(完整word版)西南交通大学2012第1学期数字信号处理期中试题含答案(word文档良心出品)
数字信号处理期中测试题

数字信号处理期中测试题一. 填空题(每小题2分)1.判断一个系统是线性系统的条件是____________________________ 。
2.数字信号处理的特点是______________,______________,____________________________和_____________。
3.求Z 反变换的方法通常有三种:______________, ______________, _____________。
4.用DFT 进行谱分析可能引起分析误差的三种现象是______________,______________,______________。
5.1211--=z x(z),收敛域为______________,对应的左序列为______________;收敛域为______________, 对应的右序列为______________。
6.系统的零、极点分布可以分析系统的频率特性,极点位置主要影响频响的______________, 极点位置主要影响频响的_____________。
7.序列)(n x 的付里叶变换存在的条件是)(Z X 的收敛域应包含 。
8.)05.0sin(3)(1n n x π=的周期为_________,)6.0cos(5)(2n n x =的周期为_________,)12.0sin(3)05.0sin(2)(3n n n x ππ+=的周期为_________。
9.DFT 的共轭对称性质是______________ 。
10.已知)(n x 的傅里叶变换为⎪⎩⎪⎨⎧≤≤<=πωωωωω00,0,1)(j e X ,则=)(n x ______。
二.简答题(第1题12分,其它题每题9分)1. 设)(n x 和)(n y 分别表示一个系统的输入和输出,试确定下列系统是否为:(1)稳定系统;(2)因果系统;(3)线性系统。
(a));()(2n ax n y = (b);3)()(+=n x n y (c)).()(0n n x n y -=2.简述DFT的定义,DFT与Z变换(ZT),傅里叶变换(FT)的关系及DFT的物理意义。
(完整word版)数字信号处理试卷及答案_程培青(第三版),推荐文档

河南工业大学数字信号处理 试卷考试方式:闭卷复查总分 总复查人一、填空题:(本大题共10小题,每空2分,共28分)请在每个空格中填上正确答案。
错填、不填均无分。
1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为;输入为x (n-3)时,输出为 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: 。
3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 点等间隔 。
4、有限长序列x(n)的8点DFT 为X (K ),则X (K )= 。
5、无限长单位冲激响应(IIR )滤波器的结构上有反馈,因此是_ _____型的。
6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 。
7、已知因果序列x(n)的Z 变换为X(z)=eZ -1,则x(0)=__________。
8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,___ ___和__ _ ___四种。
9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。
10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__________。
《数字信号处理》试卷A 第1页 ( 共 6 页 )二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z 变换是 。
A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是 , 5点圆周卷积的长度是 。
A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需 级蝶形运算 过程。
数字信号处理期中测试答案

1.线性时不变系统的单位脉冲响应用h(n)表示,输入x(n)是以N 为周期的周期序列,试证明输出y(n)亦是以N 为周期的周期序列。
证明:()()()()()()()()()()m m y n h m x n m x n N x n kN m x n m y n h m x n kN m y n kN ∞=-∞∞=-∞=-+-=-=+-=+∑∑以为周期,所以所以y(n)亦是以N 为周期的周期序列。
2.已知()()()()13122x n n n n δδδ=+-+-,()()()23x n u n u n =--,试求信号x(n),它满足()()()12*x n x n x n =。
解:()()()()233x n u n u n R n =--=()()()()()()()()()()123333*3122*3122x n x n x n n n n R n R n R n R n δδδ==+-+-⎡⎤⎣⎦=+-+-(){}1,4,6,5,2x n =3.时域离散线性时不变系统的系统函数H(z)为()()()1H z z a z b =--,a 和b 为常数。
(1)要求系统稳定,确定a 和b 的取值域。
(2)要求系统因果稳定,确定a 和b 的取值域。
解:(1)极点为a 和b ,系统稳定的条件是包含单位圆。
所以,1,1a b ≠≠即可使系统稳定。
(2)因果稳定,要求极点全在单位圆内,所以01,01a b ≤<≤<。
4.已知(){}(){}1,2,2,1,3,2,1,1x n h n ==-,计算两序列5点循环卷积。
解:10122342101229221011912210160122102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦5. 已知一个有限长序列)5(2)()(-+=n n n x δδ 。
(1) 求它的10点离散傅里叶变换)(k X 。
(完整word版)数字信号处理题库(附答案)

数字信号处理复习题一、选择题1、某系统)(),()()(n g n x n g n y =有界,则该系统( A )。
A.因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定2、一个离散系统( D )。
A.若因果必稳定B.若稳定必因果C.因果与稳定有关D.因果与稳定无关3、某系统),()(n nx n y =则该系统( A )。
A.线性时变B. 线性非时变C. 非线性非时变D. 非线性时变4.因果稳定系统的系统函数)(z H 的收敛域是( D )。
A.9.0<z B. 1.1<z C. 1.1>z D. 9.0>z5.)5.0sin(3)(1n n x π=的周期( A )。
A.4B.3C.2D.16.某系统的单位脉冲响应),()21()(n u n h n =则该系统( C )。
A.因果不稳定B.非因果稳定C.因果稳定D.非因果不稳定7.某系统5)()(+=n x n y ,则该系统( B )。
A.因果稳定B.非因果稳定C.因果不稳定D.非因果不稳定8.序列),1()(---=n u a n x n 在)(z X 的收敛域为( A )。
A.a z < B. a z ≤ C. a z > D. a z ≥9.序列),1()21()()31()(---=n u n u n x n n 则)(z X 的收敛域为( D )。
A.21<zB. 31>zC. 21>zD. 2131<<z 10.关于序列)(n x 的DTFT )(ωj e X ,下列说法正确的是( C )。
A.非周期连续函数B.非周期离散函数C.周期连续函数,周期为π2D.周期离散函数,周期为π211.以下序列中( D )的周期为5。
A.)853cos()(π+=n n x B. )853sin()(π+=n n x C.)852()(π+=n j en x D. )852()(ππ+=n j e n x 12.)63()(π-=n j e n x ,该序列是( A )。
数字信号处理考试试题及答案

数字信号处理试题及答案一、 填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号,再进行幅度量化后就是 数字 信号。
2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求)0(0)(<=n n h ,系统稳定要求∞<∑∞-∞=n n h )(。
3、若有限长序列x(n)的长度为N ,h(n)的长度为M ,则其卷积和的长度L 为 N+M-1。
4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率—离散傅里叶变换5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。
6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列x(n)一定绝对可和。
7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算法,需要__32__ 次复乘法 。
8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件()()1--±=n N h n h 。
9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运算累积误差较小; 并联型 运算误差最小且运算速度最高。
10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤波器。
11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器。
12. ()⎪⎭⎫ ⎝⎛=n A n x 73cos π错误!未找到引用源。
的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等。
14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。
15. 任一因果稳定系统都可以表示成全通系统和 最小相位系统 的级联。
《数字信号处理》期中考试试卷(2012年)参考答案

电子科技大学第一页(共4页)2011–2012学年第二学期期中考试试卷(参考答案)开课学院: 物理与电子信息学院 课程名称: 数字信号处理 考试形式:开卷,所需时间90分钟注意事项:1、教师出题时请勿超出边界虚线;2、学生答题前将密封线外的内容填写清楚,答题不得超出密封线;3、答题请用蓝、黑钢笔或圆珠笔。
一、填空(共20分,每空2分)1. 采样频率f s 对应于模拟角频率Ω= 2πf s ,对应于数字角频率ω= 2π 。
2. 如果8点序列x(n)的 16点DFT 为X 16(k)={X(0),X(1),X(2),……X(15)},则其8点DFT 为X 8(k)= {X(0), X(2), X(4), X(6), X(8), X(10), X(12), X(14)} 。
3. 对模拟信号进行数字信号处理,在A/D 转换器前信号要经过前置低通,该低通滤波器的作用是__防混叠滤波__;在D/A 转换器后信号要经过后置低通,该低通滤波器的作用是 防镜像滤波 。
4. 已知序列x (n )= a n u (n )的Z 变换收敛域为|Z|>|a |,序列y (n )= a n u (n -M)的Z 变换的收敛域为|Z|>|a |,则序列x(n)-y(n)的Z 变换的收敛域为 |Z|>0 。
5. 当单位脉冲响应分别为h 1(n )和h 2(n )的两个线性时不变离散时间系统级联(串联)时,其级联系统的单位脉冲响应为 h 1(n )*h 2(n ) ,系统函数为 H 1(z )H 2(z ) 。
6. 凡是因果系统,系统的极点只能在单位圆内。
(对或错)( 错 )7. 若某序列的傅立叶变换(DTFT )存在,则其离散傅立叶变换(DFT )也存在。
(对或错)( 对 )二、计算题(共20分,每题10分)1. 计算周期序列x[n]=cos(πn/M)的自相关序列R xx ,其中M 为正整数,并确定R xx 的周期。
(完整word版)数字信号处理习题及答案
==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
(完整word版)数字信号处理试卷及答案两份.docx
数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。
2.线性时不变系统的性质有律、律、律。
3.对x(n)R4(n)的Z 变换为,其收敛域为。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。
5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。
6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。
7.因果序列x(n) ,在Z→∞时,X(Z)=。
二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。
数字信号处理的技术考试试卷(附答案)
数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。
这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。
2. 什么是信号的量化?请说明量化的过程。
3. 简述数字信号处理的应用领域。
4. 请解释什么是数字滤波器的频率响应。
5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。
1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。
(完整word版)数字信号处理习题及答案6
一、单选题(每题3分,共15分)1、图示的序列为________。
A 、)(n uB 、)(n δC 、)(6n RD 、)(n u a n2、数字信号处理之前,有一个预滤波的过程,为的是________.A 、滤去高频成分B 、滤去低频成分C 、滤去高幅值成分D 、滤去外来信号3、如果一个系统是因果的,则要求其Z 变换收敛域________。
A 、包含∞点B 、包含零点C 、包含单位圆D 、 包含∞点和单位圆4、基本信号流图中,支路增益只能是________。
A 、常数B 、1-ZC 、变量D 、常数或1-Z5、无限长脉冲响应基本网络结构中,________的运算速度是最高的。
A 、直接型 B 、 级联型 C 、频率采样结构 D 、并联型二、连线题(每题3分,共15分)请按例对下图进行连线处理例:u (n )单位阶跃序列DIF —FFTFIRIFTH (z )DFT频域抽取快速傅里叶变换有限长单位脉冲响应基本网络结构傅里叶反变换离散傅里叶变换系统函数三、计算题(共3小题,50分)1、已知()(1)()x n n n δδ=--+,1()2()(1)(2)2h n n n n δδδ=+++-,求y (n )2、已知()2[()(10)]n x n u n u n -=-- ;求其Z 变换及收敛域3、已知:序列h (n )是实因果序列,其傅氏变换实部为:ωωcos 1)(+=j R e H ,1)求原序列h (n )2)求原序列的傅立叶变换 3)求该系统的系统函数 4)求系统函数的收敛域四、作图题(每题10分,共20分)1、已知系统函数为11210.5()10.20.8z H z z z ---+=-+,求其直接型结构的信号流图2、做出序列 52(1)R n - 的波形图参考答案一、单选题:(3分×5)B 、A 、A 、D 、D二、连线题(3分×5)DIF —FFTFIRIFTH (z )DFT频域抽取快速傅里叶变换有限长单位脉冲响应基本网络结构傅里叶反变换离散傅里叶变换系统函数三、计算题(共3小题,50分) 1、共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交通大学2012-2013学年第( 1 )学期期中考试试卷课程代码 3130100 课程名称 《数字信号处理A 》 考试时间 120分钟阅卷教师签字:一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。
每小题所给答案中只有一个是正确的。
1.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( C )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器2. 对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( B ) A.[1 3 0 5 2] B.[2 1 3 0 5] C.[3 0 5 2 1] D.[3 0 5 2 0]3.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为( D )A.有限长序列B.右边序列C.左边序列D.双边序列 4.离散序列x(n)为实、偶序列,则其频域序列X(k)为:( A )。
A .实、偶序列 B. 虚、偶序列 C .实、奇序列 D. 虚、奇序列 5. 用窗函数法设计FIR 低通滤波器,当窗函数类型确定后,取窗的长度越长,滤波器的过渡带越 ( A )A. 窄B. 宽C. 不变D. 无法确定6. 当用循环卷积计算两个有限长序列的线性卷积时,若两个序列的长度分别是N 和M ,则循环卷积等于线性卷积的条件是:循环卷积长度( A )。
A.L≥N+M -1 B.L<N+M-1 C.L=N D.L=M7 序列3π()cos 5x n n ⎛⎫= ⎪⎝⎭的周期为( C )A. 3B. 5C. 10D. ∞8. 在基2 DIT —FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为( C )。
班 级 学 号 姓 名密封装订线 密封装订线 密封装订线A. 8B. 16C. 1D. 49. 已知序列()()x n n δ=,其N 点的DFT 记为X(k),则X(0)=( B )A .N-1B .1C . 0D . N 10. 关于双线性变换法设计IIR 滤波器正确的说法是( D ) A .双线性变换是一种线性变换 B .不能用于设计高通和带阻滤波器C .双线性变换法将线性相位的模拟滤波器映射为一个线性相位的数字滤波器D .需要一个频率非线性预畸变 二、(10分)判断题(对以下各题的说法,认为对的在括号内填“〇”,认为错的在括号内填 “╳”;每小题2分,共10分)1.(〇)用基2时间抽取FFT 计算1024点DFT 的计算量不到直接计算量的二百分之一。
2.(〇)用DFT 进行频谱分析时,为保证能分辨由两个功率相同频率相近的单频信号合成的信号中这两个频率,在采样频率满足奈奎斯特定理的情况下需要足够多的采样点数。
3.(╳)对于线性移不变离散系统,当输入单一数字频率为ω0的正弦序列时,输出序列的频谱中一定包含ω0及ω0的谐波成分。
4.(〇)在利用原型模拟滤波器设计IIR 滤波器时,在相同的频率设计指标下,与切比雪夫原型低通滤波器相比,巴特沃兹原型低通滤波器通常需要更高的阶数。
5.(╳)调整FIR 或IIR 滤波器的频率响应都可通过调整其零点和极点位置来完成。
三、(15分)某因果系统的差分方程为y(n)–0.8 y(n -1) + a y(n -2) = x(n),已知该系统的其中一个极点为0.3。
(1)(3分)求参数a 的值;(2)(3分)求系统所有的零、极点,并画出零、极点分布图; (3)(2分)判断该系统的稳定性;(4)(4分)画出由两个一阶系统级联的结构流图; (5)(3分)求该系统的冲激响应h(n)。
解:(1)根据系统差分方程,两边取Z 变换,可得系统函数为H(z)=z 2/(z 2-0.8z+a)因0.3为系统极点,故当z=0.3时,系统函数分母为0,即0.32-0.8x0.3+a=0,得a=0.15;(2) 根据系统函数H(z)=z 2/(z 2-0.8z+0.15),令分子为零,可得系统在z=0为二阶零点;令分母为零,在z=0.5获得另一个极点。
系统零机分布图如下:(3)由于系统是因果的,并且所有极点在单位圆内,故系统BIBO 稳定; (4)对系统函数分解成部分分式之积: H(z)=1/(1-0.3z -1)·1/(1-0.5z -1) 系统有的两个一阶网络的级联流图为)(n x )(n y 1-z 1-z 3.05.0(5)由于系统是因果的,其系统函数H(z)收敛域为以离原点最远的极点为半径的圆外区域,H(z)=z 2/(z 2-0.8z+0.15)= -0.15/(1-0.3z -1)+2.5/(1-0.5z -1),|z|>0.5。
利用部分分式分解的方法,可知冲激响应为 h(n)=[-1.5(0.3)n +2.5(0.5)n ]u(n)四、(20分)若{}()3,2,1,2,1,2,05x n n =≤≤,1. 求序列()x n 的6点DFT ,即()X k 的值;2. 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列()g n 的值; 3.求()()()l y n x n x n =*的值;4. 若()()()c y n x n x n =⑨ ,求()c y n 的值。
解:1.56023456666623266666()()32223222234cos 2cos 2(1)33[11,2,2,1,2,2]05,nkn k k k k k k k k k k kX k x n W W W W W W W W W W W k k k ππ=--==+++++=+++++=+++-=-≤≤∑2.72}212123{)2()()()]([)()2(652665026≤≤=-====--=-=∑∑n ,,,n x W k X W W k X k X W IDFT n g kn k k nk k k ,,3. 5()()*()()(){9,12,10,16,15,20,14,8,9,4,4}l m y n x n x n x m x n m ===-=∑4. 89990()()(())()(9)(){13,16,10,16,15,20,14,8,9}09c l m q y n x m x n m R n y n q R n n +∞==-∞⎡⎤=-=+⎢⎥⎣⎦=≤≤∑∑五、(15分)设FIR 滤波器的系统函数为)9.01.29.01(101)(4321----++++=z z z z z H 。
(1)求出该滤波器的单位取样响应)(n h 。
(2) 试判断该滤波器是否具有线性相位特点。
(3) 求出其幅频响应函数和相频响应函数。
(4)如果具有线性相位特点,试画出其线性相位型结构,否则画出其直接型结构图。
解:1.∑∞-∞=-=n nzn h z H )()(40}1.009.021.009.01.0{)4(1.0)3(09.0)2(21.0)1(09.0)(1.0)(≤≤=-+-+-+-+=∴n n n n n n n h δδδδδ2.∴--=,n N h n h )1()( 该滤波器具有线性相位特点3.)9.01.29.01(101)()(432ωωωωωωj j j j e z j e e e e z H e H j ----=++++== )(2222)()21.0cos 18.02cos 2.0()21.0218.022.0(ωθωωωωωωωωωj j j j j j j e H e ee e e e =++=++⨯++⨯=----幅频响应为21.0cos 18.02cos 2.0)(++=ωωωH 相频响应为 ωωθ2)(-= 4.其线性相位型结构如右图所示。
4分六、(20分)设一个实际序列{}{}3,2,1,0]3[],2[],1[],0[][==x x x x n x ,(1) 请画出序列长度N =4时的基2按时间抽取FFT (DIT-FFT )计算流图,(输入序列为倒序,输出序列为自然顺序)。
(2) 利用以上画出的计算流图求该有限长序列的DFT ,即3,2,1,0],[=k k X 。
(请按要求做,直接按DFT 定义计算不得分)。
(3)若{}()(0),0,(1),0,(2),0,(3),0y n x x x x ={}0,0,1,0,2,0,3,0=,使用最少的运算量求(),07Y k k ≤≤按DFT 定义直接计算不得分。
(提示:利用时域抽取法原理) 解(3)780332(21)8800332(21)8800340()()(2)(21)()(21)()()((21)0)0,1,...,7nkn rkr kr r rkr kr r rk r Y k y n W y r W y r W x r W y r W x r W X k y r k =+==+=====++=++==+==∑∑∑∑∑∑因当k=0,,1,2,3,Y(k)=X(k);当k=4,,5,6,7,利用DFT 的圆周性,Y(k)=Y(4+k ’)=X(4+k ’)=X(k ’),k ’=0,1,2,3;故 (){6,22,2,22,6,22,2,22}Y k j j j j =-+----+---[0]0x =[0]6X=[2]x =[1]x =[3]x =01N w =N[1]22j=-+[2]2X =-[3]22X j=--。