(完整word版)高中_趣味数学题锦集
(word完整版)高三数学试题

高三数学试题一.填空题:1.假设某10张奖券中有1张,奖品价值100元,有二等奖3张,每份奖品价值50元;其余6张没有奖.现从这10张奖券中任意抽取2张,获得奖品的总价值ξ不少于其数学期望E ξ的概率为 .2.已知对任意的()()[],00,,1,1x y ∈-∞+∞∈-U ,不等式22268210x xy y a x x+----≥恒成立,则实数a 的取值范围为 .3.在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 。
4.已知()y f x =是定义在¡上的增函数, 且()y f x =的图像关于点(6,0)对称. 若实数x , y 满足不等式22(6)(836)0f x x f y y -+-+≤, 则22x y +的取值范围___________.5.已知一玻璃杯杯口直径6cm, 杯深8cm. 如图所示, 其轴截面截杯壁所得曲线是抛物线的一部分, 一个玻璃小球放入玻璃杯中, 若小球能够碰到杯底, 求小球半径的范围(不记玻璃杯的玻璃厚度).CPxO y二.选择题:6.已知O 是ABC ∆外接圆的圆心, A ,B ,C 为ABC ∆的内角, 若cos cos 2sin sin B C AB AC m AO C B ⋅+⋅=⋅u u u r u u u r u u u r , 则m 的值为 答 [ ] A. 1 B. sin A C. cos A D. tan A7.已知点列()(),n n n A a b n N *∈均为函数()0,1x y a a a =>≠的图像上,点列(),0n B n 满足1n n n n A B A B +=,若数列{}n b 中任意连续三项能构成三角形的三边,则a 的取值范围为( )(A )5151⎛⎫-++∞ ⎪ ⎪⎝⎭⎝⎭U (B )5151⎫⎛-+⎪ ⎪ ⎝⎭⎝⎭U (C ) 31310,,22⎛⎫⎛⎫+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭U (D )3131,11,22⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭U 8.过圆22(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半轴于点A 、B ,AOB ∆被圆分成四部分(如图),若这四部分图形面积满足|||,S S S S I ∏+=+¥则直线AB 有( )(A ) 0条 (B ) 1条 (C ) 2条 (D ) 3条三.解答题:9.已知直线2y x =是双曲线2222:1x y C a b-=的一条渐近线,点()()()1,0,,0A M m n n ≠都在双曲线C 上,直线AM 与y 轴相交于点P ,设坐标原点为O.(1)设点M 关于y 轴相交的对称点为N ,直线AN 与y 轴相交于点Q ,问:在x 轴上是否存在定点T ,使得?TP TQ ⊥若存在,求出点T 的坐标;若不存在,请说明理由.(2)若过点()0,2D 的直线l 与双曲线C 交于R,S 两点,且OR OS RS +=u u u r u u u r u u u r,试求直线l 的方程.xy O BCA10.已知双曲线22:12x C y -=, 设过点(A -的直线l 的方向向量为(1,)e k =r .(1) 当直线l 与双曲线C 的一条渐近线m 平行时, 求直线l 的方程及l 与m 的距离;(2) 证明: 当k 时, 在双曲线C 的右支上不存在点Q , 使之到直线l .11.已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数k ,对定义域中的任意x ,等式()f kx =2k+()f x 恒成立. (1)判断一次函数()f x =ax +b (a ≠0)是否属于集合M ;(2)证明函数()f x =2log x 属于集合M ,并找出一个常数k ;(3)已知函数()f x =log a x ( a >1)与y =x 的图象有公共点,证明()f x =log a x ∈M .12.设函数)(x f 和)(x g 都是定义在集合M 上的函数,对于任意的x M ∈,都有))(())((x f g x g f =成立,称函数)(x f 与)(x g 在M 上互为“H 函数”.(1)函数x x f 2)(=与x x g sin )(=在M 上互为“H 函数”,求集合M ;(2)若函数xa x f =)((0a a >≠且1)与1)(+=x x g 在集合M 上互为 “H 函数”,求证:1>a ;(3)函数2)(+=x x f 与)(x g 在集合1|{->=x x M 且32-≠k x ,*N k ∈}上互为“H函数”,当10<≤x 时,)1(log )(2+=x x g ,且)(x g 在)1,1(-上是偶函数,求函数)(x g 在集合M 上的解析式.13.设数列{}n a 的前n 项和为n S ,且()()21.n n n S a S n N*-=∈(1)求出123,,S S S 的值,并求出n S 及数列{}n a 的通项公式; (2)设()()111n n n n b a a n N +*+=-⋅∈,求数列{}n b 的前n 项和n T ;(3)设()()1n n c n a n N =+⋅∈*,在数列{}n c 中取出()3m m N m *∈≥且项,按照原来的 顺序排列成一列,构成等比数列{}n d ,若对任意的数列{}n d ,均有12n d d d M +++≤L ,试求M 的最小值.14.已知数列}{n a 的各项均为正数,其前n 项的和为n S ,满足nn a p S p -=-2)1((*N n ∈),其中p 为正常数,且1≠p .(1)求数列}{n a 的通项公式;(2)是否存在正整数M ,使得当M n >时,7823741a a a a a n >⋅⋅⋅⋅-Λ恒成立?若存在,求出使结论成立的p 的取值范围和相应的M 的最小值;若不存在,请说明理由;(3)若21=p ,设数列}{n b 对任意*N n ∈,都有2123121a b a b a b a b n n n n ---++++Λ 12121--=+n a b n n ,问数列}{n b 是不是等差数列?若是,请求出其通项公式;若不是,请说明理由.15.已知抛物线)0(2:2>=p px y C 上横坐标为4的点到焦点的距离等于5。
(完整word版)高等数学习题集(word文档良心出品)

必作习题
P157 9,10,11,12,13
必交习题
一、用简便方法求下列函数的导数:
(1) ;
(2) ;
二、求曲线 在 相应的点处的切线方程。
三、设曲线 在原点相切,求 。
四、落在平静水面的石头,产生同心波纹,若最外圈半径的增大率总是 ,问在2秒末扰动水面面积的增大率为多少?
四、设 ,又 ,求 。
§4初等函数的求导问题§5高阶导数
必作习题
P121-122 2(双数号题),3(单数号题);
P126-127 1(单数号题),2,3,4,5,9
必交习题
一、求下列函数的导数
(1)
(2) ;
(3)
(4)设 ,其中 具有二阶导数,求 .
二、将多项式 ,改写成 ,求 。
三、设 ,其中 有二阶连续导数,问 是否存在;若不存在,请说明理由;若存在,求出其值。
第二章导数与微分
§1导数概念
必作习题
P105-107 1,4,5,6,9,12
必交习题
一、设函数 在 处连续,且 ,求 。
二、确定 的值,使函数 在 处可导。
三、求下列函数 的 ,并问 是否存在?
(1) ;
(2)
四、在抛物线 上取横坐标为 的两点,作过这两点的割线,问该抛物线上哪一点的切线可平行于这割线?
§2函数的和、差、积、商的求导法则
§3反函数的导数复合函数的求导法则
必作习题
P111 2,3,4,5;
P118-119 1(单数号题),2(双数号题),3(单数号题)
必交习题
一、求下列函数的导数:
(1) ;
(2) ;
(3) ;
(4)
(5) ;
(完整word版)高中数学必修二第二章经典练习试题整理

完美格式整理版A. 相交 B .异面 C .平行 D •异面或相交第I 卷(选择题) 请修改第I 卷的文字说明6.设四棱锥P- ABCD 勺底面不是平行四边形,用平面(如图),使得截面四边形是平行四边形,则这样的平面a ( )1.在空间,下列哪些命题是正确的( )•① 平行于同一条直线的两条直线互相平行 ② 垂直于同一条直线的两条直线互相平行 ③ 平行于同一个平面的两条直线互相平行 ④ 垂直于不一个平面的两条直线互相平行 A •仅②不正确 B.仅①、④正确 C .仅①正确 D.四个命题都正确2. 如果直线a 是平面a 的斜线,那么在平面%内( )A不存在与a 平行的直线 B不存在与a 垂直的直线C 与a 垂直的直线只有一条D 与a 平行的直线有无数条A.不存在B .只有1个C •恰有4个D.有无数多个高一数学必修二第二章经典练习题a 去截此四棱锥 3.平面a 内有一四边形 ABCD P 为a 外一点, P 点到四边形ABCD 各边的距离相等,则这个四边形 A 必有外接圆 BD 必是正方形必有内切圆( )C既有内切圆又有外接圆4.已知六棱锥PA ±平面 ABC PA= 2AB , 则下列结论正确的是( )A . PB 丄ADBC .直线BC//平面PAED 平面PABL 平面PBC直线PD 与平面ABC 所成的角为45 7.设P 是厶ABC 所在平面外一点, 到厶ABC 各边的距离也相等,那么△ A 是非等腰的直角三角形 BC 是等边三角形DP 到厶ABC 各顶点的距离相等,而且 PABC ( ) 是等腰直角三角形不是A 、B 、C 所述的三角形8.已知正四棱锥S ABCD 的侧棱长与底面边长都相等 点,则AE , SD 所成的角的余弦值为 ,E 是SB 的中 A. 13B.-23 C-33D. 23完美格式整理版5•若a , b是异面直线,直线c // a,则c与b的位置关系是(完美格式整理版侧面BB 1C 1C 的中心,贝V AD 与平面BB 1C 1C 所成角的大小是()15.在正方体ABCD A 1B 1C 1D 1中,0为正方形ABCD 中心,则厲0与平 面ABCD所成角的正切值为() A.、2B.—2C.1D.二323A . 30°B . 45°C . 60°D . 90° w.w.w.k.s.5.u.c.o.m 12.已知直线I 、m ,平面、,且| , m ,则//是I m 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件16.在正方体 ABCDAB 1C 1D 1中,若E 是A 1C 1的中点,则直线 CE 垂直于( )A ACBBD C A ,D DA 1D 117.四条不共线的线段顺次首尾连接,可确定平面的个数是()A. 1 B . 3 C . 4D. 1 或 49.正方体 ABC —ABCD 中,E 、F 分别是 AA 与CG 的中点,则直线 与DF所成角的大小是 ()EDA .B 。
(完整word版)高中数学计算题专项练习一(3)

高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅰ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅰ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)Ⅰlog2x=3或log2x=﹣1Ⅰx=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,Ⅰ,,Ⅰa+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)Ⅰ﹣2x2+5x﹣2>0Ⅰ,Ⅰ原式===(8分)(2)Ⅰ,Ⅰ原不等式等价于x<1﹣x,Ⅰ此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对!10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅰ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅰ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,Ⅰ4x=3,,Ⅰ4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。
(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语经典大题例题

(每日一练)(文末附答案)(Word版含答案)高中数学集合与常用逻辑用语经典大题例题单选题1、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.2、下列关系中,正确的是()A.√3∈N B.14∈Z C.0∈{0}D.12∉Q答案:C分析:根据元素与集合的关系求解.根据常见的数集,元素与集合的关系可知,√3∈N,14∈Z,12∉Q不正确,故选:C3、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q>0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.4、对与任意集合A,下列各式①∅∈{∅},②A∩A=A,③A∪∅=A,④N∈R,正确的个数是()A.1B.2C.3D.4答案:C分析:根据集合中元素与集合的关系,集合与集合的关系及交并运算可判断.易知①∅∈{∅},②A∩A=A,③A∪∅=A,正确④N∈R,不正确,应该是N⊆R故选:C.5、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可.解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.6、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.7、已知集合A={x|1x>1},则∁R A=()A.{x|x<1}B.{x|x≤0或x≥1}C.{x|x<0}∪{x|x>1}D.{x|1≤x}答案:B分析:先解不等式,求出集合A,再求出集合A的补集由1x >1,得1−xx>0,x(1−x)>0,解得0<x<1,所以A={x|0<x<1},所以∁R A={x|x≤0或x≥1}故选:B8、设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( )A .{3}B .{1,6}C .{5,6}D .{1,3}答案:B分析:根据交集、补集的定义可求A ∩(∁U B).由题设可得∁U B ={1,5,6},故A ∩(∁U B)={1,6},故选:B.9、命题“∀x <0,x 2+ax −1≥0”的否定是( )A .∃x ≥0,x 2+ax −1<0B .∃x ≥0,x 2+ax −1≥0C .∃x <0,x 2+ax −1<0D .∃x <0,x 2+ax −1≥0答案:C分析:根据全称命题的否定是特称命题判断即可.根据全称命题的否定是特称命题,所以“∀x <0,x 2+ax −1≥0”的否定是“∃x <0,x 2+ax −1<0”.故选:C10、已知“命题p:∃x ∈R,使得ax 2+2x +1<0成立”为真命题,则实数a 满足( )A .[0,1)B .(-∞,1)C .[1,+∞)D .(-∞,1]答案:B分析:讨论a =0或a ≠0,当a =0时,解得x <−12,成立;当a ≠0时,只需{a >0Δ>0或a <0即可. 若a =0时,不等式ax 2+2x +1<0等价为2x +1<0,解得x <−12,结论成立.当a ≠0时,令y =ax 2+2x +1,要使ax 2+2x +1<0成立,则满足{a >0Δ>0或a <0,解得0<a <1或a <0,综上a <1,故选:B.小提示:本题考查了根据特称命题的真假求参数的取值范围,考查了分类讨论的思想,属于基础题. 多选题11、设全集U={1,2,3,4,5},集合S={1,2,3,4},则∁U S的子集为()A.{5}B.{1,2,5}C.{2,3,4}D.∅答案:AD分析:根据补集和子集的定义即可求出答案.因为C U S={5},集合{5}的子集有:∅,{5}.故选:AD.12、对任意实数a,b,c,给出下列命题,其中假命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充分不必要条件答案:ABD分析:根据充分、必要性的推出关系,判断各选项中条件间的关系,即可得答案.A:由a=b有ac=bc,当ac=bc不一定有a=b成立,必要性不成立,假命题;B:若a=1>b=−2时a2<b2,充分性不成立,假命题;C:a<5不一定a<3,但a<3必有a<5,故“a<5”是“a<3”的必要条件,真命题;D:a+5是无理数则a是无理数,若a是无理数也有a+5是无理数,故为充要条件,假命题.故选:ABD13、已知下列说法:①命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1<3x”;②命题“∀x,y∈R,x2+y2≥0”的否定是“∃x,y∈R,x2+y2<0”;③“a>2”是“a>5”的充分不必要条件;④命题:对任意x∈R,总有x2>0.其中说法错误的是()A.①B.②C.③D.④答案:ACD分析:①根据特称命题的否定是全称命题即可判断;②根据全称命题的否定是特称命题即可判断;③根据必要条件和充分条件的概念即可判断;④判断命题的真假.对于①,命题“∃x∈R,x2+1>3x”的否定是“∀x∈R,x2+1≤3x”,故错误;对于②,命题“∀x,y∈R,x2+y2≥0”的否定是“∃x,y∈R,x2+y2<0”,正确;对于③,“a>2”是“a>5”的必要不充分条件,故错误;对于④,当x=0时x2=0,故错误.故选:ACD.14、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.15、下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数答案:ACD分析:根据集合元素的性质可判断.根据集合的概念,可知集合中元素的确定性,可得选项A、C、D中的元素都是确定的,故选项A、C、D能构成集合,但B选项中“难题”的标准不明确,不符合确定性,不能构成集合.故选:ACD.16、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.17、定义集合运算:A⊗B={z∣z=(x+y)×(x−y),x∈A,y∈B},设A={√2,√3},B={1,√2},则()A.当x=√2,y=√2时,z=1B.x可取两个值,y可取两个值,z=(x+y)×(x−y)有4个式子C.A⊗B中有4个元素D.A⊗B的真子集有7个答案:BD分析:根据集合的定义可求出A⊗B,从而可判断各项的正误.A⊗B={z∣z=x2−y2,x∈A,y∈B}={1,0,2},故A⊗B中有3个元素,其真子集的个数为23−1=7,故C错误,D正确.当x=√2,y=√2时,z=0,故A错误.x可取两个值,y可取两个值,z=(x+y)×(x−y)共有4个算式,分别为:(√2+1)(√2−1),(√3+1)(√3−1),(√3+√2)(√3−√2),(√2+√2)(√2−√2),故B正确.故选:BD.小提示:本题考查新定义背景下集合的计算、集合子集个数的计算,注意不同的算式可以有相同的计算结果,另外,注意集合中元素的互异性对于集合表示的影响,本题属于基础题.18、已知全集为U,A,B是U的非空子集且A⊆∁U B,则下列关系一定正确的是()A.∃x∈U,x∉A且x∈B B.∀x∈A,x∉BC.∀x∈U,x∈A或x∈B D.∃x∈U,x∈A且x∈B答案:AB分析:根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.全集为U,A,B是U的非空子集且A⊆∁U B,则A,B,U的关系用韦恩图表示如图,观察图形知,∃x∈U,x∉A且x∈B,A正确;因A∩B=∅,必有∀x∈A,x∉B,B正确;若A∁U B,则(∁U A)∩(∁U B)≠∅,此时∃x∈U,x∈[(∁U A)∩(∁U B)],即x∉A且x∉B,C不正确;因A∩B=∅,则不存在x∈U满足x∈A且x∈B,D不正确.故选:AB19、设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8答案:AC分析:根据集合交集、补集、并集的定义,结合集合真子集个数公式逐一判断即可.因为全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},所以A∩B={0,1},∁U B={2,4},A∪B={0,1,3,4},因此选项A、C正确,选项B不正确,因为集合A={0,1,4}的元素共有3个,所以它的真子集个数为:23−1=7,因此选项D不正确,故选:AC20、下列命题中,是全称量词命题的有()A.至少有一个x使x2+2x+1=0成立B.对任意的x都有x2+2x+1=0成立C.对任意的x都有x2+2x+1=0不成立D.矩形的对角线垂直平分答案:BCD分析:判断各选项中命题的类型,由此可得出结果.A选项中的命题为特称命题,BCD选项中的命题均为全称命题.故选:BCD.填空题21、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:0∈Z},用列举法表示集合A,则A=__________.22、已知集合A={x∈Z∣32−x答案:{−1,1,3,5}分析:根据集合的描述法即可求解.∈Z},∵A={x∈Z∣32−x∴A={−1,1,3,5}所以答案是:{−1,1,3,5}23、已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是______. 答案:(−∞,2]分析:根据充分性和必要性,求得参数a的取值范围,即可求得结果.因为p:x>a是q:2<x<3的必要不充分条件,故集合(2,3)为集合(a,+∞)的真子集,故只需a≤2.所以答案是:(−∞,2].11。
(完整word版)高中数学新定义类型题

同步练习学校 :___________姓名: ___________班级: ___________考号:___________第 I 卷(选择题)请点击改正第I 卷的文字说明评卷人得分一、选择题(此题共22 道小题,每题 5 分,共 110分)a, a b x2 1.定义max{a, b},设实数 x, y 知足拘束条件y ,则b, a b2z max{4 x y,3 x y} 的取值范围是()(A)[8,10]( B)[ 7,10]( C)[6,8](D)2.对于复数a,b,c,d ,若会集S=a,b,c,d 拥有性质“对随意x,y S,必有 xy S”,则当a=1b2=1时 , b+c+d等于()c2 =bA、 1B、 -1C、 0D、 i3.在实数集 R 中定义一种运算“”,a, b R ,a b 为独一确立的实数,且拥有性质:(1)对随意a R , a0 a ;( 2)对随意a, b R ,a b ab (a0)(b0) .对于函数 f ( x)(e x )1的性质,有以下说法:①函数 f (x) 的最小值为 3 ;②函数e xf ( x)为偶函数;③函数 f ( x) 的单一递加区间为 (,0].此中正确说法的序号为()A.①B.①②C.①②③D.②③4.设A是整数集的一个非空子集,对于∈ ,假如k- 1?A且k+1? ,那么称k是集k A A合 A的一个“好元素”.给定会集S={1,2,3,4,5,6,7,8},由 S 的3个元素组成的所有会集中,不含“好元素”的会集共有()A .2 个B. 4 个C.6 个D.8个5.对于会集S{ x x2k1,k N}和会集 T{ x x a b, a, b S} ,若知足 T S ,则会集 T 中的运算“”能够是A.加法B.减法C.乘法D.除法6. 设函数f ( x)的定义域为 R,如果存在函数g (x)ax(a为常数),使得f ( x)g (x)对于一确实数x都建立,那么称g( x)为函数f (x)的一个承托函数. 已x知对于随意k(0,1) , g(x) ax 是函数f (x) e k的一个承托函数,记实数a的取值范围为会集 M,则有()A. e 1M , e MB. e 1M , e MC. e 1M , e MD. e 1M , e M7. 用C( A)表示非空集合 A中的元素个数,定义| AC( A) C(B), C( A)C( B)B |C( A), C( A).C(B)C( B)若 A{1,2} ,B { x | x22x3|a} ,且|A-B|=1,由 a 的所有可能值组成的会集为S,那么 C( S) 等于 ( )A.1 B.2C.3D.48. 对于会集M、 N,定义M -N= { x|x∈ M 且 x N} , M⊕ N=(M-N)∪ (N- M),设 A = { y|y= 3x, x∈ R} , B= { y|y=-x22x1,x∈R},则A⊕B等于()A . [0,2)B .(0,2]C. (-∞, 0]∪(2,+∞ ) D . (-∞, 0)∪ [2,+∞)9.在实数集R中定义一种运算“”,a, b R, a b 为独一确立的实数,且拥有性质:( 1)对随意aR , a 0 a ;(2)对随意a, b R,ab ab (a 0) (b0) .f ( x) (e x )1f (x)的最小值为3;②函数对于函数e x 的性质,有以下说法:①函数f ( x)为偶函数;③函数f ( x)的单一递加区间为 ( ,0] .此中所有正确说法的个数为()A . 0B . 1C . 2则称会集 A 对于运算“”组成“对称集”.下边给出三个会集及相应的运算“ ”:① A整数 ,运算“ ”为一般加法;②A复数,运算“”为一般减法;③A正实数,运算“”为一般乘法.此中能够组成“对称集”的有()A ①②B ①③C ②③ D①②③ D .3x (m1, m 1]10.给出定义 : 若22 (此中m为整数) , 则m叫做与实数 x“亲近的整数” , 记作 { x}m , 在此基础上给出以下对于函数 f ( x) x { x} 的四个命题 : ①函14.设f (x) 与g( x)是定义在同一区间在 x [ a, b]上有两个不同样样的零点,则称间[ a, b]称为“关系区间”.若f ( x)联函数”,则 m 的取值范围是 ()[a , b] 上的两个函数,若函数y f ( x) g( x)f ( x) 和 g( x) 在 [ a,b] 上是“关系函数”,区x 2 3x 4 与 g(x) 2xm在 [0,3] 上是“关数yf ( x) 在 x(0,1)上是增函数 ; ②函数yf (x)的图象对于直线 xk(kZ )2对称 ; ③ 函 数yf ( x)是 周 期 函 数 , 最 小 正 周 期 为 1; ④ 当x(0, 2] 时 , 函 数g( x)f ( x)ln x有两个零点 . 此中正确命题的序号是 ____________.A .②③④ B.①③ C .①② D .②④a b bc ,若函数 fxx 12在 (, m) 上单一递减,11.定义运算cad xx 3d则实数 m 的取值范围是A . ( 2, )B . [ 2, )C . ( , 2)D . ( , 2]12.对于函数 fx ,若a,b,c R ,fa , fb , fc 为某一三角形的三边长,则称fxf xe x t为“可结构三角形函数”,已知函数ex1 是“可结构三角形函数”,则实数 t的取值范围是1A .0,. 0,1. 1,2[ , 2]B CD. 213.对于会集 A ,假如定义了一种运算“ ”,使得会集A 中的元素间知足以下4 个条件:(ⅰ) a, bA,都有ab A ;(ⅱ) e A,使得对aA,都有ea a e a ; (ⅲ) aA ,aA,使得 aaaae ;(ⅳ)a, b, cA ,都有ab c ab c ,9 ,29 ,A.4B . [ - 1,0]C .( -∞,- 2]D.415.设函数f ( x)的定义域为 D ,假如对于随意的x 1D,存在独一的x 2D,使得f ( x 1 ) f ( x 2 )Cy f ( x) 在 D 上的均值为2C 为常数),则称函数建立(此中 C , 现 在 给 出 下 列 4 个 函 数 : ① yx 3② y4sin x ③ ylg x④y 2x ,则在其定义域上的均值为 2 的所有函数是下边的()A. ①②B. ③④C.①③④D.①③16.对随意实数 a, b 定义运算 " " 以下 a ba a bb a ,则函数bf ( x) log 1 (3x2) log 2 x 的值域为()2A.0, B.,0C. log 22D. 2,0log 2,3317.设 A, B 是非空会集,定义 A B { x | x AB , 且 x AB} ,已知A { x | 0 x 2} ,B { x | x 0} ,则 AB 等于()A. (2,)B. [0,1][ 2, )C . [ 0,1) (2,)D. [ 0,1](2, )18.设会集 A ? R ,假如 x ∈R 知足:对随意 a > 0,都存在 x ∈A ,使得 0< |x ﹣ x |<a ,那么称 x 0 为会集 A 的一个聚点.则在以下会集中:( 1) Z +∪ Z ﹣ ; ( 2)R +∪ R ﹣;(3) {x|x=,n∈N *} ;( 4) {x|x=, n∈N*} .此中以 0 为聚点的会集有()A . 1 个B . 2 个C. 3 个D. 4 个19.若一系列函数的解析式同样,值域同样,但定义域不同样样,则称这些函数为“孪生函数”,比方解析式为y= 2x2+ 1,值域为 {9} 的“孪生函数”三个:( 1) y= 2x2+ 1,x {2} ;(2)y=2x2+1, x { 2} ;(3)y=2x2+1,x{ 2,2} 。
(word版)高中数学(必修1)集合与函数试题及答案,文档

集合根底训练A组一、选择题:1.以下各项中,不可以组成集合的是〔C〕A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数2.以下四个集合中,是空集的是〔D〕A.{x|x33}B.{(x,y)|y2x2,x,yR}C.{x|x20}D.{x|x2x10,xR}3.以下表示图形中的阴影局部的是〔A〕A.(AUC)I(BUC)A B B.(AUB)I(AUC)C.(AUB)I(BUC)D.(AUB)I C C 4.下面有四个命题:〔1〕集合N中最小的数是1;〔2〕假设a不属于N,那么a属于N;〔3〕假设a N,b N,那么ab的最小值为2;〔4〕x212x的解可表示为1,1其中正确命题的个数为〔A〕A.0个B.1个C.2个D.3个5.假设集合M a,b,c中的元素是△ABC的三边长,那么△ABC一定不是〔D〕A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题:1.假设集合2.设集合A x|3 x 7,B x|2 x 10,那么AUBx|2 x10 A {x 3 x 2},B {x2k 1 x 2k 1},且A B,那么实数k的取值范围是k|1k 1 23.Ayy x22x1,B yy2x1,那么AI B y|y0三、解答题:1.集合A8N,试用列举法表示集合A xN|6x解:由题意可知6x是8的正约数,当6x1,x5;当6x2,x4;当6x4,x2;当6x8,x2;而x0,∴x2,4,5,即A2,4,512A{x2x5}, B{xm1x2m1},BA ,m 的取值范围.求 解:当m 1 2m1,即m 2时,B ,满足BA ,即m 2;当m12m1,即m2时,B3,满足BA ,即m2;当m12m 1,即m2时,由Bm 1 2即2m 3;A ,得1 52mm33A a,a1, 3,Ba 3,2a 1,a 1 ,假设AI B3,求实数a 的值.集合22解:∵AI B3 ,∴ 3 B ,而a 2 1 3,∴当a3 3,a 0,A0,1, 3,B3,1,1,这与AI B3 矛盾;当2a 1 3,a 1,符合AI B3∴a14.设全集,2有实数根,2有实数根,求CMINUR Mm|mxx10Nn|xxn0 U解:当m0时,x1,即0 M ;当m 0时, 14m0,即m 1 0,且m4∴m1 ,∴C U Mm|m1 , 而对于N , 14n0,即n1 ,∴Nn|n14444∴(C U M)I Nx|x14综合训练B 组一、选择题1.以下命题正确的有〔A 〕〔1〕很小的实数可以构成集合;〔2〕集合 y|yx 2 1与集合 x,y|yx 2 1是同一个集合;3 61 5个元素;〔3〕1,,,这些数组成的集合有2 42〔4〕集合 x,y|xy0,x,yR 是指第二和第四象限内的点集。
趣味数学题锦集有用

数学趣味题集锦一、选择题1、有12根蜡烛,先被吹灭3根,又被吹灭2根,最后还剩几根( )a、5b、3c、42、19名战士要过一条河,只有一条小船,船上每次只能坐4名战士,至少要渡几次才能使全体战士过河( )a、5b、6c、7d、83.首先使用符号“0”来表示零的国家或民族是( )。
A.中国B.印度C.阿拉伯D.古希腊4,有10个人要过河,河中有条船一次最多坐5个人,要过几次才可过去()a、2b、35.王老太上集市上去卖鸡蛋,第一个人买走蓝子里鸡蛋的一半又一个,第二个人买走剩下鸡蛋的一半又一个,这时蓝子里还剩一个鸡蛋,请问王老太共卖出多少个鸡蛋()a、8个鸡蛋b、10个鸡蛋6、妹妹今年6岁,哥哥今年11岁,当哥哥16岁时,妹妹几岁()a、6b、117、1 2 9 121 下一个数是几()A 225 B16800 C 16900 D160008.有口井7 米深有个蜗牛从井底往上爬白天爬3 米晚上往下坠2 米问蜗牛几天能从井里爬出来()a、5b、79.大数学家欧拉出生于() A.瑞士B.奥地利C.德国D.法国10、“小数”的名称是我国()代数学家提出的A 宋代,杨辉B元代,宋世杰11、西方最早发现数学的是巴比伦人和( )A中国人B埃及人12、在下列分数中,选出不同类的一项:()A 3/5B 3/7C 3/913、猴子每分钟能掰一个玉米,在果园里,一只猴子5分钟能掰几个玉米()A. 5B. 014.一个裁缝,有一块16米长的布料,她每天从上面剪下来2米,问多少天后,她剪下最后一段布料()A 5B 6C 7D 815找规律5, 10, 17, 28, 41,下一个数是什么( )A 57B 58C 59D 6016、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水()a、49瓶b、39瓶17.古希腊的三大闻名几何尺规作图问题是( )①三等分角②立方倍积③正十七边形④化圆为方A.①②③B.①②④C.①③④D.②③④18.“勾三,股四,玄五”让我们想起下面那个数学家()a、毕达哥拉斯b、阿基米德c、殴几里得19.“几何无王者之道!” 是谁说的()A 刘徽B欧几里得字母散步,从某个字母向左走2步,再向右走3步,再向左走2步,再向右走4步刚好停在F处,这个字母是谁()21、一根电线,对折再对折,最后从中间剪开,剪开的电线一共有几段()a,5 b,622.有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一些,问:最少用天平称几次(不用砝码),就一定可以找出假珍珠()A 5次B 3次23.今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雄、兔各几何()a、兔22,鸡12b、兔12,鸡2224 .6匹马拉着一架大车跑了6里,每匹马跑了多少里6匹马一共跑了多少里()里,36里里,36*6里25.首先使用符号“0”来表示零的国家或民族是( )A.中国B.印度C.阿拉伯D.古希腊x与x的n次幂哪个大(n为自然数)()A.前者B.后者27.我国最早研究圆周率的数学家是--()A 刘徽B祖冲之年,法国的( )出版<几何学>提出了解析几何把变量引进数学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学趣题集锦
猴子搬香蕉
一个小猴子边上有100根香蕉,它要走过50米才能到家,每次它最多搬50根香蕉,(多了就被压死了),它每走1米就要吃掉一根,请问它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分两次,一次运50只,走1米,再回去搬另外50只,这样走了1米的时候,前50只吃掉了两只,后50只吃掉了1只,剩下48+49只;两米的时候剩下46+48只;...到16米的时候剩下(50-2×16)+(50-16)=18+34只;17米的时候剩下16+33只,共49只;然后把剩下的这49只一次运回去,要走剩下的33米,每米吃一个,到家还有16个香蕉。
河岸的距离
两艘轮船在同一时刻驶离河的两岸,一艘从A驶往B,另一艘从B开往A,其中一艘开得比另一艘快些,因此它们在距离较近的岸500公里处相遇。
到达预定地点后,每艘船要停留15分钟,以便让乘客上下船,然后它们又返航。
这两艘渡轮在距另一岸100公里处重新相遇。
试问河有多宽?
解答:
当两艘渡轮在x点相遇时,它们距A岸500公里,此时它们走过的距离总和等于河的宽度。
当它们双方抵达对岸时,走过的总长度
等于河宽的两倍。
在返航中,它们在z点相遇,这时两船走过的距离之和等于河宽的三倍,所以每一艘渡轮现在所走的距离应该等于它们第一次相遇时所走的距离的三倍。
在两船第一次相遇时,有一艘渡轮走了500公里,所以当它到达z点时,已经走了三倍的距离,即1500公里,这个距离比河的宽度多100公里。
所以,河的宽度为1400公里。
每艘渡轮的上、下客时间对答案毫无影响。
变量交换
不使用任何其他变量,交换a,b变量的值?
分析与解答
a = a+b
b = a-b
a= a-b
步行时间
某公司的办公大楼在市中心,而公司总裁温斯顿的家在郊区一个小镇的附近。
他每次下班以后都是乘同一次市郊火车回小镇。
小镇车站离家还有一段距离,他的私人司机总是在同一时刻从家里开出轿车,去小镇车站接总裁回家。
由于火车与轿车都十分准时,因此,火车与轿车每次都是在同一时刻到站。
有一次,司机比以往迟了半个小时出发。
温斯顿到站后,找不到
他的车子,又怕回去晚了遭老婆骂,便急匆匆沿着公路步行往家里走,途中遇到他的轿车正风驰电掣而来,立即招手示意停车,跳上车子后也顾不上骂司机,命其马上掉头往回开。
回到家中,果不出所料,他老婆大发雷霆:“又到哪儿鬼混去啦!你比以往足足晚回了22分钟……”。
温斯顿步行了多长时间?
解答:
假如温斯顿一直在车站等候,那么由于司机比以往晚了半小时出发,因此,也将晚半小时到达车站。
也就是说,温斯顿将在车站空等半小时,等他的轿车到达后坐车回家,从而他将比以往晚半小时到家。
而现在温斯顿只比平常晚22分钟到家,这缩短下来的8分钟是如果总裁在火车站死等的话,司机本来要花在从现在遇到温斯顿总裁的地点到火车站再回到这个地点上的时间。
这意味着,如果司机开车从现在遇到总裁的地点赶到火车站,单程所花的时间将为4分钟。
因此,如果温斯顿等在火车站,再过4分钟,他的轿车也到了。
也就是说,他如果等在火车站,那么他也已经等了30-4=26分钟了。
但是惧内的温斯顿总裁毕竟没有等,他心急火燎地赶路,把这26分钟全都花在步行上了。
因此,温斯顿步行了26分钟。
付清欠款
有四个人借钱的数目分别是这样的:阿伊库向贝尔借了10美元;
贝尔向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊库借了40美元。
碰巧四个人都在场,决定结个账,请问最少只需要动用多少美金就可以将所有欠款一次付清?
解答:
贝尔、查理、迪克各自拿出10美元给阿伊库就可解决问题了。
这样的话只动用了30美元。
最笨的办法就是用100美元来一一付清。
贝尔必须拿出10美元的欠额,查理和迪克也一样;而阿伊库则要收回借出的30美元。
再复杂的问题只要有条理地分析就会很简单。
养成经常性地归纳整理、摸索实质的好习惯。
一美元纸币
注:美国货币中的硬币有1美分、5美分、10美分、25美分、50美分和1美元这几种面值。
一家小店刚开始营业,店堂中只有三位男顾客和一位女店主。
当这三位男士同时站起来付帐的时候,出现了以下的情况:(1)这四个人每人都至少有一枚硬币,但都不是面值为1美分或1美元的硬币。
(2)这四人中没有一人能够兑开任何一枚硬币。
(3)一个叫卢的男士要付的账单款额最大,一位叫莫的男士要
付的帐单款额其次,一个叫内德的男士要付的账单款额最小。
(4)每个男士无论怎样用手中所持的硬币付账,女店主都无法找清零钱。
(5)如果这三位男士相互之间等值调换一下手中的硬币,则每个人都可以付清自己的账单而无需找零。
(6)当这三位男士进行了两次等值调换以后,他们发现手中的硬币与各人自己原先所持的硬币没有一枚面值相同。
(7)随着事情的进一步发展,又出现如下的情况:
(8)在付清了账单而且有两位男士离开以后,留下的男士又买了一些糖果。
这位男士本来可以用他手中剩下的硬币付款,可是女店主却无法用她现在所持的硬币找清零钱。
于是,这位男士用1美元的纸币付了糖果钱,但是现在女店主不得不把她的全部硬币都找给了他。
现在,请你不要管那天女店主怎么会在找零上屡屡遇到麻烦,这三位男士中谁用1美元的纸币付了糖果钱?
解答:
对题意的以下两点这样理解:
(2)中不能换开任何一个硬币,指的是如果任何一个人不能有2个5分,否则他能换1个10分硬币。
(6)中指如果A,B换过,并且A,C换过,这就是两次交换。
那么,至少有一组解:是内德用纸币。
卢开始有10´3+25,账单为50
莫开始有50,账单为25
内德开始有5+25,账单为10
店主开始有10
此时满足1,2,3,4
第一次调换:卢拿10´3换内德的5+25
卢5+25´2内德10´3
第二次调换:卢拿25´2换莫的50
此时:
卢有50+5账单为50付完走人
莫有25´2账单为25付完走人
内德有10´3账单为10付完剩20,要买5分的糖
付账后,店主有50+25+10´2,无法找开10,但硬币和为95,能找开纸币1元。
生日会上的12个小孩
今天是我13岁的生日。
在我的生日宴会上,包括我共有12个小孩相聚在一起。
每四个小孩同属一个家庭,共来自A,B和C这三个不同的家庭,当然也包括我所在的家庭。
有意思的是,这12个小孩
的年龄都不相同,最大的13岁,换句话说,在1至13这十三个数字中,除了某个数字外,其余的数字都表示某个孩子的年龄。
我把每个家庭的孩子的年龄加起来,得到以下的结果:
家庭A:年龄总数41,包括一个12岁的孩子。
家庭B:年龄总数m,包括一个5岁的孩子。
家庭C:年龄总数21,包括一个4岁的孩子。
只有家庭A中有两个孩子只相差1岁的孩子。
你能回答下面两个问题吗:我属于哪个家庭——A,B,还是C?每个家庭中的孩子各是多大?
解答:
因为只有家庭A中有两个孩子只相差1岁,所以我绝对不是C 家庭的。
(21-4-13=4,4=1+3,4与3相差1,与条件矛盾)家庭A:年龄总数41,包括一个12岁的孩子,所以平均年龄大于10,又因为有两个孩子只相差1岁,所以家庭A中可能出现11,12或12,13。
若包括11,12,则41-11-12=18=10+8,10,11,12皆差1岁,与条件矛盾。
若包括12,13,则41-12-13=16=10+6或7+9,符合条件。
若A家庭为6,10,12,13。
则C家庭为1,4,7,9。
根据排除法,B家庭为2/3,5,8,11。
若A家庭为7,9,12,13,则C家庭为1,4,6,10。
根据排除法,B家庭为2/3,5,8,11。
最短时间过桥问题
在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。
如果不借助手电筒的话,大家是无论如何也不敢过桥去的。
不幸的是,四个人一共只带了一只手电筒,而桥窄得只够让两个人同时通过。
如果各自单独过桥的话,四人所需要的时间分别是1,2,5,8分钟;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。
问题是,你如何设计一个方案,让用的时间最少。
解答:
(1)1分钟的和2分钟的先过桥(此时耗时2分钟)。
(2)1分钟的回来(或是2分钟的回来,最终效果一样,不赘述,此时共耗时3分钟)。
(3)5分钟的和8分钟的过桥(共耗时2+1+8=11分钟)。
(4)2分钟的回来(共耗时2+1+8+2=13分钟)。
(5)1分钟的和2分钟的过桥(共耗时2+1+8+2+2=15分钟)。
此时全部过桥,共耗时15分钟。