探究铁矿石中常见元素的检验

合集下载

铁矿石中铁含量检测方法探讨

铁矿石中铁含量检测方法探讨

铁矿石中铁含量检测方法探讨摘要:铁作为现代重工业建设、发展的必需品之一,它的价值和作用是不可替代的,对促进工业发展和提高人民生活质量发挥着重要的价值和意义,所以,为提高铁矿石的开采效率和价值,必须掌握铁含量的测定技术。

因为铁矿石中含铁量的测定技术是铁元素提炼的基础和前提,找到先进和环保的检测方法尤为重要。

基于此,本文将浅析铁矿石中铁含量的检测方法,望能够为相关人员提供浅浅的意见。

关键词:铁矿石;铁含量;检测方法引言:铁矿石作为钢铁工业的基本原料,用于高炉炼铁的铁矿石,要求其全铁(TFe)含量高于50%,而开才出来的原矿石中铁含量往往达不到,通过选矿富集才能得以提高。

自然界中已知的含铁矿石有300余种,但是就当前的冶铁技术,能够发挥最大工业价值的铁矿石却是不多的。

为了满足时代发展的钢铁需求,就需要将一些含铁量低的铁矿石进行冶炼、提纯,以求满足钢铁工业的基本需求。

基于此,本文将探讨铁矿石中铁含量的几种检测方法,为铁矿石的冶炼、提纯,提供一些浅浅的建议。

铁矿石的常规分析是做简项分析,即测定全铁(TFe)、亚铁、可溶铁等。

一、磺基水杨酸分光光度法(一)实验原理磺基水杨酸是分光光度法测定铁的有机显色剂之一。

PH=9~11.5的NHCl4-NH3·H2O.溶液中,Fe3+可以与磺基水杨酸发生化学反应,生成极为稳定的三磺基水杨酸铁黄色配合物。

三磺基水杨酸铁黄色配合物在碱性溶液中的最大吸收波长为420nm,故在此波长下测其吸光度。

(二)实验步骤步骤一,配置10%磺基水杨酸溶液;步骤二,测定溶液在420 nm下的吸光度;步骤三,在6只50ml容量瓶中,用移液管分别加入0. 00、1. 00、2. 00、3. 00、4. 00、5. 00浓度为0. 025mg/L的铁盐标准溶液,各加2ml10%磺基水杨酸溶液,滴加pH=9~11.5的NHCl4-NH3·H2O.缓冲溶液,直到溶液变成黄色,放置10min后于420 nm处测定吸光度,绘制标准曲线;步骤四,称取0.2g试样,置于30ml银坩埚中加入3g过氧化钠,混匀,再加1g过氧化钠覆盖。

X射线荧光法测定铁矿石中多种元素分析方法的研究

X射线荧光法测定铁矿石中多种元素分析方法的研究

X射线荧光法测定铁矿石中多种元素分析方法的研究近年来,随着工业化进程的加快,对矿石资源的需求日益增长。

为了更好地利用矿石资源,研究和开发高效准确的矿石分析方法变得尤为重要。

在铁矿石中,含有多种元素,而准确测定这些元素的含量对于矿石的加工和利用有着重要的意义。

本文将介绍一种常用的分析方法,X射线荧光法,用于测定铁矿石中多种元素的含量。

X射线荧光法是一种基于物质受X射线激发后产生特定能量的荧光辐射的原理进行分析的方法。

在这个方法中,样品首先受到X射线的激发,然后发出特定能量的荧光辐射。

样品中不同的元素会发出具有特定能量的荧光辐射,通过测量这些荧光的强度和能量,就可以确定样品中各种元素的含量。

X射线荧光法具有诸多优势。

首先,这种分析方法对样品的前处理要求较低,样品的形状和状态可以是固体、液体或粉末,有机和无机物质均可分析。

同时,这种方法具有非破坏性的特点,样品在测定前后不会发生结构性的变化,可以对同一样品进行多次测定。

此外,X射线荧光法可以同时测定多个元素,分析速度快,准确度高,可以满足工业生产的需求。

然而,X射线荧光法也存在一些缺点。

首先,这种方法对样品的含量范围有一定的限制,当元素的含量过高或过低时,可能会对测定结果产生干扰。

其次,样品中含有一些元素可能会对测定其他元素的结果产生干扰。

因此,在使用X射线荧光法进行分析时,需要对样品进行前处理和稀释,以保证测定结果的准确性。

为了提高X射线荧光法的分析准确性和灵敏度,可以采取一些改进措施。

首先,可以通过优化仪器的参数和选择合适的分析条件来提高分析的灵敏度。

其次,使用标准样品进行校正和校准,以减小仪器的误差和漂移,提高测定结果的准确性。

此外,还可以结合其他分析方法,如ICP-OES、ICP-MS等,进行互补分析,以获得更准确的结果。

综上所述,X射线荧光法是一种常用的测定铁矿石中多种元素含量的分析方法。

通过优化测定条件、校正校准和与其他方法联合分析,可以提高分析结果的准确性和灵敏度。

原子吸收光谱法测定铁矿石中铁、铜和钾的方法研究

原子吸收光谱法测定铁矿石中铁、铜和钾的方法研究

Advances in Analytical Chemistry 分析化学进展, 2023, 13(3), 388-395 Published Online August 2023 in Hans. https:///journal/aac https:///10.12677/aac.2023.133042原子吸收光谱法测定铁矿石中铁、铜和钾的 方法研究韩志钊,康晋伟*浙江师范大学化学与材料科学学院,浙江 金华收稿日期:2023年7月10日;录用日期:2023年7月31日;发布日期:2023年8月10日摘 要建立了一种火焰原子吸收光谱法(FASS)测定铁矿石中的铁、铜和钾含量的方法,对火焰原子吸收分光光度计的基线稳定性,仪器精密度,以及不同元素测定时燃气流量、狭缝宽度等条件进行了优化,并且对其进行了不确定度分析。

结果表明,矿石中铁含量的相对标准偏差(RSD)为0.1%~0.7%,加标回收率为97%~98.6%;铜含量RSD 为0.1%~1%,加标回收率为99%~100%;钾含量RSD 为0.7%,加标回收率为99%~100%。

关键词原子吸收,铁矿石,不确定度Study on Determination of Iron, Copper and Potassium of Iron Ore by Atomic Absorption SpectrometryZhizhao Han, Jinwei Kang *College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua ZhejiangReceived: Jul. 10th , 2023; accepted: Jul. 31st , 2023; published: Aug. 10th , 2023AbstractA flame atomic absorption spectrometry (FASS) method for the determination of iron, copper and potassium in iron ore was established. The baseline stability, instrument precision, gas flow and*通讯作者。

铁矿石中全铁含量测定方法分析

铁矿石中全铁含量测定方法分析

铁矿石中全铁含量测定方法分析在钢铁工业中,铁矿石是至关重要的原材料,而准确测定铁矿石中全铁的含量对于评估矿石质量、优化冶炼工艺以及控制生产成本都具有极其重要的意义。

本文将对常见的铁矿石中全铁含量测定方法进行详细分析。

一、重铬酸钾滴定法重铬酸钾滴定法是测定铁矿石中全铁含量的经典方法之一。

其基本原理是将铁矿石样品用酸溶解,使其中的铁全部转化为二价铁离子。

然后,在酸性条件下,用过量的重铬酸钾标准溶液将二价铁氧化为三价铁,最后以二苯胺磺酸钠为指示剂,用硫酸亚铁铵标准溶液滴定过量的重铬酸钾,从而计算出全铁的含量。

该方法的优点是准确度高、重现性好,适用于各种类型铁矿石中全铁含量的测定。

但也存在一些不足之处,比如操作过程较为繁琐,需要进行多次加热和滴定,耗时较长;同时,使用的重铬酸钾具有一定的毒性,对环境和操作人员的健康有一定影响。

二、氯化亚锡氯化汞重铬酸钾滴定法这种方法是在重铬酸钾滴定法的基础上进行改进的。

首先用盐酸和氟化钠溶解样品,然后加入氯化亚锡将大部分三价铁还原为二价铁。

接着,加入氯化汞氧化过量的氯化亚锡,最后用重铬酸钾标准溶液滴定二价铁,计算全铁含量。

此方法相较于传统的重铬酸钾滴定法,简化了操作步骤,缩短了分析时间。

然而,氯化汞是一种剧毒物质,对环境和人体危害极大,需要在操作过程中特别小心,严格控制其使用和排放。

三、EDTA 配位滴定法EDTA 配位滴定法也是常用的测定铁矿石中全铁含量的方法之一。

在酸性条件下,将铁矿石样品溶解,用还原剂将铁全部还原为二价铁。

然后,加入过量的 EDTA 标准溶液与二价铁配位,再以二甲酚橙为指示剂,用锌标准溶液滴定剩余的 EDTA,从而计算出全铁的含量。

EDTA 配位滴定法的优点是操作相对简便,分析速度较快,且试剂毒性较小。

但该方法的选择性相对较差,容易受到其他金属离子的干扰,因此在测定前需要对样品进行预处理,以消除干扰。

四、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长光的吸收特性来测定元素含量的方法。

铁矿石中铁含量的测定实验报告

铁矿石中铁含量的测定实验报告

铁矿石中铁含量的测定实验报告实验报告:铁矿石中铁含量的测定一、实验目的本实验旨在通过化学反应的方法,测定铁矿石中铁的含量。

二、实验原理铁矿石中的铁是以Fe2O3的形式存在的,而铁离子可以与邻菲罗啉发生络合反应生成深红色络合物。

根据络合反应生成的络合物的光吸收特性,可以测定样品中铁的含量。

三、实验步骤1.称取0.1g的铁矿石样品,加入100mL的蒸馏水中,混合均匀。

2.将样品转移到250mL锥形瓶中。

3.加入1.5mL的盐酸,加热至沸腾,使样品中的铁离子转化为Fe2+离子。

4.冷却后,加入10mL的邻菲罗啉溶液,在搅拌下混合均匀,生成深红色络合物。

5.将混合液转移至1cm比色皿中,用紫外-可见分光光度计测定混合液的吸收值(λ = 510nm)。

四、实验结果经过测定,样品的吸收值为0.644。

五、分析与讨论根据标准曲线的结果,可计算出样品中铁离子含量为0.0322g/L。

而样品的质量为0.1g,因此其中的铁含量可以计算为32.2%。

本实验的误差主要来源于邻菲罗啉的存储、操作的环境以及化学药品的纯度等方面,因此在实验的过程中,需要保证实验器材的洁净、药品纯度的准确性等因素。

六、结论通过化学反应的方法,本实验测定了铁矿石中的铁含量,结果表明该矿石中铁的含量为32.2%。

七、参考文献[1] 《基础实验指导》手册。

[2] W. L. Gardner, B. S. Weisman, and L. H. Lanzillotta, "Spectrophotometric determination of iron with o-phenanthroline", Anal. Chem., vol. 21, no. 8, pp. 990-992, 1949.。

ICP直读光谱法测定铁矿石中24种元素

ICP直读光谱法测定铁矿石中24种元素

ICP直读光谱法测定铁矿石中24种元素一、方法提要试样用王水、HF、HClO4分解,以甲基异丁基甲酮(MIBK)萃取分离Fe3+,用ICP光电直读光谱法同时测定水相中的Ba、Be、Ce、Cd、Co、Cr、Cu、La、Li、Mn、Ni、P、Sc、Sr、Ti、V、Y、Yb、Zn、Al、Ca、Mg、K、Na等24种元素,采用基体匹配法和干扰系数法校正共存元素的影响。

分析线、检出限及测定范围见表1。

有机相中的Fe可用HCl(1+23)反萃取后,以重铬酸钾滴定法测定。

二、标准溶液的制备(1)标准溶液:各单元素标准贮存液,均用离纯金属或光谱纯氧化物配制成酸度为HCl(5+95)的溶液。

各元素质量浓度分别为:25.00mg/mL Fe2O3;10.00mg/mL Al2O3、MgO、CaO;5.00mg/mL K2O、Na2O;2500µg/mL Ti、Mn、P;100µg/mL Sc;其他元素均为1000µg/mL。

(2)标准溶液的分组及质量浓度,即高标准和低标准的设置,见表2。

三、仪器及工作条件仪器:Jarrell-Ash Atomcomp-750 Ⅱ型直读光谱仪。

焦距0.75mm,光栅刻线2400条/mm,48个分析通道。

HFP-2000D 型高频发生器,频率27.12MHz,入射功率1000W,反射功率<10W。

冷却气流量20L/min(纯度为99.99%氩气,下同)。

载气流量0.5L/min。

等离子气流量1.5L/min。

观测高度,感应圈上方17mm。

试样溶液提升量1.2mL/min。

四、分析步骤称取0.5000g试样于50-100mL聚四氟乙烯烧杯中,用水润湿,加10mL王水,盖上表皿,低温加热分解,待矿样大部分分解以后,用水吹洗表皿和杯壁,并蒸发至小体积(约2-3mL)。

加入3-5mL HF,继续加热至近干,加1mL HClO4用少量水吹洗杯壁,加热冒烟至近干,再加1mL HClO4,继续冒烟至近干,稍冷,加8mL HCl(1+1),低温缓慢溶解,待溶液清亮后取下。

X射线荧光光谱法测定铁矿中铁等多种元素

X射线荧光光谱法测定铁矿中铁等多种元素
维普资讯
20 0 8年 6月
J n 0 8 u e2 0




VoI2 . 7.No 3 . 2 9~2 2 31
R0 CK AND I M NERAL ANAIYS S j I
文 章 编 号 : 24—55 ( 0 8 0 0 2 05 3 7 20 ) 3~ 2 9~0 3
w i et teacrc q i met nIO9 0 A ( F ) .0 1 hc m e cuayr ur n 5 7l E T e 40 3 % . h sh e e i S
Ke r s y wo d :X. y f o e c n e s e t me r r l rs e c p cr a u o t y;f so e d;it ma tn a d meh d;i n o e uinb a n e lsa d r t o r r o
各元素的测量条件见表 1 。
表 1 元素的测量条件①
三 ! 竺竺:!! ! ! ! 兰 ! ! ! ! ! ! 竺 竺!! : ! 竺

中大 多数元素采用 传统 的化学分析方法 , 分析周 期长 , 成 本高 。用 x射线荧光光谱法分析铁矿石样 品中多元素 的方 法 已有报道 , 但传统 的方 法 T e分析 结果准 确度不 能 F
钒钛磁铁矿gbw07224ysbcl57012003进口铁矿和含砷铁矿ysbl472298作为校准样品各组分含量范围见表2mmmmmm校准样品中各元素的含量范围table2concentrationrangecalibrationsamples组分含量范围wb组分含量范围wbtfe32966894004072na2000090536ca00023638mgo0044616ti000076011aj203020826mno0034906327s022264850ni000830024p00060336cu0020144s000720687zn00074002324基体效应与谱线重叠校正用熔融法制样虽然消除了颗粒度矿物效应及减小了基体效应但由于铁矿中各组分的含量变化很大仍需进行基体效应校正

EDTA滴定法测定铁矿石石灰石中钙与镁元素

EDTA滴定法测定铁矿石石灰石中钙与镁元素

EDTA滴定法测定铁矿石石灰石中钙与镁元素EDTA滴定法是一种常用的化学分析方法,用于测定一些金属离子的浓度。

在这种方法中,EDTA(乙二胺四乙酸)作为评价剂可以与金属离子形成稳定的络合物,通过滴定的方式来准确测定金属离子的含量。

下面将介绍如何使用EDTA滴定法来测定铁矿石和石灰石中钙与镁元素的含量。

实验材料:1. EDTA标准溶液:用分析纯EDTA固体加水稀释到1000ml;2.铁矿石和石灰石样品:粉碎并过筛以获得均匀的颗粒大小;3.盐酸(HCl):用于样品溶解;4.酚酞指示剂:用于指示终点;5.镁粉溶液:用于掩蔽铁离子。

实验步骤:1.取一定质量的铁矿石或石灰石样品,用盐酸溶解。

溶解后,加入3-4滴酚酞指示剂,继续滴加盐酸直到溶液变成淡粉红色。

2.加入少量的镁粉溶液,用来掩蔽铁离子,使EDTA只与钙和镁形成络合物。

3.将溶液转移至滴定瓶中,并用水稀释至刻度线,充分混合。

4. 取一定体积(例如50 ml)的上述溶液,转移到定容瓶中,并用水稀释至刻度线。

5.用铁琼脂红B溶液标定EDTA溶液的浓度。

将适量的标准铁溶液加入含有酚酞指示剂的试管中,滴加EDTA溶液直到溶液由红色变成浅蓝色。

6.记录滴定溶液的用量,并计算EDTA溶液的浓度。

7.将标定好浓度的EDTA溶液用于铁矿石或石灰石样品的滴定。

将样品溶液转移到滴定瓶中,并加入酚酞指示剂。

然后滴加EDTA溶液,直到溶液颜色由粉红色转变为浅蓝色。

记录溶液的用量并计算钙和镁的含量。

实验原理:本实验是基于EDTA和金属离子形成络合物的配位反应。

EDTA是一种多齿配体,其中的氧和氮原子能与金属离子形成稳定的络合物。

在碱性环境下,EDTA与钙和镁形成稳定络合物。

通过滴定过程中EDTA溶液与样品中的钙和镁离子反应,从而确定钙和镁的浓度。

计算结果:通过滴定的过程中,铁矿石或石灰石样品中的钙和镁离子会与EDTA形成络合物,达到化学计量比后,滴定终点出现颜色变化。

根据滴定液的用量,可以计算出钙和镁的含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究铁矿石中常见元素的检验
【摘要】随着我国经济不断的发展,铁工业在中国经济发展中占有很大的地位,它是我国经济不断良性发展的重要支柱。

钢铁工业材料是人类经济和科技不断进步的重要物质,在我国经济舞蹈上扮演着重要的角色,它实实在在的体现了我国钢铁工业发展的水平,也是一个国家不断进步的重要体现,比如,对我国深圳口岸铁矿石元素含量的分析中发现,一些进口的铁矿石中元素的含量控制在规定范围内,可是一些产地的铁矿石中的Cd、As的含量相对比较高,很大程度上对环境存在着污染,有害人们的身体健康。

在进口铁矿石中Cd和As元素含量过高主要是来自于非洲的一些地区,Cd、As的含量非常的高,对环境存在着非常大的污染,需要对此采取一定的控制方法,对其进行检验。

本文主要探究铁矿石中常见元素的检验。

【关键词】铁矿石;元素;检验
随着经济不断的发展,社会地位不断的提高,钢铁材料已经成为了国家发展不可缺少的资源,钢铁工业对钢铁材料的冶炼是对材料合理利用的主要环节。

人们的生活的方方面面都离不开结构材料和一些功能性材料。

我国各个行业的发展,比如、交通、电力等很多行业都离不开钢铁材料。

随着我国经济不断的发展,国内市场对钢铁材料的需求量不断的增大,但是钢铁中的一些元素的含量在一定程度上超过了国家标准含量,所以,在国际贸易中,对铁矿石中各种元素的检测成为了一个非常重要的环节,它是衡量铁矿石质量的一个最重要的指标。

所以,运用一种快捷、安全的检验方法是铁矿石检测人员共同的一个目标。

1.我国铁矿石常见元素检验的现状
我国铁矿石检测实验室最多的是由三氯化钛的还原法对铁矿石中元素的铁的含量进行检测,这种检测的方法叫做化学法,这种化学法对铁矿石中元素检测的同时由波长色散X荧光光谱进行测定铁矿石中硅、钙和锰等元素的含量,对几种元素的检测方法叫做X荧光光谱检测方法。

在对铁矿石中各种元素检测的同时还可以检测出全铁的含量,这样的好处是,在每一个检测中都会得到两个铁含量数据,这两个数据在数据值上差异性非常小,但也有一小部分差异很大,实验室采用的检验方法要根据铁矿石的不同进行选择,因为,我国把化学法来作为常用方法,它起到了一个中心的作用,很大一个原因是由我国铁矿石结构的特点来选择的,根据铁矿石不同的结构特点来选择检验的方法,做到合理、科学。

中国的铁矿石的分布比较分散、储存面积比较小、不同地方品质不稳定。

和国外的有很多的差异性,国外铁矿石分布位置非常集中、储存面积比较大、品质相对我国非常稳定。

随着我们经济不断的发展,检验实验室的技术发展以及对其宣传服务不断扩大,大大增加了实验室检验元素的业务量,使之有充分的资源可以进行检测,我国实验室每年需要检测几千批的业务,增加了检测的数据。

随着我国对铁矿石元素检测的不断增加,化学法检测的时候要对样品进行烘干,在烘干的每一个流程
都需要人为手工操作,整个流程在进行的过程中,一方面,进行操作的工作人员全面对每个环节做到完善,长期如此,人员的身体得不到好的休息,处于负荷状态,很有可能导致工作的质量下降,在对其检测方面,极有可能会出现一些周期性的问题。

另一方面,在运转的过程中,水、电的消耗和一些化学物资的使用,使一定范围内的环境受到很大程度的影响和破坏,于此同时废气和废弃水得不到很好的处理。

所以,提高检测效率是非常重要的,能够使检测数据更加精确。

我国实验室对铁矿石的检测已经运行了很多年的时间,已经掌握了很多检测经验和大量的检测数据,这些数据是根据化学法和X荧光光谱法得出,通过分析这些数据寻找X荧光光谱法能够代替化学法的新方法,这样做的好处是,可以节约大量的人力和财力,还能够减少对环境的污染。

2.铁矿石元素的两种检验方法
2.1 X荧光法检验原理和检验步骤
X荧光光谱法原理:首先用无水四硼酸铿作溶剂,以硝酸锂为氧化剂,溴化锂为脱剂制备试料片,然后测出铁元素中的X射线荧光光谱强度值,使其和元素含量之间形成一个定量关系。

计算出铁元素在铁矿石中的含量。

在X荧光光谱实验中用的试剂和仪器分别是:蒸馏水、盐酸、无水四硼酸锂、硝酸锂、溴化锂和气体。

用到的仪器:X射线荧光光谱仪。

X荧光法检测的主要检测步骤是:
(1)无水四硼酸铿作溶剂,以硝酸锂为氧化剂,溴化锂为脱模剂,几种溶液相互融合,使其进行充分的反应。

(2)在对铁矿石检测前需要对铁矿石样品进行称重、融化、浇铸、制标准试料片。

(3)铁矿石样品准备完毕之后,用X射线荧光光谱对其进行分析。

(4)对产生的数据进行处理,一般情况下取一个标准试料片,把试料片放到X荧光光谱仪上面,进行重复多次对其检测,然后记录数据。

制作一个标准试料片只要消耗一定量的无水四硼酸锂、硝酸锂、溴化锂。

2.2化学法检验原理与检验步骤
化学法检测原理:标准样品用酸对其进行分解或者酸化的方式处理,铁元素用氯化亚锡进行充分的还原,最后一小部分剩余的铁用三氯化锂进行还原,在用重铬酸钾溶液对剩余的还原剂进行充分氧化和滴定还原后的铁元素,最后由标准样品消耗的重铬酸钾溶液进行计算样品中全铁的含量。

检测中用到的试剂和材料分别是:试剂,盐酸、硫酸、磷酸、硼酸、氢氟酸、
焦硫酸钾、氢氧化钠、过氧化钠等。

仪器设备:刚玉增祸、铂柑祸、滴定管、天平等。

化学法检测的主要检测步骤是:
(1)使用氯化亚锡溶液、高锰酸钾、重铬酸钾标准溶液几种溶液相互融合,使其进行充分进行反应。

(2)用酸或者碱对标准样品进行充分分解。

(3)对分解后的标准样品用重铬酸钾溶液对其滴定。

(4)对产生的数据进行处理,在实验中需要配置两份标准样品溶液和一份空白溶液。

3.结束语
有本文可以看出,很多国家对铁矿石中元素检测采用最多的方法就是X射线荧光光谱方法,这种方法的检测主要注重的是方法原理分析,不断改进已有方法使之达到检测结果精准的要求,在进行评定的时候,一般情况下是用极少量的标准液对检测方法进行一个合理的评定。

由于实验中的铁矿石和标准样品下的铁矿石不管是在形状、化学成分等一些方面都有非常大的差别,所以,X射线荧光光谱测定方法在检验过程中对精密度的检验还不是非常的精确,通过整理在实验中化学法和X射线荧光光谱法对铁矿石检测中积累的大量数据,然后对这些数据进行统计分析,通过分析比较出两种检测方法的差异,找到两者之间的关联,可以在很大程度上减少检验中投入的人力、财力,并且还能大大减少对环境的污染,使人们的生活更加惬意,为我国钢铁事业产生更多的经济效益。

【参考文献】
[1]任春生,付冉冉,王艳,廖海平,鲍惠君.谈进口铁矿石中的有害元素[J].金属矿山,2007,04:6-8.
[2]代建云,刘淑波,朱敏,邝佩琴.职业中毒中常见元素检验的分析与评价[J].中国工业医学杂志,2002,06:376-377.
[3]钟莹,蔡志群,王成云,王楼明,陈智,李大光,张在鸿.进口铁矿石中有毒有害元素对环境安全影响的研究[J].广州化工,2006,03:64-67.
[4]王卫忠.铁矿石中全铁含量的检测方法对比研究[D].南京理工大学,2012,03:2-3.
[5]彭速标,郑建国,翟翠萍,钟志光,卢振国,黄文娴,何颖贤,罗宇梅.铁矿石中全铁的测定[J].广东化工,2009,06:162-165.
[6]沈建民.铁矿石的综合利用[J].钢铁,1964,06:1-5.。

相关文档
最新文档