的结果,这被称为同时冷凝。碰撞聚集是油滴的物理碰撞,产生更大的油滴。例如,倾斜碰撞。润湿附聚是一种特殊的材料(油和疏水材料),表面上的油滴快速润湿。固体材料对液体具有不同的润湿性,当两相之间的湿角差在同一表面上大于70°时,反映接触区两相的不同润湿角,这两个阶段可以分开。在疏水材料的表面上,油滴被大量粗粒颗粒吸引。 过滤分离技术用于在提取水通过滤床时去除水中的悬浮液和油,结合阻力拦截,重力沉降和接触絮凝的效果。目前,主要油田有石英砂过滤器,核桃壳过滤器,双过滤材料过滤器,多过滤材料精细过滤器等。目前,一些油田采用纤维过滤,具有过滤精度高,反洗彻底,使用寿命长的优点。它属于精细过滤。 膜选择性渗透分离纯化采油废水。作用机理是在液 - 液分散体系中使用一个(或一对)多孔滤膜,通过在两相和固体膜表面之间使用不同的亲和力来实现分离目的。在膜分离技术中,通常使用反渗透,超滤,微滤和纳滤。常用的材料包括醋酸纤维素体系,乙烯基聚合物和共聚物,聚酰胺等。 化学处理方法主要用于处理提取水中不能通过物理或微生物方法去除的某些物质,主要是乳化油,老化油和胶体沥青。化学处理方法往往是针对性的,可以有效去除杂质,并使水质合格。常用的方法包括化学裂解和化学氧化。该化学方法主要用作水处理的预处理技术或与其他方法结合使用。比如某油田COD从650 mg / L降至3000 mg / L,有效去除率为35%。在海上油田的开发中,由于水中含有多种聚合苯芳烃,其他方法难以达到标准,且化学处理效果较好。 气浮原理是利用高度分散的微小气泡作为载体,将其附着在水中的悬浮物上,使密度小于水的物质漂浮在水面上,实现固液分离或液

油田化学主要应用技术

油田化学主要应用技术 发布日期:2010-3-23 浏览次数:303 本资料需要注册并登录后才能下载! ·用户名密码验证码找回密 码 ·您还未注册?请注册 您的账户余额为元,余额已不足,请充值。 您的账户余额为元。此购买将从您的账户中扣除费用0.0元。 本站资料统一解压密码:https://www.360docs.net/doc/386810251.html, 内容介绍>> 油田化学是研究油田钻(完)井、采油、注水、提高采收率、原油集输等过程中化学问题的科学。 油田化学是由钻井化学、采油化学和集输化学三部分组成。这些部分构成了油田化学的研究对象。 钻井、采油和原油集输虽然是不同的过程,但他们是互相衔接的,因此油田化学三个组成部分虽有各自的发展方向,但他们是互相关联的。 钻井化学主要研究钻井液和水泥浆的性能及其控制与调整。 采油化学主要研究油层化学改造(化学驱)和油水井化学改造。 集输化学主要研究埋地管道的腐蚀与防护、乳化原油的破乳与起泡沫原有的消泡、原油的降凝输送与减阻输送、天然气处理与油田污水处理等问题。 油田化学与其他科学紧密联系: 油田化学中的一个任务是改造油层。因此,油田地质学是油田化学研究的重要基础之一。 油田化学是化学与钻井工程、油气田开采工程(包括采油工程和有藏工程)、集输工程等工程学之间的边缘科学,油田化学所要解决的问题是这些工程学提出的,因此,油田化学与这些工程学紧密联系。 由于化学也是认识油层和改造油层的重要手段,因此各门基础化学(无机化学、有机化学、分析化学、物理化学、表面化学、胶体化学等)自然成为油田化学的基础。 油田化学是通过油田化学剂改造油层。油田化学剂通常是溶解在各种溶剂(流体)中使用的。油田化学剂的溶解,其后在界面上的吸附及在各相中的分配均对使用体系的性质产生重要影响。这些影响必须用流体力学和渗流力学的方法进行研究,因此油田化学与流体力学和渗流力学紧密联系。 油田化学研究的内容: 油田化学的研究内容主要包括三个方面: 研究钻井、采油和原油集输等过程中存在问题的化学本质。 研究解决问题所使用的化学剂。 研究各种化学剂的作用机理和协同效应。 油田化学三个组成部分在解决各自的问题时,所应用的油田化学剂有许多是共同的。表面活性剂和高分子是他们最常用的两类化学剂。

相关文档
最新文档