ADI推出ADG5206和ADG5207两款多路复用器

ADI推出ADG5206和ADG5207两款多路复用器
ADI推出ADG5206和ADG5207两款多路复用器

ADI推出ADG5206和ADG5207两款多路复用器

Analog Devices, Inc., (NASDAQ: ADI),全球领先的高性能信号处理解决方案供应商,最近推出ADG5206和ADG5207两款多路复用器,这两款器件能够在工作电压高达22 V的高压工业应用中确保无闩锁现象。闩锁是指一种在关闭电源之前会持续存在的不良高电流状态,它可能导致器件故障。

这些新款多路复用器具有超低电荷注入(0.35 pC)特性,因而特别适合要求低毛刺和快速建立时间的数据采集与采样保持应用。低泄漏(20 pA)特性可确保高精度和分辨率,而这是音频和视频信号路由的一个优势。ADG5206和ADG5207多路复用器是ADI公司开关和多路复用器保护产品系列的最新成员,该保护产品系列还包括具有业界最低电荷注入和低泄漏性能的防闩锁四通道开关ADG5212和ADG5213。

ADG5206和ADG5207特性

每个CMOS开关的N沟道和P沟道晶体管之间实现沟道隔离,确保无闩锁现象

在双极性模拟信号应用中,工作电压范围为9 V至22 V,而在单极性模拟信号应用中,电压范围为+9 V至+40 V

具有3.5 pF关断源极电容和60 MHz -3dB带宽,具有超低的电荷注入(0 V时为0.35 pC)和源极关断泄漏性能。

导通时,两个方向的导电性能相同,输入信号范围可扩展至电源电压范围。在断开条件下,达到电源电压的信号电平被阻止。两款开关均为先开后合式,适合多路复用器应用。

报价与供货

目前可提供样片和评估板。

产品型号

多路复用器

通道数

供货

千片订量报价

封装

ADG5206

16

现在

$4.40/片

28引脚TSSOP 和LFCSP

ADG5207

差分8

现在

$4.40/片

28引脚TSSOP 和LFCSP

多路复用器、模拟开关设计指南 第十二版

MUX & SWITCH
Data Sheets
DESIGN GUIDE
Free Samples
ANALOG
Applications Notes
1
1
e Futurcts Produ
!
SOT
/ Maxim ( SPST )
+2.0V
+5.5V
: +25° C 0.5 SOT23-5 1 MAX4544 SOT23 PDA 1 +2.0V
MAX4626/MAX4627/MAX4628
+5.5V 50ns t ON 50ns t OFF MAX4501/MAX4502 MAX4514/MAX4515 TC7S66F Maxim MAX4644 / : MAX4661–MAX4669 ±15V 1.25 5 ( SPDT )
MAX4624/MAX4625 +25 °C MAX4626/MAX4627/MAX4628 MAX4624 ( BBM ) ( MBB ) MAX4625
6
MAX4680/MAX4690/MAX4700
+25 °C ( MAX4624* MAX4625* MAX4626* MAX4627* MAX4628*
* —
RON )
+25 °C
RON () 6 6 5 5 5
– SOT23 SOT23 SOT23 SOT23 SOT23
(ns) tON 50 50 50 50 50 t OFF 50 50 50 50 50
1 2 3 4 5 6 7 8 9 10 11 12
1 1 0.5 0.5
/
0.3 0.3 0.2 0.2 0.2
0.5

放大器注意参数及概念

最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。开始的时候在输入正负电源处都加了100uf和0.1的电容,但效果不明显,后来准备再电源输入端再串联一个电阻,一开始电阻选择的是1k,但上电后发现芯片根本都无法工作,测量芯片两端的电源电压发现才一点多v。这时候就看了下数据手册的静态电流,发现竟然是5mA,然后这个PGA是5v供电的,如果PGA正常工作,1k电阻上的分压都能到5v。所以后来用了个50欧的电阻配合着100uf和0.1uf构成了个低通滤波,这样一来芯片工作正常了,然后输出的波纹也小了很多。 在选择运放时应该知道自己的设计需求是什么,从而在运放参数表中来查找。一般来说在设计中需要考虑的问题包括1. 运放供电电压大小和方式选择;2.运放封装选择;3.运放反馈方式,即是VFA (电压反馈运放)还是CFA(电流反馈运放);4.运放带宽;5.偏置电压和偏置t电流选择;6温漂;7.压摆率;8.运放输入阻抗选择;9.运放输出驱动能力大小选择;10.运放静态功耗,即ICC电流大小选择;11.运放噪声选择;12.运放驱动负载稳定时间等等。 偏置电压和输入偏置电流 在精密电路设计中,偏置电压是一个关键因素。对于那些经常被忽视的参数,诸如随温度而变化的偏置电压漂移和电压噪声等,也必须测定。精确的放大器要求偏置电压的漂移小于200μV和输入电压噪声低于6nV/√Hz。随温度变化的偏置电压漂移要求小于1μV/℃。 低偏置电压的指标在高增益电路设计中很重要,因为偏置电压经过放大可能引起大电压输出,并会占据输出摆幅的一大部分。温度感应和张力测量电路便是利用精密放大器的应用实例。 低输入偏置电流有时是必需的。光接收系统中的放大器就必须具有低偏置电压和低输入偏置电流。比如光电二极管的暗电流电流为pA量级,所以放大器必须具有更小的输入偏置电流。CMOS和JFET输入放大器是目前可用的具有最小输入偏置电流的运算放大器。 因为我现在用的是光电池做采集的系统,所以在使用中重点关心了偏置电压和电流。如果还有其他的需要,这时应该对其他参数也需要多考虑了。 1、输入失调电压VIO(Input Offset Voltage) 输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。 输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。 2、输入失调电压的温漂αVIO(Input Offset Voltage Drift) 输入失调电压的温度漂移(又叫温度系数)定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。 这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变

2输入数据选择器(mux2)集成电路课设报告

课程设计任务书 学生姓名:助人为乐专业班级:不计得失 指导教师:一定过工作单位:信息工程学院 题目: 二输入数据选择器版图设计 初始条件: 计算机、ORCAD软件、L-EDIT软件 要求完成的主要任务: 1、课程设计工作量:2周 2、技术要求: (1)学习ORCAD软件、L-EDIT软件软件。 (2)设计一个二输入数据选择器电路。 (3)利用ORCAD软件、L-EDIT软件对该电路进行系统设计、电路设计和版图设计,并进行相应的设计、模拟和仿真工作。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.22布置课程设计任务、选题;讲解课程设计具体实施计划与课程设计报告格式的要求;课程设计答疑事项。 2013.11.25-11.27学习ORCAD软件、L-EDIT软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.28-12.5对二输入数据选择器电路进行设计仿真工作,完成课设报告的撰写。 2013.12.6提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1.绪论 (2) 2.软件简介 (3) 2.1Cadence简介 (3) 2.2L-edit简介 (3) 3.二输入多路选择器电路设计及仿真 (4) 3.1数据选择器原理 (4) 3.2电路原理图的绘制 (5) 3.3电路图仿真 (6) 4.集成电路版图设计 (7) 4.1CMOS数字电路基本单元版图设计 (7) 4.1.1反相器版图设计 (7) 4.1.2与非门版图设计 (8) 4.2整体版图设计 (9) 4.3设计规则的验证及结果 (9) 5.总结 (10) 参考文献 (11)

运放参数解释

运放带宽相关知识! 一、单位增益带宽GB 单位增益带宽定义为:运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。 二、运放的带宽是表示运放能够处理交流信号的能力(转) 对于小信号,一般用单位增益带宽表示。单位增益带宽,也叫做增益/带宽积能够大致表示运放的处理信号频率的能力。例如某个运放的增益带宽=1MHz,若实际闭环增益=100,则理论处理小信号的最大频率=1MHz/100=10KHz。 对于大信号的带宽,既功率带宽,需要根据转换速度来计算。 对于直流信号,一般不需要考虑带宽问题,主要考虑精度问题和干扰问题。 1、运放的带宽简单来说就是用来衡量一个放大器能处理的信号的频率范围,带宽越高,能处理的信号频率越高,高频特性就越好,否则信号就容易失真,不过这是针对小信号来说的,在大信号时一般用压摆率(或者叫转换速率)来衡量。 2、比如说一个放大器的放大倍数为n倍,但并不是说对所有输入信号的放大能力都是n倍,当信号频率增大时,放大能力就会下降,当输出信号下降到原来输出的0.707倍时,也就是根号2分之一,或者叫减小了3dB,这时候信号的频率就叫做运放的带宽。 3、当输出信号幅度很小在0.1Vp-p以下时,主要考虑增益带宽积的影响。 就是Gain Bandwidth=放大倍数*信号频率。 当输出信号幅度很大时,主要考虑转换速率Sr的影响,单位是V/uS。 在这种情况下要算功率带宽,FPBW=Sr/2πVp-p。 也就是在设计电路时要同时满足增益带宽和功率带宽。 运放关于带宽和增益的主要指标以及定义 开环带宽:开环带宽定义为,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得开环电压增益从运放的直流增益下降3db(或是相当于运放的直流增益的0.707)所对应的信号频率。这用于很小信号处理。 单位增益带宽GB:单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽

集成运放的主要参数以及测试方法

集成运放的性能主要参数及国标测试方法 集成运放的性能可用一些参数来表示。 集成运放的主要参数: 1.开环特性参数 (1)开环电压放大倍数Ao。在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压 放大倍数。Ao越高越稳定,所构成运算放大电路的运算精度也越高。 (2)差分输入电阻Ri。差分输入电阻Ri是运算放大器的主要技术指标之一。它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。一般为10k~3M,高的可达1000M以上。 在大多数情况下,总希望集成运放的开环输入电阻大一些好。 (3)输出电阻Ro。在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映 了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。 (4)共模输入电阻Ric。开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。 (5)开环频率特性。开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。 2.输入失调特性 由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。通常用以下参数表示。 (1)输入失调电压Vos。在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即: Vos=Vo0/Ao 失调电压的大小反映了差动输入级元件的失配程度。当集成运放的输入端外接电阻比较小时。失调电压及其漂移是引起运算误差的主要原因之一。Vos一般在mV级,显然它越小越好。 (2)输入失调电流Ios。在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。即: Ios=Ib- — Ib+ 式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。Ios一般在零点几微安到零点零几微安数量级,其值越小越好。失调电流的大小反映了差动输入级两个晶体管B值的失配程度,当集成运放的输入端外接电阻比较大时,失调电流及其漂移将是运算误差的主要原因。(3)输入失调电流温漂dIos。温度波动对运算放大器的参数是有影响的。如温度变化时,不仅能使集成运放两输入晶体管的基极偏置电流Ib-、Ib+发生变化,而且两者的变化率也不相同。也就是输入失调电流Ios将随温度而变化,不能保持为常数。一般 常用的集成运放的dIos指标如下: ●通用I型低增益运放。在+25℃~+85℃范围约为5~20nA/℃,-40℃~+25℃范围约为 20~50nA/℃。 ●通用Ⅱ型中增益运放。dIos约为5~20nA/℃。 ●低漂移运放。dIos约为100PA/℃ (4)输入失调电压温漂dVos。在规定的工作温度范围内,Vos随温度的平均变化率,即:dVos=△Vos/△T一般为1~50uV/℃,高质量的低于0.5uV。由于该指标不像Vos可

运算放大器地全参数选择

运算放大器的参数指标 1.开环电压增益Avd 开环电压增益(差模增益)为运算放大器处于开环状态下,对小于200Hz的交流输入信号的放大倍数,即输出电压与输入差模电压之比。它一般为104~106,因此它在电路分析时可以认为无穷大。 2.闭环增益A F 闭环增益是运算放大器闭环应用时的电压放大倍数,其大小与放大电路的形式有关,与放大器本身的参数几乎无关,只取决于输入电组和反馈电阻值的大小。 反相比例放大器,其增益为 A F=- RI RF 3.共模增益Avc和共模抑制比 当两个输入端同时加上频率小于200Hz的电压信号Vic时,在理想情况下,其输出电压应为零。但由于实际上内部电路失配而输出电压不为零。此时输出电压和输入电压之比成为共模增益Avc。 共模抑制比Kcmr= Avc Avd 共模增益 运算放大器的差模增益, 通常以对数关系表示:Kcmr=20log Avc Avd 共模增益 运算放大器的差模增益 共模抑制比一般在80~120Db范围内,它是衡量放大器对共模信号抑制能力高低的重要指标。这不仅是因为许多应用电路中要求抑制输入信号中夹带的共模干扰,而且因为信号从同相端输入时,其两个输入端将出现较大的共模信号而产生较大的运算误差。

在常温(25℃)下当输入电压为零时,其输出电压不为零。此时将其折算到输入端的电压称为输入失调电压。它一般为±(0.2~15)mV 。这就是说,要使放大器输出电压为零,就必须在输入端加上能抵消Vio 的差值输入电压。 5. 输入偏置电流 在常温(25℃)下输入信号为零(两个输入端均接地)时,两个输入端的基极偏置电流的平均值称为输入偏置电流,即 I IB =2 1( I IB -+ I IB+) 它一般在10nA~1uA 的范围内,随温度的升高而下降,是反映放大器动态输入电阻大小的重要参数。 6. 输入失调电流I IO 输入失调电流可表示为 I IO =︱I IB -- I IB+∣ 在双极晶体管输入级运算放大器中,I IO 约为(0.2~0.1)I IB -或(0.2~0.1)I IB+。当I IO 流过信号源内阻时,产生输入失调电压。而且它也是温度的函数。 7. 差模输入电阻R ID 在一般应用电路中,输入阻抗是指差模输入电阻R ID 。它一般为100K Ω~1M Ω,高输入阻抗运算放大器的差模输入电阻可达1013Ω。 8. 温度漂移 输入失调电压、输入失调电流和输入偏置电流等参数均随温度、时间和电源等外界条件的变化而变化。其中输入偏置电流的变化是造成放大器温度漂移的主要原因。对于双极晶体管输入级运算放大器,输入偏置电流随温度上升而变小,数量级为nA 级。

用多路复用器扩展MCU串口

用多路复用器扩展MCU串口 多微控制器(MCU)/微机组成的分布式、主从式系统是现代复杂通信、控制系统的典型解决方案。分布式环境下的多机协同,要求系统状态和控制信息在多机间进行快速传递,这通常借助简单有效的串行通信方式。现有的微控制器一般所带的串行接口非常适用于点对点通信的场合;但对于实时性要求高的多机通信场合,这类接口必须在串口数量和功能上进行扩展,才能满足对实时性要求较高的应用场合的需要。 ?本文讨论了一种适用于多机实时环境下的、新的可重配置串口扩展方案。图1为本方案框图。多路复用器是本方案的硬件核心。方案的要点是利用Mux动态地将MCU的串口在串行通道间切换,以达到串口扩展的目的。本文中MCU 以89C51为例,Mux 以MAX353为例。 ?MAX353 是Maxim公司推出的高性能多路复用器,实际可构成两对单刀单掷模拟开关,两对开关状态由一个引脚控制。MAX353基本参数为导通电阻小于35Ω;导通时间小于175ns,关断时间小于145ns。以上参数完全满足本方案的使用要求。 ?以下介绍本串口扩展方案的基本工作原理。 ?两串行通道和MAX353、89C51的连接两串行通道CH1,CH2通过多路复用器MAX353接到89C51的串口,多路复用器MAX353由89C51的一个I/O引脚控制。其中串行通道CH2的输出TXD2同时接到89C51的外部中断输入请 求INT0或INT1上。为了适应各种串口通信协议的需要,可在电路中加上电平转换器件,如图1所示。 ?中断源的使用和设置CH1仍旧使用串口中断,而CH2使用外部中断INT0或INT1(下面以INT0为例)。当CH2有信息来时,TXD2上将出现起始标志:

几种常用集成运算放大器的性能参数解读

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

数据选择器_Mutisim仿真实验报告

电气工程学院电工电子教学基地 数字电子技术实验 实验报告 仿真实验1 用数据选择器设计函数发生器 学号:18291035 姓名:陈涟漪 班级:电气1802 成绩: 指导教师:周晖 完成时间:2020年5 月15 日

数字电子技术实验 仿真实验1 用数据选择器设计函数发生器 1 实验任务 使用数据选择器74LS151和适当门电路设计一函数发生器,能够实现4位二进制码数据范围指示功能。要求该函数发生器能区别以下三种情况: (1)0≤X≤4; (2)5≤X≤9; (3)10≤X≤15。 2 实验电路

3 实验步骤 采用A、B、C、D取0或1依次表示这四位二进制码的从高到低位的取值(例如:A=0,B=1,C=0,D=0表示四位二进制码0100)。则对于第一组来说,共有5个四位二进制码包含在其中,用卡诺图表示如下: 化简即得: 同理,也有5个数包含在第二组中,卡诺图如下: 化简即得: 第三组包含了6个数,卡诺图如下:

化简即得: 对以上三个式子都去两次非并利用摩根定律可得: 这样就完成了该问题的逻辑转化。 根据前面对该实验分析所得到的逻辑表达式可以发现,输入变量为A、B、C、D,但是在后面的逻辑运算中它们的“非”都用到了,也就是第一步我们要得到这四个变量的非。然后再进行后面的与非运算。三个输出变量的状态也可以用三个灯泡来表示,这里采用了三个颜色不同的灯泡用以区分。到这里,逻辑图就可以很容易的用Multisim软件模拟出来。 其中,最上面的X1灯泡亮时,表示输入数字在0≤X≤4范围内,X2亮时表示输入数字在5≤X≤9范围内,X3亮时表示输入数字在10≤X≤15范围内。这里还是用了四个开关,每个开关“开”表示1,“关”表示0,四个开关以ABCD的顺序来表示四位二进制数。四位二进制数同上,也有16中情况,这里不做一一展示,只对每一类给出一种模拟结果。

运放参数说明(加选型和例子)

1、输入失调电压(Input Offset Voltage) V OS 若将运放的两个输入端接地,理想运放输出为零,但实际运放输出不为零。此时,用输出电压除以增益得到的等效输入电压称为输入失调电压。 其值为数mV,该值越小越好,较大时增益受到限制。 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在 1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 本文来自: https://www.360docs.net/doc/389130333.html, 原文网址: https://www.360docs.net/doc/389130333.html,/info/analog/3366_2.html 2、输入失调电压的温漂(Input Offset Voltage Drift),又叫温度系数 TC V OS 一般为数uV/.C 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 本文来自: https://www.360docs.net/doc/389130333.html, 原文网址: https://www.360docs.net/doc/389130333.html,/info/analog/3366_2.html 3、输入偏置电流(Input Bias Current) I BIAS 运放两输入端流进或流出直流电流的平均值。 对于双极型运放,该值离散性较大,但却几乎不受温度影响;而对于MOS型运放,该值是栅极漏电流,值很小,但受温度影响较大。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

集成运算放大器IC的主要参数【经典】

集成运算放大器IC的主要参数 本节以《中国集成电路大全》集成运算放大器为主要参考资料,同时参考了其它相关资料。 集成运放的参数较多,其中主要参数分为直流指标和交流指标。 其中主要直流指标有输入失调电压、输入失调电压的温度漂移(简称输入失调电压温漂)、输入偏置电流、输入失调电流、输入偏置电流的温度漂移(简称输入失调电流温漂)、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰-峰值电压、最大共模输入电压、最大差模输入电压。 主要交流指标有开环带宽、单位增益带宽、转换速率SR、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。 这里重点描述——直流指标 输入失调电压VIO:输入失调电压定义为集成运放输出端电压为零时,两个输入端之间所加的补偿电压。输入失调电压实际上反映了运放内部的电路对称性,对称性越好,输入失调电压越小。输入失调电压是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电压与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入失调电压在±1~10mV之间;采用场效应管做输入级的,输入失调电压会更大一些。对于精密运放,输入失调电压一般在1mV以下。输入失调电压越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电压的温度漂移(简称输入失调电压温漂)αVIO:输入失调电压的温度漂移定义为在给定的温度范围内,输入失调电压的变化与温度变化的比值。这个参数实际是输入失调电压的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。一般运放的输入失调电压温漂在±10~20μV/℃之间,精密运放的输入失调电压温漂小于±1μV/℃。 输入偏置电流IIB:输入偏置电流定义为当运放的输出直流电压为零时,其两输入端的偏置电流平均值。输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。 输入失调电流IIO:输入失调电流定义为当运放的输出直流电压为零时,其两输入端偏置电流的差值。输入失调电流同样反映了运放内部的电路对称性,对称性越好,输入失调电流越小。输入失调电流是运放的一个十分重要的指标,特别是精密运放或是用于直流放大时。输入失调电流大约是输入偏置电流的百分之一到十分之一。输入失调电流对于小信号精密放大或是直流放大有重要影响,特别是运放外部采用较大的电阻(例如10k?或更大时),输入失调电流对精度的影响可能超过输入失调电压对精度的影响。输入失调电流越小,直流放大时中间零点偏移越小,越容易处理。所以对于精密运放是一个极为重要的指标。 输入失调电流的温度漂移(简称输入失调电流温漂):输入偏置电流的温度漂移定义为在给定的温度范围内,输入失调电流的变化与温度变化的比值。这个参数实际是输入失调电流的补充,便于计算在给定的工作范围内,放大电路由于温度变化造成的漂移大小。输入失调电流温漂一般只是在精密运放参数中给出,而且是在用以直流信号处理或是小信号处理时才需要关注。

集成运算放大器的外特性及参数

集成运算放大器的外特性及参数 1. 理想集成运算放大器 所谓理想运放就是将各项技术指标理想化的集成运放,即认为: 开环差模电压放大倍数 Od A =∞; 差模输入电阻 id R =∞; 输出电阻 O R =0; 共模抑制比 CMR K =∞; 输入偏置电流 id I =0; 上限频率 H f =∞ 。 2. 集成运算放大器的电压传输特性 我们称集成运放输出电压O U 与其输入电压id U 之间的关系曲线为电压传输特性,集成运放的电压传输特性如图2-15(a )所示。 (a) (b) 图2-15 集成运放的电压传输特性 (a) 集成运放的电压传输特性 (b) 理想集成运放的电压传输特性 在id U 很小的范围内为线性区,id od O U A U =,输出电压的最大值为OM U ±,当

od OM A | |U U >||id 时,输出信号O U 不再跟随id U 线性变化,进入饱和工作区(非线性区) 。由于集成运放的开环差模电压放大倍数Od A 非常高,一般为104 ~107 ,即80~140dB ,所以它的线性区非常窄,图2-15(b )为理性运算放大器的电压传输特性。如果输出电压最大值 V U O M 13±=±。Od A =5×105,那么只有当输入信号|id U |<26μV 时,电路才会工作 在线性区。否则输出级就将工作在正向饱和或负向饱和状态,输出电压O U 不是OM U +就是 OM U -。其饱和值OM U ±接近正、负电源电压值。 3. 集成运算放大器的参数 集成运算放大器的性能可以用各种参数来表示,了解这些参数有助于正确选择和使用各种不同类型的集成运放。常用的典型集成运算放大器的参数详见表2-1。 表2-1典型集成运算放大器的参数表

运算放大器主要参数测试方法说明1

通用运算放大器主要参数测试方法说明 1. 运算放大器测试方法基本原理 采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。 图1 辅助放大器应满足下列要求: (1) 开环增益大于60dB; (2) 输入失调电流和输入偏置电流应很小; (3) 动态范围足够大。 环路元件满足下列要求: (1) 满足下列表达式 Ri·Ib<Vos R<Rid R·Ib >Vos Ros<Rf<Rid R1=R2 R1>RL 式中:Ib:被测器件的输入偏置电流; Vos:被测器件的输入失调电压; Rid:被测器件的开环差模输入电阻; Ros:辅助放大器的开环输出电阻; (2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。

2.运算放大器测试适配器 SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。运算放大器适配器原理图如附图所示。 3.测试参数 以OP-77G为例,通用运算放大器主要技术规范见下表。

3.1 参数名称:输入失调电压Vos (Input Offset Voltage)。 3.1.1 参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿 电压。 3.1.2 测试方法: 测试原理如图2 所示。 图2 (1) 在规定的环境温度下,将被测器件接入测试系统中; (2) 电源端施加规定的电压; (3) 开关“K4”置地(或规定的参考电压); (4) 在辅助放大器A的输出端测得电压Vlo; (5) 计算公式: Vos=(Ri/(Ri+Rf))*VLo 。 3.1.3编程举例:(测试对象:OP-77G,测试系统:SP3160) ----测试名称:vos---- 测量方式:Vos Bias 1=-15.000 V Clamp1=-10.000mA Bias 2=15.000 V Clamp2=10.000mA 测量高限=0.0001 V 测量低限=____ V 测量延迟:50mS 箝位延迟:50mS SKon=[0,4,11,12,13,19,23,27] 电压基准源2电压=0V 电压基准源2量程+/-2.5V 电压基准源3电压=0V 电压基准源3量程+/-2.5V 测试通道TP1 测量单元DCV DCV量程:+/-2V

SGM48752 CMOS模拟多路复用器

SGM48752 CMOS Analog Multiplexer GENERAL DESCRIPTION The SGM48752 is a CMOS analog IC configured as two 4-channel multiplexers. This CMOS device can operate from 2.5V to 5.5V single supplies. Each switch can handle rail-to-rail analog signals. The off-leakage current is only 1nA at +25℃. All digital inputs can support 1.8V logic control I/O. The SGM48752 is available in Green SOIC-16 and TSSOP-16 packages. It operates over an ambient temperature range of -40℃ to +85℃. APPLICATIONS Battery-Operated Equipment Audio and Video Signal Routing Low-Voltage Data-Acquisition Systems Communications Circuits Automotive FEATURES q2534762101 ●Guaranteed On-Resistance 48? (TYP) with +5V Supply ●Guaranteed On-Resistance Match Between Channels ●Low Off-Leakage Current 1nA at +25℃ ●Low On-Leakage Current 1nA at +25℃ ●Optimized Rise Time and Fall Time of A, B Control Pins to Reduce Clock Feedthrough Effect ●2.5V to 5.5V Single-Supply Operation ●1.8V Logic Compatible ●Low Distortion: 0.7% (R L = 600?, f = 20Hz to 20kHz) ●High Off-Isolation: -83dB (R L = 50?, f = 1MHz) ●Low Crosstalk: -110dB (f = 1MHz) ●-40℃ to +85℃ Operating Temperature Range ●Available in Green SOIC-16 and TSSOP-16 Packages

运算放大器常见问题

1.一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢? (1) 为芯片内部的晶体管提供一个合适的静态偏置。 芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地 线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分 析。 (2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡, 这也是其得名的原因。 2.同相比例运算放大器,在反馈电阻上并一个电容的作用是什么?? (1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。 (2)防止自激。 3.运算放大器同相放大电路如果不接平衡电阻有什么后果? (1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。 4.在运算放大器输入端上拉电容,下拉电阻能起到什么作用?? (1)是为了获得正反馈和负反馈的问题,这要看具体连接。比如我把现在输入电压信号,输出电 压信号,再在输出端取出一根线连到输入段,那么由于上面的那个电阻,部分输出信号通过该电 阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。因为信 号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。 5.运算放大器接成积分器,在积分电容的两端并联电阻RF 的作用是什么? (1) 泄放电阻,用于防止输出电压失控。 6.为什么一般都在运算放大器输入端串联电阻和电容? (1)如果你熟悉运算放大器的内部电路的话,你会知道,不论什么运算放大器都是由几个几个晶 体管或是MOS 管组成。在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时 候,会输出近似于正电压的电平,反之也一样……但这样运放似乎没有什么太大的用处,只有在 外接电路的时候,构成反馈形式,才会使运放有放大,翻转等功能…… 7.运算放大器同相放大电路如果平衡电阻不对有什么后果? (1)同相反相端不平衡,输入为0 时也会有输出,输入信号时输出值总比理论输出值大(或小) 一个固定的数。 (2)输入偏置电流引起的误差不能被消除。 8.理想集成运算放大器的放大倍数是多少输入阻抗是多少其同相输入端和反相输入端之间的电 压是多少? (1) 放大倍数是无穷大,输入阻抗是无穷小,同向输入和反向输入之间电压几乎相同(不是0

多路复用器和模拟开关

多路复用器和模拟开关 多路复用器(MULTIPLEXER也称为数据选择器)是用来选择数字信号通路的;模拟开 关是传递模拟信号的,因为数字信号也是由高低两个模拟电压组成的,所以模拟开关也能 传递数字信号。 在CMOS多路复用器中,因为其数据通道也是模拟开关结构,所以也能用于选择多路模拟信号。但是TTL的多路复用器就不能选择模拟信号.。 用CMOS勺多路复用器或模拟开关传递模拟信号时要注意:模拟信号的变化值必须在正负电源电压之间,譬如要传递有正负半周的正弦波时,必须使用正负电源且电源电压大于传递的模拟信号峰值,这时其控制或地址信号必须以负电源电压为0,而以正电源电压为 1; 或者用单电源供电,而使模拟信号的变化中值在1/2电源电压上,传递之后再恢复到原来 的值。 一、常用CMO模拟开关引脚功能和工作原理 1. 四双向模拟开关 CD4066 CD4066的引脚功能如下图所示。每个封装内部有4个独立的模拟开关,每个模拟开关 有输入、输出、控制三个端子,其中输入端和输出端可互换。当控制端加高电平时,开关导通;当控制端加低电平时开关截止。模拟开关导通时,导通电阻为几十欧姆;模拟开关截止 时,呈现很高的阻抗,可以看成为开路。模拟开关可传输数字信号和模拟信号,可传输的模 拟信号的上限频率为 40MHz各开关间的串扰很小,典型值为一50dB。 2. 单八路模拟开关 CD4051 CD4051引脚功能如下图所示。CD4051相当于一个单刀八掷开关,开关接通哪一通道, 由输入的3位地址码ABC来决定。“INH”是禁止端,当“ INH” =1时,各通道均不接通。此外,CD4051还设有另外一个电源端 VEE以作为电平位移时使用,从而使得通常在单组电源供电条件下工作的 CMO电路所提供的数字信号能直接控制这种多路开关,并使这种多路开关可传输峰—峰值达 15V 的交流信号。例如,若模拟开关的供电电源VDD斗5V, VSS=0V 当VEE=- 5V时,只要对此模拟开关施加0?5V的数字控制信号,就可控制幅度范围为-5V? + 5V的模拟信号。

多路数据选择器

基于FPGA的多路数据采集器的设计 李庭武李本印 (陇东学院电气工程学院,甘肃庆阳745000) 摘要:数据采集是从一个或多个信号获取对象的过程,它是计算机与外部物理世界连接的桥梁,尤其在恶劣的数据采集环境中得到广泛应用。本课题主要研究利用FPGA把采集到的八路模拟信号电压分别转换成数字信号,在数码管上实时显示电压值,并且与计算机运行的软件示波器连接,实现电压数据的发送和接收功能。 关键词:FPGA;模数转换;数码显示管;键盘;设计 Design of multi-channel data terminal Based on FPGA Li Tingwu Li Benyin (Electrical Engineering College, Longdong University, Qingyang 745000, Gansu, China) Abstract: Data acquisition is a process that access to the object from the one or more signal, it is the bridge between the computer and the external physical world, and especially widely applied in data acquisition in harsh environment . This essay mainly studies on the usage of FPGA to collect the eight analog signals that are converted to digital voltage signal, digital tube display real-time voltage value. Connecting with the computer running software oscilloscope so that to realize the voltage data sending and receiving function. Keywords: FPGA; analog-to-digital converting chip; digital display tube; keyboard; design

运算放大器参数的基本仿真方法示例(2nd edition)

运算放大器参数的基本仿真方法示例(2nd edition) 刘泰源,LTC1733 GROUP ROOM 237,SOC DESIGN CENTRE 目的:仿真一个两级的运放,熟悉模拟电路仿真软件的使用。 采用软件:workview ,hspice 2005.03 工艺库的说明:采用韩国MagnaChip 0.5umCMOS工艺库 对所采用电路描述:首先在workview中生成一个两级的运算放大器,并导出网表,第一级是差分的输入放大器,其作用是放大差模信号,抑制共模信号,第二级是一个共源放大器,提供更大的增益。在第一级里,m1、m2为差动输入管,m5提供由基准电压产生的偏置电流,m3、m4两管是一对电流镜,保证m3,m4两管为两个输入端提供相等的电流。第二级m8是负载管,m7是倒相器的输入管。 主要仿真的运算放大器特性: 增益,增益带宽,建立时间,摆率,ICMR,CMRR,PSRR,输出摆幅,失调电压 运放电路结构图: 图1运放电路

静态工作点的调节在整个模拟电路的设计中是非常重要的,因为不同功能的模块对器件的工作状态有不同的要求,在电路设计初期确定下的管子的工作状态就在这个阶段与以实现。实现的语句在hspice里面是.op语句。这个语句会在仿真生成的.lis文件里面形成一个关于管子工作状态的理解,查找.lis文件中的region关键字,就能找到各个管子工作点的列表。 静态工作点的调节: 采用的方法,先设计第一级的的工作点,再设计第二级的工作点。 第一级工作点设计要求五个管子都工作在饱和区,并且保证电路的对称,在vcc,in1,in2和bias上要加上适当的偏置电压。我设定的bias为 1.5v,in1=in2=2.5v,这个时候要注意调节各管子的宽长比使管子达到饱和,如果m3,m4是线形区,则应该调节减小m3,m4的宽长比,同时通过增加m5的宽长比增大偏置电流,如果m5处于线形区,则应该采取与上面所说的相反的方法,如果输入管处于线形区,要考虑输入的偏置电压是否合适,同时折中上面的调节方法。 在调整第一级进入管子都饱和后,加上第二级一起调整,目的是使两级的管子都进入饱和区,这里遇到的一个问题,就是第二级的两个管子很难同时到达饱和区,发现问题在于m3,m4管的vds太小,使第二级的m7管只能在线形区,减小m3,m4的宽长比和调节m5的偏置电流后,可以使两管都饱和。 在整个过程中,都需要保持偏置管和电流镜对管的对称性。 NOTE:(上述调节过程仅是一个参考,实际电路中BIAS电流不可能这么精确,所以,在实际情况中,调试电路的中的偏置电压更多的由实际偏置电路提供。) 1.开环增益: 1)输入差模信号,调节使各晶体管的工作点都处在饱和区,在输入端in1加入交流信号,in2加上偏置信号。 2)输入激励: vcc vcc 0 5 vbias bias 0 1.2 vin1 in1 0 2.5 vin2 in2 0 2.5 ac 1

相关文档
最新文档