角的比较与运算(一)练习题
角的比较和运算典型题

角的比较和运算典型题例1 如图:∠AOB是哪两个角的和?∠DOC是哪两个角的和?若∠AOB=∠COD,则还有哪两个角相等?(独立完成,个别回答,教师点评)例2 如图: AOB是一条直线,∠AOC=900,∠DOE=900,写出∠AOD、∠COD、∠AOC、∠AOB、∠BOD中某些角之间的两个等量关系。
(小组讨论,代表发言,学生点评)例 3 已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,求∠AOC的度数?如图所示,如果∠AOB=∠BOC,则∠AOC= ∠AOB +∠BOC=2∠AOB =2∠BOC,即∠AOB=∠BOC=1/2∠AOC如这种从一个角的顶点出发,把这个角分成相等的两角的射线,叫做这个角的平分线,类似地还有角的三等分线等。
例4 如图:已知O为直线AB上一点,∠AOC的平分线OM,∠BOC的平分线为ON,求∠MON的度数?例5 如图所示,OM为∠AOB的平分线,射线OC在∠BOM 内,ON为∠BOC的平分线,已知∠AOC=800,求∠MON?练习:1、如图所示:(1)∠COD= - ,或 - 。
(2)如果∠AOB=∠COD,则∠AOC与∠BOD的大小关系如何?2、如图所示:∠1:∠2:∠3:∠4=1:2:3:4,求∠1、∠2、∠3、∠4的度数?3、已知一条直线OA,若从点O再引两条射线OB和OC,使角AOB为60度,角BOC为20度,求角AOC的度数。
4、如图,已知:∠BOC=2∠AOB,OD平分∠AOC,∠BOD=140求:∠AOB的度数。
5.如图,OB是∠AOC的平分线,OD是∠COE的平分线。
(1)若∠AOC=800 ,求∠BOC的度数;(2)若∠AOC=800 ,∠COE=500,求∠BOD的度数。
E D C BO A(3).若∠AOB=390,∠BOC=210,则∠AOC的度数是多少?为什么?提高训练一、填空:1.如图1,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<);OC(1)ABOD C(2)ABODC(3)AB2.如图2,∠AOC=______+______=______-______;∠BOC=______-______= _____-________.3.OC是∠AOB内部的一条射线,若∠AOC=12________,则OC平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC.二、选择:4.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A一定大于∠C。
角的概念与计算

苏科版6.2角的概念与计算出卷人:宋仁帅一.选择题(共20小题) 1.36.33°可化成( )A . 36°30′3″B . 36°3′C . 36°30′30″ D .36°19′48″2.若∠A=20°18′,∠B=20°15′30〞,∠C=20.25°,则( ) A . ∠A >∠B >∠C B . ∠B >∠A >∠C C . ∠A >∠C >∠B D .∠C >∠A >∠ B3.把10.26°用度、分、秒表示为( )A .10°15′36″ B .10°20′6″ C .10°14′6″ D .10°26″4.把8.32°用度、分、秒表示正确的是( )A .8°3′2″ B .8°30′2″ C .8°19′20″ D .8°19′12″5.把18°15′36″化为用度表示,下列正确的是( ) A . 18.15° B . 18.16° C . 18.26° D .18.36°6.把15°48′36″化成以度为单位是( ) A . 15.8° B . 15.4836° C . 15.81° D .15.36°7.0.25°=( )′=( )″. A .25′,2500″ B . 15′,900″C .()′,()″D .15′,0.5″8.(2014•乐山)如图,OA 是北偏东30°方向的一条射线,若射线OB 与射线OA 垂直,则OB 的方位角是( )A . 北偏西30°B .北偏西60° C .东偏北30°D .东偏北60°9.(2013•浦东新区一模)如果乙船在甲船的北偏东40°方向上,丙船在甲船的南偏西40°方向上,那么丙船在乙船的方向是()A .北偏东40°B.北偏西40°C.南偏东40°D.南偏西40°10.(2012•丽水)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是()A .120°B.135°C.150°D.160°11.在海面上自船P观测船Q,Q在南偏东62°方向上.则此时,自船Q观测船P,P点的方向应为()A .北偏东28°B.北偏西62°C.南偏东28°D.南偏西62°12.(2014•成都模拟)时钟在3点半时,分针与时针所夹的角的度数是()A .67.5°B.75°C.82.5°D.90°13.(2012•通辽)4点10分,时针与分针所夹的小于平角的角为()A .55°B.65°C.70°D.以上结论都不对14.(2012•龙岩模拟)现在是一点整,从现在开始到三点,时针与分针成90°角的次数是()A .1 B.2 C.3 D.415.(2007•花都区一模)下午3点30分时(如图),时钟的分针与时针所成锐角的度数为()A .45°B.60°C.75°D.105°16.(2006•河北)下午2点30分时(如图),时钟的分针与时针所成角的度数为()A .90°B.105°C.120°D.135°17.(2005•荆门)钟表上12时15分钟时,时针与分针的夹角为()A .90°B.82.5°C.67.5°D.60°18.(2002•杭州)在时刻8:30,时钟上的时针和分针之间的夹角为()A .85°B.75°C.70°D.60°19.(1999•山西)3点半时,钟表的时针和分针所成锐角是()A .70°B.75°C.85°D.90°20.15时的钟表的时针与分针所形成的角的度数是()A .30°B.45°C.60°D.90°二.解答题(共10小题)21.(2010•三明)(1)﹣5的绝对值是_________.(2)如图,∠AOB=50°,OC平分∠AOB,则∠AOC的度数=_________.22.(2006•永春县)如图,已知O是直线CD上的点,OA平分∠BOC,∠AOC=35°,则∠BOD的度数.23.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.24.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.26.如图,设相邻两个角∠AOB,∠BOC的角平分线分别为OM,ON,如果∠MON=α(α为常数),那么∠AOC的度数是否为一个固定值?若是,请说明理由,并求出∠AOC的度数;若不是,请说明理由.27.(1)如图①所示,已知∠AOB=100°,OC是∠AOB平分线,OD、OE分别平分∠COB、∠AOC,求∠DOE的度数;(2)如图②,在(1)中把“OC是∠AOB的平分线”改为“OC是∠AOB内任意一条射线”,其他任何条件都不变,试求∠DOE的度数;(3)如图③,在(1)中把“OC是∠AOB的平分线”改为“OC是∠AOB外任意一条射线”,其他任何条件都不变,你能求出∠DOE的度数吗?说明理由.28.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_________(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.29.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.30.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE 的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE的度数.6.2角的概念与计算参考答案与试题解析一.选择题(共20小题)1.36.33°可化成()A .36°30′3″B.36°3′C.36°30′30″D.36°19′48″考点:度分秒的换算.分析:根据度分秒间的进率是60,不到1度的化成分,不到一分的化成秒,可得答案.解答:解:36.33°=36°19.8′=36°19′48″,故选:D.点评:本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.2.若∠A=20°18′,∠B=20°15′30〞,∠C=20.25°,则()A .∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B考点:度分秒的换算.专题:计算题.分析:∠A、∠B已经是度、分、秒的形式,只要将∠C化为度、分、秒的形式,即可比较大小.解答:解:∵∠A=20°18′,∠C=20.25°=20°15′,∴∠A>∠B>∠C.故选A.点评:主要考查了两个角比较大小.在比较时要注意统一单位后再比较.3.把10.26°用度、分、秒表示为()A .10°15′36″B.10°20′6″C.10°14′6″D.10°26″考点:度分秒的换算.专题:计算题.分析:两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.度、分、秒的转化是60进位制.解答:解:∵0.26°×60=15.6′,0.6′×60=36″,∴10.26°用度、分、秒表示为10°15′36″.故选A.点评:此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.4.把8.32°用度、分、秒表示正确的是()A .8°3′2″B.8°30′2″C.8°19′20″D.8°19′12″专题:计算题.分析:进行度、分、秒的转化运算,注意以60为进制.解答:解:根据角的换算可得8.32°=8°+0.32×60′=8°+19.2′=8°+19′+0.2×60″=8°19′12″.故选D.点评:此题主要考查度、分、秒的转化运算,属于基础题,相对比较简单,注意以60为进制,要一步一步运算,不要急于求成.5.把18°15′36″化为用度表示,下列正确的是()A .18.15°B.18.16°C.18.26°D.18.36°考点:度分秒的换算.专题:计算题.分析:根据1度等于60分,1分等于60秒,18°15′36″由小单位转换成大单位除以60,按此转化即可.解答:解:∵36″÷60=0.6′,0.6′÷60=0.01°,15′÷60=0.25°,18°+0.25°+0.01°=18.26°故选:C..点评:本题主要考查的是度、分、秒的换算,相对比较简单,注意以60为进制即可.6.把15°48′36″化成以度为单位是()A .15.8°B.15.4836°C.15.81°D.15.36°考点:度分秒的换算.专题:计算题.分析:根据度、分、秒之间的换算关系求解.解答:解:15°48′36″,=15°+48′+(36÷60)′,=15°+(48.6÷60)°,=15.81°.故选C.点评:本题考查了度、分、秒之间的换算关系:1°=60′,1′=60″,难度较小.7.0.25°=()′=()″.A .25′,2500″B.15′,900″C.()′,()″D.15′,0.5″考点:度分秒的换算.分析:根据1度等于60分,1分等于60秒,由大单位转换以60,按此转化即可.解答:解:0.25°=(0.25×60)′=15′=(15×60)″=900″.故选B.点评:本题主要考查了度、分、秒之间的换算,相对比较简单,注意以60为进制.8.(2014•乐山)如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是()A .北偏西30°B.北偏西60°C.东偏北30°D.东偏北60°考点:方向角.分析:根据垂直,可得∠AOB的度数,根据角的和差,可得答案.解答:解:∵射线OB与射线OA垂直,∴∠AOB=90°,∴∠1=90°﹣30°=60°,故射线OB的方位角是北偏西60°,故选:B.点评:本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.9.(2013•浦东新区一模)如果乙船在甲船的北偏东40°方向上,丙船在甲船的南偏西40°方向上,那么丙船在乙船的方向是()A .北偏东40°B.北偏西40°C.南偏东40°D.南偏西40°考点:方向角.分析:根据题意画出图形可直接得到答案.解答:解:如图所示:丙船在乙船的方向是南偏西40°,故选:D.点评:此题主要考查了方向角,关键是正确画出图形,这样可以直观的得到答案.10.(2012•丽水)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是()A .120°B.135°C.150°D.160°考点:方向角.分析:首先根据题意可得:∠1=30°,∠2=60°,再根据平行线的性质可得∠4的度数,再根据∠2和∠3互余可算出∠3的度数,进而求出∠ABC的度数.解答:解:由题意得:∠1=30°,∠2=60°,∵AE∥BF,∴∠1=∠4=30°,∵∠2=60°,∴∠3=90°﹣60°=30°,∴∠ABC=∠4+∠FBD+∠3=30°+90°+30°=150°,故选:C.点评:此题主要考查了方位角,关键是掌握方位角的概念:方位角是表示方向的基准,来描述物体所处的方向.11.在海面上自船P观测船Q,Q在南偏东62°方向上.则此时,自船Q观测船P,P点的方向应为()A .北偏东28°B.北偏西62°C.南偏东28°D.南偏西62°考点:方向角.专题:探究型.分析:根据题意画出图形,再根据方向角的概念进行解答即可.解答:解:如图所示,∵自船P观测船Q,Q在南偏东62°方向上,∴∠1=62°,∵PA∥BQ,∴∠1=∠2=62°,∴P点的方向应为北偏西62°.故选B.点评:本题主要考查了方向角的定义,根据题意画出图形,利用数形结合求解是解答此题的关键.12.(2014•成都模拟)时钟在3点半时,分针与时针所夹的角的度数是()A .67.5°B.75°C.82.5°D.90°分析:根据钟面平均分成12份,可得每份是30°,根据时针与分针相距的份数乘以每份的度数,可得答案.解答:解:时针与分针相距的份数是2.5份,30°×2.5=75°,故选;B.点评:本题考查了钟面角,时针与分针相距的份数乘以每份的度数是解题关键.13.(2012•通辽)4点10分,时针与分针所夹的小于平角的角为()A .55°B.65°C.70°D.以上结论都不对考点:钟面角.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.解答:解:∵4点10分时,分针从12到2转动两个格转动角度为:30°×2=60°,时针转动×30°=5°,∴4点10分时,分针与时.故选:B.点评:本题考查钟表时针与分针的夹角.用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30°.14.(2012•龙岩模拟)现在是一点整,从现在开始到三点,时针与分针成90°角的次数是()A .1 B.2 C.3 D.4考点:钟面角.分析:分别根据分针与时针转动速度得出时针与分针转动的角度差值,进而得出时针与分针成90°角的次数.解答:解:时针走一圈(360度)要12小时,即速度为360度/12小时=360度/(12×60)分钟=0.5度/分钟,分针走一圈(360度)要1小时,即速度为360度/1小时=360度/60分钟=6度/分钟,钟面(360度)被平均分成了12等份,所以每份(相邻两个数字后,时针走过的角度为0.5X度,分针走过的角度为6X度,(1)显然1点整的时刻,时针与分针正好成30度角;(2)设1点X分的时刻,时针与分针成90度角,则应该是分针在前,有6X﹣(30+0.5X)=90,所以5.5X=120,所以X=240/11,所以1点240/11分的时刻,时针与分针成90度角;(3)当设1点X分的时刻,时针与分针成270度角,则应该是分针在前,有6X﹣(30+0.5X)=270,所以5.5X=300,所以X=600/11,所以1点600/11分的时刻,时针与分针成90度角;成90度角(时针可以在前),有6X﹣(60+0.5X)=90,所以5.5X=150,所以X=300/11,所以2点300/11分的时刻,时针与分针成90度角;(5)当设2点X分的时刻,时针与分针成270度角,则应该是分针在前,有6X﹣(60+0.5X)=270,所以5.5X=330,所以X=60,所以3点时刻,时针与分针成90度角;综合以上,在1点整到3点的时间内,有4次时针与分针成90度角,时刻分别是1点240/11分,1点600/11分,2点300/11分,3点整.故选:D.点评:此题主要考查了钟面角问题,主要是一个分针与的关系式进行解答是解题关键.15.(2007•花都区一模)下午3点30分时(如图),时钟的分针与时针所成锐角的度数为()A .45°B.60°C.75°D.105°考点:钟面角.专题:计算题.分析:因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上下午3点30分时,时针与分针的夹角可以看成时针转过3时0.5°×30=15°,分针在数字6上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴下午3点303×30°﹣15°=75°.故选C.点评:本题考查钟表分针所转过的角度计算.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.16.(2006•河北)下午2点30分时(如图),时钟的分针与时针所成角的度数为()A .90°B.105°C.120°D.135°考点:钟面角.分析:钟表12个数字,每相邻两个数字之间的夹角为30度.解答:解:∵1个小时在时钟上的角度为180°÷6=30°,∴3.5个小时的角度为30°×3.5=105°.故选B.点评:本题主要考查角度的基本概念.在钟表问题中,常度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.17.(2005•荆门)钟表上12时15分钟时,时针与分针的夹角为()A .90°B.82.5°C.67.5°D.60°考点:钟面角.专题:计算题.分析:钟表里,每一大格所对的圆心角是30°,每一小格所对的圆心角是6°,根据这个关系,画图计算.解答:解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.5°×15=7.5°,分针在数字3上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时15分钟时分针与时针的夹角故选B.点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.18.(2002•杭州)在时刻8:30,时钟上的时针和分针之间的夹角为()A .85°B.75°C.70°D.60°考点:钟面角.专题:计算题.分析:画出图形,利用钟表表盘的特征解答.解答:解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动°,并且利用起点时间时针和分针的位置关系建立角的图形.19.(1999•山西)3点半时,钟表的时针和分针所成锐角是()A .70°B.75°C.85°D.90°考点:钟面角.专题:计算题.分析:此题是一个钟表问题,解题时经常用到每两个数字之间的度数是30°.借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.解答:解:∵3点半时,时针指向3和4中间,分针指向6.钟表12个数字,每相邻两个数字之间的夹角为30°,半个格是15°,∴3点半时,分针与时针的夹角正好是30°×2+15°=75点评:本题是一个钟表问题,解题时经常用到每两个数字之间的度数是30度.20.15时的钟表的时针与分针所形成的角的度数是()A .30°B.45°C.60°D.90°考点:钟面角.分析:先结合图形,确定时针和分针的位置,再进一步求其度数.解答:解:如图:15点整,时针指向3,分针指向12,每相邻两个数字之间的夹角为30°,则其夹角为30°×3=90°.故选:D.点评:本题考查钟表时针与分针的夹角.在钟表问题中,要知道钟表12个数字,每相邻两个数字之间的夹角为30度.二.解答题(共10小题)21.(2010•三明)(1)﹣5的绝对值是5.(2)如图,∠AOB=50°,OC平分∠AOB,则∠AOC的度数=25°.考点:角平分线的定义;绝对值.专题:计算题;压轴题.分析:(1)根据绝对值的定义:正数的绝对值是正数作答;(2)根据角平分线的定义求解.解答:解:(1)﹣5的绝对值是5;(2)∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠AOB=25°.故答案为:5、25°.点评:此题主要考查绝对值的定义和角平分线的定义,比较简单.22.(2006•永春县)如图,已知O是直线CD上的点,OA平分∠BOC,∠AOC=35°,则∠BOD的度数.考点:角平分线的定义.分析:根据平分线的性质可知∠BOC=2∠AOC=70°,利用邻补角的定义可直接求算∠BOD=180°﹣∠BOC=110度.解答:解:如图:∵O是直线CD上的点,OA平分∠BOC,∠AOC=35°,∴∠BOC=2∠AOC=70°,∴∠BOD=180°﹣∠BOC=110°.故答案为110°.点评:主要考查了角平分线的性质和邻补角的概念,这些基本概念和性质要牢固掌握.23.已知,如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.求证:OE⊥OF.考点:角平分线的定义.专题:证明题.分析:利用∠AOB+∠BOC=180°,由OE、OF分别=90°,即可得出结论.解答:解:∵∠AOB+∠BOC=180°,∵OE、OF分别是∠AOB和∠BOC的平分线,∴∠AOE=∠EOB,∠BOF=∠FOC,∵∠AOE+∠EOB+∠BOF+∠FOC=180°,∴∠EOB+∠BOF=90°,∴OE⊥OE.点评:本题主要考查了角平分线及垂线,解题的关键是利用角平分线求解.24.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.考点:角平分线的定义.分析:利用角平分线的定义得出∠AOD=∠BOD,∠BOE=∠COE,进而求出∠DOE的度数.解答:解:∵OD是∠AOB的平分∴∠AOD=∠BOD,∠BOE=∠COE,∴∠DOE=∠AOC=65°.点评:此题主要考查了角平分线的定义,得出∠DOE=∠AOC是解题关键.25.如图,已知OM、ON分别平分∠AOC、∠BOC,如果∠MON=45°,求∠AOB的度数.考点:角平分线的定义.分析:根据角平分线的定义容易得到,∠AOB=∠AOC+∠BOC=2(∠COM+∠CON)=2∠MON,进而求出即可.解答:解:∵OM、ON分别平分∠AOC、∠BOC,∴∠AOC=2∠COM,∠BOC=2∠CON,∴∠AOB=∠AOC+∠BOC=2×45°=90°.点评:本题主要考查了角平分线的定义,得出∠AOB=2(∠COM+∠CON)是解题关键.26.如图,设相邻两个角∠AOB,∠BOC的角平分线分别为OM,ON,如果∠MON=α(α为常数),那么∠AOC的度数是否为一个固定值?若是,请说明理由,并求出∠AOC的度数;若不是,请说明理由.考点:角平分线的定义.分析:根据角平分线的性质,可得∠AOB、∠BOC的度数,根据角的和差,可得答案.解答:解:∠AOC的度数是一个固定值,理由如下:由相邻两个角∠AOB,∠BOC的角平分线分别为OM,ON,得∠AOB=2∠MOB,∠BOC=2∠BON,∠AOC=∠AOB+∠BOC=2∠MOB+2∠BON=2=2∠MON=2α.点评:本题考查了角平分线的定义,利用了角平分线的定义,角的和差.27.(1)如图①所示,已知∠AOB=100°,OC是∠AOB平分线,OD、OE分别平分∠COB、∠AOC,求∠DOE的度数;(2)如图②,在(1)中把“OC是∠AOB的平分线”改为“OC是∠AOB内任意一条射线”,其他任何条件都不变,试求∠DOE的度数;(3)如图③,在(1)中把“OC是∠AOB的平分线”改为“OC是∠AOB外任意一条射线”,其他任何条件都不变,你能求出∠DOE的度数吗?说明理由.考点:角平分线的定义;角的计算.专题:探究型.分析:(1)根据角平分线定义求出∠BOC和∠AOC度数,即可得出答案;(2)根据角平分线定义得出∠COD=∠BOE,∠COE=∠AOE,求出∠DOE=∠COD+∠COE=∠AOB,代入求出即可;(3)根据角平分线定义∠COD=∠BOE,∠COE=∠AOE,求出∠DOE=∠COD﹣∠COE=∠AOB,代入求出即可.解答:解:(1)∵∠AOB=100°,0C是∠AOB的平分线,∴∠AOB=∠BOC=∠AOB=50°,∵OD、OE分别平分∠BOC、∠AOC,∴∠COD=∠BOC=25°,∠COE=∠AOC=25°,∴∠DOE=∠COD+∠COE=25°+25°=50°;(2)∵OD、OE分别平分∠BOC、∠AOC,∴∠COD=∠BOE,∠COE=∠AOE,∴∠DOE=∠COD+∠COE==∠AOB=×100°=50°;(3)能.∠DOE=∠DOC﹣∠COE=∠BOC﹣∠AOC=(∠BOC﹣∠AOC)=∠AOB=×100°=50°.点评:本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.28.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为10或40(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,求∠AOM﹣∠NOC的度数.考点:角平分线的定义;角的计算;旋转的性质.分析:(1)由角的平分线的定义和等角的余角相等求解;(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°或240°时ON平分∠AOC,据此求解;(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.解答:解:(1)直线ON平分∠AOC.理由:设ON的反向延长线为OD,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵OM⊥ON,∴∠MOD=∠MON=90°,∴∠COD=∠BON,又∵∠AOD=∠BON(对顶角相等),∴∠COD=∠AOD,∴OD平分∠AOC,即直线ON平分∠AOC.(2)∵∠BOC=120°∴∠AOC=60°,∴∠BON=∠COD=30°,即旋转60°时ON平分∠AOC,由题意得,6t=60°或240°,∴t=10或40;(3)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.点评:此题考查了角平分线的定义,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.29.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.考点:角平分线的定义.专题:计算题.分析:所求角和∠1有关,∠1较小,应设∠1为未知量.根据∠COE的度数,可表示出∠3,也就表示出了∠4,而这4个角组成一个平角.解答:解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数(7分)为60°.点评:本题隐含的知识点为:这4个角组成一个平角.应设出和所求角有关的较小的量为未知数.30.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE 的度数;(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,判断∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE的度数.考点:角平分线的定义.专题:计算题.分析:(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;(2)结合角的特点,∠DOE=∠DOC+∠COE,求得结果进行判断和计算;(3)正确作出图形,判断大小变化.解答:解:(1)∵OD、OE分别平分∠AOC和∠BOC,∴=35°,=10°,∴∠DOE=45°;(2)∠DOE的大小不变等于45°,理由:∠DOE=∠DOC+∠COE====45°;(3)∠DOE的大小发生变化,∠DOE=45°或135度.如图①,则为45°;如图②,则为135°.(说明过程同(2))点评:正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。
4.3.2角的比较与运算(第一课时)

∠AOB
∠AOC
同类练习:
按图1填空: 1) ∠D0B 2) ∠C0B > < ∠BOC ∠AOC = ∠AOC ∠AOD ∠BOC =∠A0B ∠B0D
D C O 图1 B A
3) ∠D0C+∠COB 4)∠A0B+∠BOC= 5)∠A0C+∠COD= 6)∠B0D-∠COD= 7)∠A0D- ∠BOD
A
O
例2 把一个周角7等分,每一份是多少度的角 (精确到分)? 解:360º ÷7=51º +3º ÷7 =51º+180′÷7
≈51º26′. 答:每份是51º26′.
练习巩固,应用新知
1.估计图中∠1与∠2的大小关系,并用适当的方 法验证.
2.如图,把一个蛋糕等分成8份,每份中的角是多少度? 如果要使每份中的角是15º ,这个蛋糕应等分成多少份?
把∠DEF移动,使它的顶点E和∠ABC的顶点B重合,一边EF 和BC重合,另一边ED和BA落在BC的同旁。
A D B ( ) ( ) C
E
F
ED落在∠ABC的内部,则∠DEF < ∠ABC
D A A D A D BE C F
BE
C F B
E
C F
∠DEF >∠ABC
∠DEF =∠ABC
∠DEF < ∠ABC
∠AOB=2∠DOB=2 × 40º =80º , ∠BOC=2∠BOE=2×30º =70º .
所以∠AOC=∠AOB+∠BOC=80º +70º =150 º .
2. 如图,已知∠ DOE= 70º,∠ DOB=40º, OD平分∠ AOB, OE平分∠BOC,求∠AOC.
解:由OD平分∠AOB, OE平分∠BOC可知,
观察思考,探究新知
角的比较与运算

2、证明中的书写:
OC 为 AOB 的角平分线
1 1 2 AOB 2 (或 AOB 21 22 )
3 练习(1)射线 OC 在 AOB 的内部,下列四个式子中,不能 判断 OC 是 AOB 平分线的是( ) A AOB 2AOC B AOC BOC C AOC BOC AOB
1 D AOC AOB 2
D C B O A
如图
∠AOB=∠BOC=∠COD,
则OB 是
AOC 的平分线, 1 BOC = 2 ∠AOC, 1 BOC = 2 ∠BOD 1 AOD ∠BOC = 3 BOD = 2 ` 3 AOD
此时OB、OC叫∠ AOD的三等分线
A E
AD是 BAD
BAC的平分线 = CAD
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB,求∠EOF的大小? C 解:∵ OE平分 ∠ AOC,OF平分 ∠COB ∴∠EOC=1/2∠AOC, F ∠COF=1/2∠COB(角平分线的意义)
E
A
O
∵∠AOB=∠AOC+∠COB=180° B (平角的意义)
∴∠EOF=∠EOC+∠COF
A D
B
C
E
F
2、叠合法比较
A
D
B
DE边在∠ABC的外部,则
C
E
F
∠ABC<∠DEF
2、叠合法比较
A D
B
DE与AB边重合,则
C
E
F
∠ABC=∠DEF
2、叠合法比较
A D
B
C
E
F
DE边在∠ABC的内部,则
∠ABC>∠DEF
《4.3.2 角的比较与运算》同步练习 2021-2022学年人教版七年级数学上册

4.3.2 角的比较与运算一.填空题1.如图,∠AOB∠AOC,∠AOB∠BOC(填>,=,<);用量角器度量∠BOC =,∠AOC=,∠AOC∠BOC.2.如图,∠AOC=+=﹣;∠BOC=﹣=﹣.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 4.将一副常规三角板拼成如图所示的图形,则∠ABC=度.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为度.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=.二.选择题14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC三.解答题19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON 的度数.参考答案与试题解析1.如图,∠AOB>∠AOC,∠AOB>∠BOC(填>,=,<);用量角器度量∠BOC =30°,∠AOC=25°,∠AOC>∠BOC.【分析】根据图形,射线OC在∠AOB的内部,即可判断角之间的大小关系.【解答】解:由图知,射线OC在∠AOB的内部,所以∠AOB>∠AOC,∠AOB>∠BOC,用量角器量得∠BOC=25°,∠AOC=30°,故∠AOC>∠BOC.故答案为:>,>,25°,30°,>.2.如图,∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD ﹣∠COD=∠AOC﹣∠AOB.【分析】根据图形即可求出∠AOC及∠BOC的不同表示形式.【解答】解:根据图形,∴∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD﹣∠COD=∠AOC﹣∠AOB.故答案为:∠AOB+∠BOC,∠AOD﹣∠COD,∠BOD﹣∠COD,∠AOC﹣∠AOB.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 【分析】由∠BOD=90°,∠COE=90°,得∠AOD=∠BOD=90°.根据同角的余角相等,得∠COD=∠BOE,∠AOC=∠DOE.那么,∠AOC+∠BOE=90°.进而推断出A、B、C不合题意,D符合题意.【解答】解:A:∵∠BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOC+∠COD=90°.又∵∠COE=∠COD+∠DOE=90°,∴∠AOC=∠DOE.故A不合题意.B:∵∠COE=∠COD+∠DOE=90°,∠BOD=∠BOE+∠DOE=90°,∴∠COD=∠BOE.故B不符合题意.C:∵BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOD=∠BOD.故C不符合题意.D:由B知:∠BOE=∠COD.∵∠AOD=∠AOC+∠DOC=∠AOC+∠BOE=90°.∴∠BOE与∠AOC不一定相等.故选:D.4.将一副常规三角板拼成如图所示的图形,则∠ABC=135度.【分析】根据图形得出∠ABD和∠CBD的度数,即可求出∠ABC的度数.【解答】解:∵∠ABD=90°,∠DBC=45°,∴∠ABC=∠ABD+∠BCD=90°+45°=135°.故答案为:135.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.【分析】利用角的和差关系计算,注意此题要分两种情况.【解答】解:①如图1所示,OC在∠AOB内部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,∴∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°;②如图2所示,OC在∠AOB外部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,又∵∠AOC=∠AOB+∠BOC,∴∠AOC=90°+45°=135°.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较【分析】根据∠AOB=∠COD,再在等式的两边同时减去∠BOD,即可得出答案.【解答】解:∵∠AOB=∠COD,∴∠AOB﹣∠BOD=∠COD﹣∠BOD,∴∠1=∠2;故选:B.8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=125°.【分析】本题是角的计算问题,根据周角是360°即可求出∠AOB的度数.【解答】解:设∠AOB=∠AOC=x,则2x+110°=360°,解得x=125°,∴∠AOB=125°,故答案为125°.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为180度.【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【解答】解:∠AOD+∠COB=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB=90°+90°=180°.故答案是:180.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=84°.【分析】由折叠的性质可得∠FEG=∠FEC=48°,再由点E在BC上,可求得∠BEG 的度数.【解答】解:∵长方形纸片ABCD沿EF折叠,∠FEC=48°,∴∠FEG=∠FEC=48°,∵点E在BC上,∴∠BEG=180°﹣∠FEC﹣∠FEG=180°﹣48°﹣48°=84°.故答案为:84°.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是75°.【分析】根据钟面上圆心角的大小关系进行计算即可.【解答】解:钟面上每相邻两个数字之间所对应的圆心角为360°÷12=30°,即∠DOC=∠COB=30°,而钟面上8:30时,时针指向“8与9中间”,因此∠AOB=×30°=15°,所以钟面上8:30这一时刻,钟面上时针与分针所形成的角∠AOD=30°×2+15°=75°,故答案为:75°.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=90°或150°.【分析】由于点C的位置不确定,所有此题要分类讨论,利用角之间相加减求出∠AOC 的大小.【解答】解:①当点C在射线OB左侧时,∠AOC1=∠AOB﹣∠BOC1=120°﹣30°=90°,②当点C在射线OB右侧时,∠AOC2=∠AOB+∠BOC2=120°+30°=150°.故答案为90°或150°.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=15°.【分析】根据角的和差计算即可.【解答】解:用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,∴∠DAB=∠CAB﹣∠CAD=45°﹣30°=15°.故答案为:重合,15°.14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角【分析】不大于90°的角还有直角,故A错误,135°的钝角﹣1°的锐角差还是钝角,故C错误,两个较小的锐角和可能还是锐角也可能是直角,故D错误,因为两个钝角都大于90°且小于180°,故B正确.【解答】解:∵不大于90°的角还有直角,故A错误,举例:135°的钝角﹣1°的锐角差还是钝角,故C错误,∵两个较小的锐角和可能还是锐角也可能是直角,故D错误,∵两个钝角都大于90°且小于180°,故B正确,故选:B.15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C【分析】根据角的大小与角的开口大小有关,与角的边的长短无关,角的大小是通过角的度数来体现的,然后对各选项分析判断后利用排除法求解.【解答】解:A、角的大小与角的边画出部分的长短没有关系,因为角的大小只与角的开口有关,故本选项正确;B、角的大小与它们的度数大小是一致的,正确;C、角的和差倍分的度数等于它们的度数的和差倍分,正确;D、∠A+∠B>∠C,∠A与∠C的大小关系无法确定,故本选项错误.故选:D.16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【解答】A选项:75°的角,45°+30°=75°;B选项:135°的角,45°+90°=135°;C选项:160°的角,无法用三角板中角的度数拼出;D选项:105°的角,45°+60°=105°.故选:C.17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定【分析】由∠1﹣∠2=∠3,可把∠1等效替换为∠2与∠3的和,进而求解.【解答】解:∵∠1﹣∠2=∠3,∴∠1=∠2+∠3,又∠4+∠2=∠1,即∠4+∠2=∠2+∠3,∴∠4=∠3故选:B.18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC 【分析】根据题意画出图,观察图即可得答案.【解答】解:如图:∵C点是∠AOB内部任一点,∴∠AOC与∠BOC的大小无法确定,由图可知∠AOB必大于∠AOC,故选:D.19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.【分析】可根据旋转前后,图形的大小形状不变,旋转角相等的性质,寻找相等角.【解答】解:①∠AOB=∠A′OB′.因∠A′OB′是由∠AOB旋转得到的.②∠AOA′=∠BOB′.∵∠AOB=∠A′OB′,∴∠AOB﹣∠A′OB=∠A′OB′﹣∠A′OB,∴∠AOA′=∠BOB′.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?【分析】本题是角的计算问题,利用角的加法定义即可.【解答】解:由图可知,∠AOB=∠AOD+∠DOB,∠DOC=∠DOB+∠BOC,∵∠AOB=∠COD,∠AOD=∠AOB﹣∠BOD,∠COB=∠COD﹣∠BOD,∴∠AOD=∠COB.21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.【分析】在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.【解答】解:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是60°;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=60、90、150.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.【分析】(1)根据∠AOB=∠AOD+∠BOD=90°,而∠AOD=∠COD=30°,代入即可求出结论;(2)①在旋转的过程中,能够发现∠COD的一边与∠AOB的一边垂直共有三种情况,分别求出每种情况下旋转的度数即可;②根据角与角之间的关系,将直接求∠MON得度数转换成求∠AOM,∠DON的度数,再依照角的关系即可求得结论.【解答】解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.故答案为:60°.(2)①∵0<n<180,∴分三种情况.a:点D在射线0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;b:点C在射线OB上,∠AOC=∠AOB=90°;c:点D在AO的延长线上,∠AOC=180°﹣∠COD=180°﹣30°=150°.综上得n为60、90、150.故答案为:60、90、150.②∵∠AOC=n°,OM平分∠AOC,∴∠AOM=n°,∠AOD=∠AOC+∠COD=n°+30°,∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,∵ON平分∠BOD,∴∠DON=∠BOD=×(n°﹣60°)=n°﹣30°,∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣n°﹣(n°﹣30°)=60°。
角的比较和运算

实例操作:请同学们拿出你的一副三 角板,你能说出这几个角的大小吗?怎么 比较的?
Q
B
A
讨论后归纳
P C
O
方法一:叠合法
把一个角放到另一个角上,使它们的顶点重
合,其中的一边也重合,并使两个角的另一
边都在这一条边的同侧
Q
此时:AB边落在QPO 的内部,
B
表明: BAC 小于 QPO
平分ABD ,求 ABP 的度数
C
D
P
B
A
• 观察下图中的∠AOC,∠COB和∠AOB ,如何表 示它们的关系。
∠AOC+∠COB=∠AOB
∠AOB-∠AOC=∠COB
∠AOB-∠COB=∠AOC
学生活动:观察一副三角板的角度特征, 讨论回答用三角板可以组合画出多少个不 同角度的角。
150、300、450、 600、750、900、 1050、1200、 1350、1500、 1750、1800……
角的分类
直角:等于90度的角
90
锐角:小于直角的角
0 90
钝角:大于直角而小于平角的角
90 180
根据图解下列问题
(1)比较AOB,AOC,AOD,AOE
的大小; (2)找出图中的直角,锐角和钝角。
AB
O
C
D
E
角的平分线
作∠AOB,然后沿O点折叠,使边OB与OA重合, 看折痕OC与∠AOB有什么关系?(几何画板页2 演示)
(75º) (15º) 75º=30º+45º 15º=45º-30º
小结
; ;
老头一心想让她定定性子,或许,情关是让人成熟最快の一个方法.操心完别人の事,谢妙妙开始跟他算起自己の帐
6.3.2角的比较与运算 课件-人教版数学七年级上册

解:因为∠DOE=∠
COD- ∠
BOC,
所以∠DOE=90 ° - (180 °-∠ AOC)=
90 ° -90°+
∠
AOC=
∠
AOC=
α
.
综合应用创新
解决问题:(3)如图6.3-19 ②,O 是直线AB 上的一点,
∠ COD 是直角,OE 平分∠ BOC,探究∠ AOC 和∠
出合适未知数,列方程求解.
综合应用创新
解:设∠AOD=5x°,
则∠BOD=7x°,∠AOB= ∠AOD+∠ BOD=12x°.
因为∠ AOC ∶ ∠ BOC=1∶3,
所以∠ AOC=3x °,∠ BOC=9x°.
又因为∠COD= ∠AOD- ∠ AOC=15°,
所以15=5x-3x.解得x= ,所以∠ AOB=12x°=90°.
发生改变.理由如下:
1
1
1
易得∠MON=∠MOC-∠NOC= 2∠BOC-2∠AOC= 2
1
(∠BOC-∠AOC)=2∠AOB.因为∠AOB 是直角,度数不
1
改变,所以∠MON=2∠AOB=45°,不发生改变.
∠ AOC 的度数.
错解:∠AOC= ∠AOB+∠BOC=
70°+40°=11 0°.
综合应用创新
正解:分两种情况进行讨论:
(1)当∠ BOC 在∠ AOB 的外部时, 如图6.3-20 ①,
∠ AOC= ∠ AOB+ ∠ BOC=70°+ 40°=110°;
(2)当∠ BOC 在∠ AOB 的内部时, 如图6.3-20 ②,
七年级数学上册角的比较与运算课时练习题

七年级数学上册角的比较与运算课时练习题一、选择题(每题3分)1.如图,O是直线AB上的一点,过点O任意作射线OC, OD平分ZAOC, OE 平分ZBOC,则ZDOEOA.一定是钝角B. 一定是锐角C. 一定是直角D.都有可能【答案】C【解析】试题分析:直接利用角平分线的性质得出ZAOD=ZDOC, ZBOE=ZCOE,进而得出答案.解:TOD 平分ZAOC, OE 平分ZBOC,Λ ZAOD=ZDOC, ZBOE=ZCOE,ΛZD0E=× 180° =90° ,故选:C.考点:角平分线的定义.2.两个锐角的和不可能是()A.锐角B.直角C.钝角D.平角【答案】D【解析】试题分析:因为等于0。
小于90°的角是锐角,所以两个锐角的和不可能是180°,所以D正确,故选:D.考点:锐角3.己知ZAOB=50o , ZCOB=30°,则ZAoC 等于()A. 80oB. 20oC. 80o或20°D.无法确定【答案】C【解析】试题分析:本题需要分两种情况进行讨论:当射线OC在ZAoB 内部时,则ZAoC=50° -30° =20°;当射线OC在ZAOB外部时,则ZAOC=50° +30°=80° .考点:角度的计算4.如图,将一副三角板的直角顶点重合放置于处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()A.ZBAE>ZDACB.ZBAE-ZDAC=45°C.ZBAE+ZDAC=180oD.ZBAD≠ZEAC【答案】C.【解析】试题解析:因为是直角三角板,所以ZBAC=ZDAE=90° ,所以ZBAD+ ZDAC+ ZCAE+ ZDAC=ISO o ,即ZBAE+ZDAC二180° .故选C.考点:角的计算.5.如图,己知ZAOB= α , ZBOC= β , OM 平分ZAOC, ON 平分ZBOC,则ZMoN的度数是()A. βB. ( a - β )C. aD. a - β【答案】C.试题分析:,平分,,平分,,故选C.考点:1、角平分线的定义;2、角的计算.6.己知,ZAOC=90°,且ZAOB: ZAOC=2: 3,则ZBOC 的度数为()A. 30oB. 150oC. 30°或150°D. 90°【答案】C.【解析】试题分析:当在内部时,当在外部时,故选C.考点:角的计算.7.用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()A、15o B. 75o C. 85o D. 105°【答案】C【解析】试题分析:一副三角板中的度数有:90°、60°、45°、30° ; 用三角板画出角,无非是用角度加减法,根据选项一一分析,排除错误答案.解:A、15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角的比较与运算(一)
一、选择题
1.在∠AOB的内部取一点C,作射线OC,则一定存在 ( )
A.∠AOB>∠AOC B.∠AOC>∠BOC C.∠BOC>∠A OC D.∠AOC=∠BOC
2.下列说法错误的是 ( )
A.角的大小与角的边画出部分的长短没有关系
B.角的大小与它们的度数大小是一致的
C.角的和差倍分的度数等于它们的度数的和差倍分
D.若∠A+ ∠B>∠C,那么∠A 一定大于∠C
3.画一个钝角∠AOB,然后以O为顶点,以OA为一边在角的内部画一条射线OC,使∠AOC= 900,下列图形中画得正确的是 ( )
A B C D
4.如图,A、O、E三点共线,图中小于1800的角的个数有 ( )
A.10 B.6 C.8 D.9
第4题图第6题图第9题图第10题图
5.下列关于角的说法正确的个数是 ( )
①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.
A.1个B.2个 C.3个 D.4个
6.如图,OB平分∠AOC,且∠BOC:∠COD:∠DOA =2:5:3,则∠AOB等于 ( )
A.300 B.360 C.400 D.600
7.如果∠AOB= 820,∠BOC= 360,那么∠AOC的度数是 ( )
A.1180 B.460 C.1180或460 D.无法确定
8.用一幅三角板不能画出的角的度数是 ( )
A.750 B.1350 C.1600 D.1050
9.如图,OD、OE分别是∠AOC、∠BOC的平分线,则下列各式中正确的是 ( )
A.∠AOC=∠DOE B. ∠AOE=∠DOB C. ∠AOB =2∠DOE D. ∠BOC=∠DOE
条射线,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
11.如图,∠AOB_____∠AOC,∠AOB____∠BOC.(填“>”、“=”或“<”)
第11题图第12题图第15题图第16题图12.如图,∠AOC=______+______=______-_____;∠BOC=______-_____=______-______
13.OC是∠AOB内部的一条射线,若∠AOC=1
2
______,则OC平分∠AOB;若OC是∠AOB的角平分
线,则____=2∠AOC.
14.1
2
平角=______直角,
1
4
周角=_____平角=______直角,1350角______平角.
15.如图,∠AOB = ∠COD =900,∠AOD= 1460,则∠BOC=_______0.
16.如图,∠AOB=900,OD平分∠BOC,∠DOE=450,则∠AOE____∠COE.(填“>”、“=”或“<”)17.已知∠AOB =3∠BOC,若∠BOC= 300.则∠AOC等于______度.
第18题图第19题图
18.如图,直线AB、CD相交于O,OE平分∠AOC,OF平分∠BOC,则∠EOF=_度
19.如图,∠AOB=800,射线OC是∠AOB的角平分线,射线OD是∠COB的平分线,射线OE是∠AOD 的平分线,那么∠COE等于_____度.
20.已知∠AOB=1500,∠BOC=300,OD平分∠AOC,OE是∠AOB的一条三等分线,则∠DOE等于______度.
三、解答题
1.如图,∠BAE =750,∠DAE= 150,AC是∠BAD的平分线,求∠CAD的度数.
2.如图,B平分∠ABC,BE分∠ABC为2:5两部分,∠DBE= 240,求∠ABE的度数
3.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD= 400,∠BOE= 250,求∠AOB的度数.
4.已知∠AOB,过O点作射线OC,若∠AOC=1
2
∠AOB,且∠AOC= 220,求∠BOC的度数.
5.如图,∠AOC与∠AOB的和为1800,OM、ON分别是∠AOC、∠AOB的平分线,∠MON=400,求∠AOC 和∠AOB的度数.
6.已知∠AOB=600,∠BOC=1200,OD平分∠AOB,OE是∠BOC的一条三等分线,求∠DOE的度数,。