10MnCrNiMo焊接性分析课程设计解析

10MnCrNiMo焊接性分析课程设计解析
10MnCrNiMo焊接性分析课程设计解析

焊接冶金学课程设计10MnCrNiMo的焊接性分析

学院:机械工程学院

专业班级:材料成型及控制工程专业

学生:

学号:

指导老师:

目录

一.本课程设计的基本内容和要求 3 (1)基本内容 3 (2)基本要求 3 二.10MnCrNiMo的化学成分及力学性能分析 3(1)钢号及化学成分 3 (2)主要合金元素作用分析 4 三.SHCCT图分析 6四.10MnCrNiMo的焊接性分析 7(1)冷裂纹 7(2)热裂纹及消除应力裂纹(再热裂纹) 8(3)热影响区的性能变化 8

(2)焊缝化学成分的计算 11 (3)焊接参数的选择 11 (4)焊接工艺确定 12 (5)焊后质量检测 13

一.本课程设计的基本内容和要求

(1)基本内容:

?查阅板厚为5mm的母材材料的成分、力学性能、用途及其SHCCT;

?对母材进行焊接性理论分析;

?选用焊接材料,以熔合比为0.3计算焊缝的化学成分;

?根据SHCCT图分析HAZ的组织;

?初步探讨材料的焊接工艺的特点,采用对接接头;

?查询文献、综合分析及标注的方法。

(2)基本要求:

?掌握焊接性理论分析方法;

?掌握SHCCT图的分析方法;

?初步分析材料的焊接工艺特点;

?标注所引用的文献来源。

二.10MnCrNiMo的化学成分及力学性能分析

(1)钢号及化学成分

由上表可知,合金元素总质量分数为3.2%,为低合金结构钢。

由上表可知,一定温度条件下,经过调质处理后,屈服强度为σs=651Mpa,抗拉强度为σb=716Mpa,故属于低碳调质钢,且为高强钢。故10MnCrNiMo为低合金高强度的低碳调质钢。

用途:10MnCrNiMo常制造成圆钢,用于系泊链的制造如煤机链条、圆环链。(2)主要合金元素作用分析:【2】锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。锰元素细化焊缝区组织晶粒大小;增加焊缝的屈服强度和抗拉强度,减少钢的时效倾向增强冲击韧性。

铬(Cr):铬能显著提高焊缝的强度、硬度和耐磨性,但同时降低塑性和韧性,热处理后韧性更低,铬又能提高钢的抗氧化性和耐腐蚀性。

镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。镍的加入可以提高焊缝的硬度,屈服强度,抗拉强度及冲击性能。消除应力处理对锰镍匹配焊缝的韧性几乎没有影响,但在镍与锰含量不匹配时产生严重脆化。

钼(Mo):细化焊缝粗晶区与细晶区的晶粒,,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能,使焊缝的硬度、屈服强度和抗拉强度提高。

硅(Si):硅会导致焊缝金属脆性降低,从韧性考虑硅有害。从防止焊缝气孔考虑,焊缝金属至少应含有0.2%的硅,能作为脱氧剂并防止CO气孔形成,所

以焊缝应含有一定的硅,但作为脱氧产物容易形成硅酸而夹渣,低熔点的硅酸盐还可能导致结晶裂纹。硅能使焊缝的硬度、屈服强度和抗拉强度呈非线性增加,但缺口韧性下降,其损害程度与含锰量有关。

硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,选用母材符合要求。

磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,选用母材符合要求。

铜(Cu):铜能提高强度和韧性,特别是大气腐蚀性能。当Cu、Mo联合添加时,可显著提高淬透性。但是过量的铜会引起残余奥氏体增多,影响材料耐磨性。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响选用的母材符合要求不会对焊接性产生影响。

其中,Mn、Si为固溶强化作用,Mo为沉淀强化和细晶强化。

三.SHCCT图分析

图2.1 【1】

图2.2

如图2.1中,图中纵坐标以正常刻度表示温度,横坐标以对数刻度表示时间,除了曲线1、2、3以外的每条曲线都表示以A3为起点的冷却过程,A表示奥氏体组织区域,F表示铁树体组织转变区域,Zw表示中间组织转变区域,M表示马氏体组织转变区域,图中曲线1为奥氏体开始析出铁素体的区域,曲线2为从奥氏体析出中间组织的区域,同时曲线2为铁素体析出结束曲线,曲线3是中间组织转变结束曲线,同时Ms表示马氏体开始转变形成的温度。

图中的C Z’、C f’分别表示从A3温度冷却到500℃开始出现的中间组织(即各种贝氏体类组织)、铁素体,以及记得到贝氏体和铁素体的临界冷却时间(s)。这些特征值对分析焊接热影响区的组织很有意义,只要结合图2.2在实际焊接过程中热影响区所要研究部位的金属从A3冷却到500℃的时间,对照临界冷却时间,就可以判断热影响区的显微组织。

拿图中最右边的冷却曲线来说,最终室温下的组织成分为55%的F,40%的Zw和5%的M,平均维氏硬度为224HV。

如图2.2所示,Cz’和Cf’对应的冷却曲线的冷却速度分别为Vz=(A3-500)/ C Z’=75℃/s;和Vf=(A3-500)/ C f’=59.4℃/s,Vz和Vf分别为室温组织全部为回火马氏

体的临界速度和室温组织中不含铁素体的临界速度。说明图2.1往右的曲线表示的冷却速度越慢,对于低碳调质钢来说,焊接后得到的理想的组织为回火马氏体和下贝氏体(10%~30%)的混合组织。故冷却速度在Vz和Vf之间的冷却曲线较为理想。即在室温下得到的组织全为回火马氏体和贝氏体。

在冷却时要求马氏体转变时的冷却速度不能太快,使马氏体有一个自回火的过程,从而有利于形成回火马氏体,采用多层多道焊接方法时,后一道焊缝对前一道焊缝有一个回火热处理的过程,这也有利于回火马氏体的形成。

大致冷却过程为:从785℃开始冷却,开始的组织为奥氏体,冷却到约650℃时,从奥氏体中开始析出铁素体,随着冷却过程的进行铁素体的量增加,冷却到约570℃时,开始析出中间组织(即各种贝氏体组织),随着冷却过程的进一步进行,在440℃时,开始析出马氏体,最后的室温组织为马氏体+下贝氏体。四.10MnCrNiMo的焊接性分析

由表一、表二分析可知,10MnCrNiMo为低碳调质钢,低碳调质钢碳的质量分数不超过0.18%,焊接性能远优于中碳调质钢,这类钢焊接热影响区形成的是低碳马氏体,马氏体开始转变温度Ms较高,所形成的马氏体具有“自回火”特性,使得焊接冷裂纹倾向比中碳调质钢小。

低碳调质钢的σs一般为441~980MPa,在调质态供货和使用。其特点是含碳量更低,淬火组织为低碳马氏体,不仅强度高,并且兼有良好的塑性和韧性,可以直接在调质状态下进行焊接,焊后也不需要进行调质处理。这类钢由于强度高,主要用于高压设备。调质钢中最简单的一类,就是将σs≥343MPa的Mn-Si钢进行调质处理后达到的σs441~490MPa。但当板厚加大或强度级别要求更高时,就需添加一些其他的合金元素,如Cr、Ni、Mo、V、Nb、B、Ti、Zr和Cu等元素,来保证达到足够的淬透性和抗回火性。【3】(1)冷裂纹

这类钢的合金化原理,就是在低碳的基础上通过加入多种提高淬透性的合金元素,来保证获得强度高、韧性好的低碳马氏体和部分下贝氏体的混合组织。

钢的淬硬倾向主要取决于化学成分,其中碳元素的影响元素最大,而中碳钢含碳量较高,冷裂倾向较大,可以通过碳当量公式来大致估算钢的冷裂敏感性。通常碳当量越高,淬硬性越大,冷裂敏感性也越大。选用日本JIS标准规定:

310310025

?++++++=V Mo Cr Mn Ni Si P S C HCS )(Ceq=C+Mn/6 + Si/24 +Ni/40 +Cr/5 +Mo/4 +V/14 (%) 【4】 由表一中各个元素含量代入公式算出:Ceq=0.495%,可查下表三知钢材淬硬倾向较大,需要焊前预热100℃以防止冷裂纹的产生。 表三:根据钢材强度和碳当量确定预热温度

由于这类钢的淬硬倾向大,在焊接热影响区粗晶区有产生冷裂纹和韧性下降的倾向。但由于这类钢的特点是马氏体含量很低,它的转变温度Ms 点较高,如果在该温度下冷却较慢,则生成的马氏体还能来的及进行一次“自回火”处理,因而实际上冷裂倾向并不一定很大。即在马氏体形成后如果能从工艺上提供一个“自回火”处理的条件,即保证马氏体转变的冷却速度较慢,则冷裂纹是有可能避免的;若马氏体转变的冷却速度很快,得不到“自回火”效果,则冷裂倾向就必然会增大。同时,限制焊缝含氢量,可采用低氢型焊条。

(2)热裂纹及再热裂纹

1.低碳调质钢含碳量较低、Mn 含量较高,因此热裂纹倾向比较小,可以根据化学成分对焊接热裂纹敏感性的影响评估热裂纹倾向,采用热裂纹敏感性指数法(简称HCS ),其计算公式为: 【5】 由10MnCrNiMo 钢各元素的化学成分估算出HCS=1.52,当HCS ≤4时,一般不产

生热裂纹,因此10MnCrNiMo 钢没有热裂纹倾向。

2.从低碳调质钢的合金系统来看,在为加强淬透性和抗回火性而加的一些合金元素中,大多数是属于能引起再热裂纹的元素,如Cr 、Mo 、Cu 、V 、Nb 、Ti 和B 等,其中V 的影响最大,Mo 次之,而且V 和Mo 同时加入是就更严重。Cr 的影响与含量有关。在Cr-Mo 和Cr-Mo-V 钢中,当Cr <1%时,随着含Cr 量的增加再热裂纹的倾向加大;当Cr >1%后,继续增加含Cr 量时再热裂纹倾向减小。

用△G法判断:△G’=Cr+3.3Mo+8.1V-2+10C(%)=0.63≤1.5,故10MnCrNiMo 对再热裂纹不敏感。【6】(3)热影响区的性能变化【4】①过热区的脆化

这类钢的合金化原理是通过提高淬透性来保证获得高强度和高韧性的低碳

马氏体和下贝氏体。因此它的含C量很低,一般限制在0.18%以下。一些强度级别高的钢都存在一个韧性最佳的冷却时间t8/5,这时刚好对应于马氏体+下贝氏体的组织。焊接热循环作用下,当t8/5继续增加时,引起脆化的原因除了奥氏体晶粒粗化引起脆化外,主要原因是由于上贝氏体和M-A组元的形成。这类钢中上贝氏体转变的同时很容易出现M-A组元。当合金化程度增加,奥氏体稳定性提高时,易在贝氏体组织中的铁素体之间形成一些M-A组元。M-A组元的存在导致脆化,数量越多脆化越严重成为潜在的裂纹源,起了应力集中的作用,对热影响区韧性有不利的影响。

防止措施:母材中含有的Cr、Ni、Mn合金元素可以提高淬透性;当含Ni量较高时,形成的高Ni马氏体,甚至上贝氏体都是具有很好的韧性。因此,增加钢中的含Ni量对近缝区的韧性有很大改善。因此要调整t8/5来控制M-A组元的产生。控制焊接热输入和采用多层多道焊工艺,使低碳调质钢热影响区避免出现高硬度的马氏体或M-A混合组织,改善抗脆能力。

②焊接热影响区的软化

这是焊接调质钢时的一个普遍问题,热影响区内凡是加热温度高于母材回火温度至Ac1的区域,由于碳化物的积聚长大而使钢材软化,而且温度越接近于Ac1的区域,软化越严重,因此对焊后不再进行调质处理的低碳调质钢来说尤其重要。从强度出发,这是焊接接头的一个薄弱环节,强度级别越高这一问题就越突出。此外,软化的程度和软化区的宽度也与焊接工艺也有很大关系。因此,在制定这类钢的焊接工艺时必须考虑到这一问题。

防止措施:减小焊接热输入有利于缩小软化区宽度,软化程度有所降低。软化宽度一定,板厚越大,焊接热输入越小,初始预热温度越低,焊接接头强度就可以越高。

其中,有W成分,钨熔点高,钨与碳形成碳化钨有很高的硬度和耐磨性。不影响形成的焊缝强度和性能。【7】【8】再由图4.1可知,母材为5mm厚度,选择焊条直径为3.2mm。

图4.1 【7】

(2)焊缝化学成分的计算

根据公式:W(焊缝金属)=D(熔合比)*W(母材金属)+(1-D)*W(焊接材料)计算焊缝化学成分(%)如下,熔合比D=0.3 【9】

(3)焊接参数的选择

1.焊接热输入的确定

焊接热输入增大是热影响区晶粒粗化,同时也促使形成上贝氏,甚至形成M-A 组元,使韧性降低。当热输入过小时,热影响区的淬硬性明显增强,也使韧性下降。从防止冷裂纹出发,要求冷却速度慢为佳,但对防止脆化来说却要求冷却快较好,因此应兼顾两者冷却速度范围。

由于焊条选择为J707NiW(E7015-G),由下图4.2可知选择焊接电流120A。要限制过大的线能量,以避免出现裂纹和脆化。

图4.2 【7】

2.预热温度和焊后热处理

预热的目的是防止裂纹,降低马氏体转变时的冷却速度,通过马氏体的“自回火”来提高抗裂性能,之前计算冷裂性得出结论需焊前预热100℃左右,才能防止裂纹的产生。

低碳调质钢一般是在焊态条件下使用,由于有“自回火”的作用,通常情况下不进行焊后热处理。除非接头强度和韧性过低、焊接结构受力大或承受应力腐蚀等情况才进行焊后热处理,热处理温度必须必母材原材料调质处理的回火温度低30℃左右。

(4)焊接工艺确定

1.焊前清除焊件铁锈、油污、水分等杂质,将坡口附近打磨出光洁表面。

2.板厚较小,焊前可不进行预热,但为了防止产生冷裂纹,可进行100℃预热,必须严格控制预热温度。

3.为防止产生冷裂纹,因此必须严格控制焊接材料中的含氢量,要求所使用的焊条必须是低氢型或超低氢型的,焊前应严格按规定进行烘干、贮存,放在保温箱内,随用随取。

4.为避免过度损伤热影响区的韧性,应避免使用过大的线能量。应尽可能采用多层小焊道焊缝,最好采用窄焊道,而不采用横向摆动的运条技术。

5.焊后热处理,大多数低碳调质钢的焊接构件都是在焊态下使用,不需要进行焊后回火处理,只有在下述条件下才进行焊后热处理。

①、焊后或冷加工后的韧性过低。

②、焊后需进行高精度加工,要求保证结构尺寸的稳定性。

③、焊接结构承受应力腐蚀。

焊后热处理的温度必须低于母材调质处理的回火温度。

(5)焊后质量检测【10】①焊缝外观检测

主要以肉眼观察为主,可采用样板、量具和放大镜对焊缝外观尺寸、成形情况进行检测,要求如下:外观尺寸符合设计图样的规定,无裂纹、气孔、未熔合、未焊透、咬边等,焊缝与母材过渡圆滑。

②焊缝内部检测

根据所学有四种无损检测方法:射线检测、超声波检测、磁力检测、渗透检测,它们都有各自的优势和应用范围。这里采用超声波检测方法。

超声波探伤时,利用将高频脉冲电信号转换为脉冲超声波,由探头传入焊件,超声波遇到缺陷和焊件底部时就分别发生不同的反射,反射波被探头接收并转换成电脉冲信号,经设备处理放大后在示波器上显示波形图,然后根据脉冲波形的位置间距,波峰高低判断内部缺陷的位置和大小。

参考资料:【1】王宗杰《焊接SHCCT图及其应用》机械工业出版社第285页【2】https://www.360docs.net/doc/3910359399.html,/view/51f753d2240c844769eaee91.html

【3】李亚江《焊接冶金学—材料焊接性》机械工业出版社

【4】李亚江《焊接冶金学—材料焊接性》机械工业出版社表2-4

【5】李亚江《焊接冶金学—材料焊接性》机械工业出版社公式2-2

【6】李亚江《焊接冶金学—材料焊接性》机械工业出版社公式2-5

【7】徐越兰《常用焊接材料手册》化学工业出版社

【8】尹士科《焊接材料及接头组织性能》化学工业出版社

【9】张文钺《焊接冶金学—基本原理》机械工业出版社公式1-10

【10】赵熹华《焊接检验》机械工业出版社

q35焊接工艺课程设计

1绪论1 .1 Q235的成分及焊接性分析 Q235钢是一种普通碳素结构钢,具有冶炼容易,工艺性好,价格价廉的优点,而且在力学性能上也能满足一般工程结构及普通机器零件的要求,在世界各国得到广泛应用。碳素结构钢的牌号体现其机械性能,符号用Q+数字表示,其中“Q”为屈服点“屈”的汉语拼音,表示屈服强度的数值。Q235表示这种钢的屈服强度为235MP,Q235钢含碳量约为0.2%属于低碳钢。Q235成分:C含量0.12%-0.22%、Mn含量0.30%-0.65%、Si含量不大于0.30%、S含量不大于0.050%、P含量不大于0.045%。S、P和非金属夹杂物较多在相同含碳量及热处理条件下,低碳钢焊接材料焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 Q235含有少量的合金元素,碳含量比较低,一般情况下(除环境温度很低或钢板厚度很大时)冷裂倾向不大。工件预热有防止裂纹、降低焊缝和热影响区冷却速度、减小内应力等重要作用。但是预热使劳动条件恶化,并使工艺复杂。低合金结构施焊前是否需要预热,一般应根据生产实践和焊接性试验来确定。当母材的碳当量Ceq≥0.35时应考虑预热。低合金钢淬硬倾向[1]主要取决于钢的化学成分,根据碳当量公式可知Q235的碳当量小于0.4%,在焊接过程中基本无淬硬倾向,焊前不需预热。且这类刚含碳量较低,具有较的抗热裂性能,焊接过程中热裂纹倾向较小,正常情况下不会出现热裂纹。从厚度考虑,当板厚超过25mm时应考虑100℃以上的焊前预热,试验中所用钢板的厚度为12mm,不需预热。 焊接热处理的目的是为了消除焊接内应力、提高构件尺寸的稳定性、增强抗应力腐蚀性能、提高结构长期使用的质量稳定性和工件安全性等。低合金钢焊接结构在大多数请况下不进行焊后热处理,只有在特殊要求的情况下才进行焊后热处理。此试验并无特殊要求,因此并未进行焊后热处理。 1.2 焊条 (1)焊条的熔敷金属应具有良好的力学性能

焊接结构课程设计—压力容器分解

前言1第1部分储罐设计分析2第1章储罐总体分析2 1.1 储罐基本设计要求2 1.2 储罐材料2 1.3储罐用钢板3 1.4 配用锻件5 1.5 配用螺栓、螺母5第2章储罐罐底设计6 2.1 储罐罐底板尺寸6 2.2 罐底结构7第3章罐壁结构设计10 3.1 罐壁的排板与连接10 3.2 罐壁厚度11 3.3 罐壁加强圈12第4章罐顶结构设计13第2部分储罐的焊接工艺分析14第5章压力容器的焊接接头14 5.1 压力容器焊接接头的分类14 5.2 圆筒形容器焊接接头的设计15第6章压力容器的焊接方法17 6.1 熔化极氩弧焊17

CO气体保护焊17 6.2 2 6.3埋弧焊19第7章压力容器的焊接工艺21第3部分储罐的组装与检验22第8章储罐的安装施工顺序22 8.1储罐底板的焊接顺序22 8.2储罐壁板的焊接顺序22 8.3储罐固定顶的焊接顺序23第9章储罐焊缝的检验与修补24 9.1焊缝检测24 9.2焊缝修补25设计体会26参考文献27

前言 大型油气储罐是油气产品储存运输最方便、廉价的方式之一。储罐的形式可跟据盖顶的样式不同分为浮顶式储罐(包括气柜)和固定顶式储罐(包括内浮顶式储罐),而固定顶式储罐又包括锥顶式储罐和拱顶式储罐两种。目前原油的储罐使用中浮顶式储罐在不断减少,液化气储运主要是球罐和立式筒形低压储罐。 常用的几种灌顶形式为双子午线网客机构拱顶、辐射网壳结构拱顶、短程线网壳结构拱顶和梁柱支撑结构拱顶,见图1。 本次课程设计主要讨论立式固定顶筒形钢制焊接储罐的施工工艺。其中包括储罐的材料选择、加工工艺路线选择、相关组件形式选择、机械加工装配、施焊成型、焊后检测调试等相关生产内容。

焊接工艺评定报告模板

中石化工建设 预焊接工艺规程(pWPS ) 表号/装订号 共 页 第 页 单位名称 海盛石化建筑安装工程 预焊接工艺规程编号WPS-HP0101 日期 2014.8 所依据焊接工艺评定报告编号HP0101 焊接方法 GTAW+SMAW 机动化程度(手工、机动、自动) 手工 焊接接头: 坡口形式: V 型坡口 衬垫 (材料及规格) Q235B 其他 坡口采用机械加工或火焰切割 简图:(接头形式、坡口形式与尺寸、焊层、焊道布置及顺序) 母材: 类别号 Fe-1 组别号 Fe-1-1 与类别号 Fe-1 组别号 Fe-1-1 相焊或 标准号 GB3274-2007 材料代号Q235B 与标准号GB3274-2007 材料代号Q235B 相焊 对接焊缝焊件母材厚度围: 4~12mm 角接焊缝焊件母材厚度围: 不限 管子直径、壁厚围:对接焊缝 --- 角焊缝 --- 其他: 同时适用返修焊和补焊 填充金属: 焊材类别: 焊丝(GMAW ) 焊丝(SAW ) 焊材标准: GB/T8110-2008 JIS Z3351 填充金属尺寸: φ1.2mm φ4.8mm 焊材型号: ER50-6 YS-S6 焊材牌号(金属材料代号): THT-50-6 US-36 填充金属类别: Fe-1-1 FeMS1-1 其他: / 对接焊缝焊件焊缝金属厚度围:GMAW ≤6mm,SAW ≤12角焊缝焊件焊缝金属厚度围: 不限 耐蚀堆焊金属化学成分(%) C Si Mn P S Cr Ni Mo V Ti Nb

编制: 审核: 批准: 日期: 日期: 日期: 中石化工建设 焊接工艺评定报告 表号/装订号 共 页 第 页 单位名称 中石化工建设 焊接工艺评定报告编号 日期 预焊接工艺规程编号 焊接方法 机动化程度(手工、机动、自动) 接头简图:(接头形式、坡口形式与尺寸、焊层、焊道布置及顺序) 60° 母材: 材料标准 材料代号 类、组别号 与类、别号 相焊 厚度 其他 焊后热处理: 保温温度(℃) 保温时间 ( h ) 保护气体: 气体 混合比 流量(L/min ) 保护气体 尾部保护气 / / / 背部保护气 / / / 填充金属: 焊材类别 焊材标准 焊材型号 焊接牌号 焊材规格 焊缝金属厚度 其他 / 电特性: 电流种类 极性 钨极尺寸 焊接电流(A ) 电弧电压(V ) 焊接电弧种类 / 其他

焊接工艺课程设计

[文档标题]

焊接工艺课程设计 1绪论 1 .1 Q235的成分及焊接性分析 Q235钢是一种普通碳素结构钢,具有冶炼容易,工艺性好,价格价廉的优点,而且在力学性能上也能满足一般工程结构及普通机器零件的要求,在世界各国得到广泛应用。碳素结构钢的牌号体现其机械性能,符号用Q+数字表示,其中“Q”为屈服点“屈”的汉语拼音,表示屈服强度的数值。Q235表示这种钢的屈服强度为235MP,Q235钢含碳量约为0.2%属于低碳钢。Q235成分:C含量0.12%-0.22%、Mn含量0.30%-0.65%、Si含量不大于0.30%、S含量不大于0.050%、P含量不大于0.045%。S、P和非金属夹杂物较多在相同含碳量及热处理条件下,低碳钢焊接材料焊后的接头塑性和冲击韧度良好,焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 Q235含有少量的合金元素,碳含量比较低,一般情况下(除环

境温度很低或钢板厚度很大时)冷裂倾向不大。工件预热有防止裂纹、降低焊缝和热影响区冷却速度、减小内应力等重要作用。但是预热使劳动条件恶化,并使工艺复杂。低合金结构施焊前是否需要预热,一般应根据生产实践和焊接性试验来确定。当母材的碳当量Ceq≥0.35时应考虑预热。低合金钢淬硬倾向[1]主要取决于钢的化学成分,根据碳当量公式可知Q235的碳当量小于0.4%,在焊接过程中基本无淬硬倾向,焊前不需预热。且这类刚含碳量较低,具有较的抗热裂性能,焊接过程中热裂纹倾向较小,正常情况下不会出现热裂纹。从厚度考虑,当板厚超过25mm时应考虑100℃以上的焊前预热,试验中所用钢板的厚度为12mm,不需预热。 焊接热处理的目的是为了消除焊接内应力、提高构件尺寸的稳定性、增强抗应力腐蚀性能、提高结构长期使用的质量稳定性和工件安全性等。低合金钢焊接结构在大多数请况下不进行焊后热处理,只有在特殊要求的情况下才进行焊后热处理。此试验并无特殊要求,因此并未进行焊后热处理。 1.2 焊条 1.2.1对焊条的基本要求 (1)焊条的熔敷金属应具有良好的力学性能 (2)焊条的熔敷金属应具有规定的化学成分,以保证其使用性能的要求

345焊接性分析

1、Q345R 焊接性分析 (1)冷裂纹及影响因素 Q345R 含有少量的合金元素,碳当量比较低,一般情况下(除环境温度很低或钢板厚度较大时)冷裂倾向不大。 ○ 1碳当量(Ceq ) 脆硬倾向主要取决于刚的化学成分,其中以碳的作用最明显。可以通过碳当量公式大致估算不同钢种的冷裂敏感性。通常碳当量越高,冷裂问敏感性越大,国际焊接学会(IIW )推荐的碳当量公式为 )(%1556n Ni Cu V Mo Cr M C CE ++++++ = 根据以上公式计算Q345R 的碳当量为: %32.0(%)6115.0=+=CE 由上可知:CE ≤0.4%,故Q345R 在焊接过程中基本无脆硬倾向,冷裂问敏感性小,焊接性优良,不需要预热和严格控制热输入。 ○ 2脆硬倾向 焊接热影响区产生脆硬的马氏体或M+B+F 混合组织时,对氢致裂纹敏感,而产生B 或者B+F 组织时,对氢致裂纹不敏感。脆硬倾向可以通过焊接热影响区连续冷却组织转变图(SHCCT )来进行分析,凡是脆硬倾向大的刚材,连续冷却曲线都是都是往右移。但是由于冷却条件不同,不同曲线的右移程度是不同的。 Q345R 焊接连续冷却组织转变图(SHCCT ) 如上图:Q345R 在连续冷却时,珠光体转变右移,是快冷过程中铁素体析出后剩下来的富碳奥氏体来不及转变为珠光体,而是转变为含碳较高的贝氏体和马氏体,具有脆硬倾向。从上图可以看出Q345R 焊条电弧焊快冷时,热影响区会出现少量铁素体、贝氏体和大量马氏体。 ○ 3热影响区最高硬度 热影响区最高硬度是评定钢材脆硬倾向和冷裂纹敏感性的一个简便的办法。最高硬度允许值就是一个刚好不出现裂纹的临界硬度值,热影响区最高硬度与裂纹率的关系如图所示,

焊接课程设计报告

焊接课程设计报告 姓名:高雨雨 学号:080301103

课程设计题目:氧化剂贮瓶结构及工艺设计 压力容器因运行条件复杂,对钢材的性能和工艺设计提出了更高的要求。与普通结构钢相比压力容器用的低合金钢应具有较高的高温强度常温和高温冲击性能,抗时效性,抗氢和硫化氢性等。这类钢的合金系是以提高钢材高温性能的合金元素(如Mn,Mo,Cr,V等)为基础。 一,课程设计目的: 设计是针对指定焊接产品(部件)的技术要求,制定焊接生产过程的工艺技术规程。通过设计实践,熟悉焊接生产的工艺分析,指定材料焊接性的技术规范的要领,设计必须的工艺装备及工夹具,并加以分析以及必要的计算过程和检验过程。为适应实际工作打下基础。 二,课程设计任务: 1 材料焊接性的分析过程 2 选择合适的焊接工艺装备 3 编写工艺设计说明书 4 填写焊接工艺卡 5 绘制示意图 三,课程设计的步骤及内容: 材料焊接性分析:采用常规的氩弧焊工艺对LF6焊接容易产生气孔,裂纹和变性较大等缺陷,大大限制了LF6的应用。 采用低频脉冲交流TIG焊接工艺 焊前准备:冷加工开坡口。进行焊前清理:氧化膜的存在会导致未焊透,未熔合,焊缝夹杂等缺陷,且由于氧化膜吸附大量水分课促使焊缝产生气孔,所以采用化学清洗除去试件表面的氧化膜,油脂和尘污是铝合金焊接前的必须的准备工作。此外,母材和焊丝中得固溶氢是造成氢气孔的主要原因之一,所以焊件和焊丝进行除氢处理(加热到170度,保温5h)以除去焊接材料中得固溶氢。 实验材料及设备:应选用化学成分与抗拉强度与母材相近的焊丝作为填充材料,铝镁焊丝ER5356,直径为1.6mm,选用镧钨极,焊枪喷嘴直径为9.0mm。 当焊接电流与送丝速度匹配合理时可以获得多个焊接点相互搭接的连续焊缝,外观均匀,呈鱼鳞波纹。当频率较低时容易实现。 焊接参数的选择: 基值电流:80 脉冲电流:140 焊接速度:300 送丝速度:820 钨极直径:2.5 脉冲频率:2 电弧长度:2.5 焊缝应有检验措施: 焊缝缺陷的存在将直接影响焊件结构的安全使用,为防止焊接焊件缺陷的存在,需要进行焊接检验。

焊接工艺课程设计要点

焊接工艺课程设计 题目焊接工艺与控制课程设计 指导教师 姓名 学号 专业 班级 完成日期2014 年 6 月23 日

三峡大学课程设计任务书 (2014年春季学期)

焊接工艺卡

目录 1. 30CrMoV A钢的性能分析 (6) 1.1 材料: (6) 1.2 化学成分及力学性能: (6) 2. 15 30CrMoV A钢的焊接性能 (7) 2.1 碳当量分析 (7) 2.2 30CrMoV A的焊接性的主要表现 (7) 3 焊接方法的选择和分析 (8) 3.1 焊接方法选择时应考虑的因素 (8) 3.2 焊接方法的选择 (8) 3.3 焊接方法主要特点分析 (9) 4 焊接设备的选择 (9) 4.1 焊接电源的选择 (9) 4.2 焊丝及焊剂的选择....................................................................................................... (9) 4.3、焊枪及喷嘴的选择 (9) 4.4、钨极的选择 (10) 5 焊接工艺参数的选择 (10) 5.1 焊接电流与电压的选择................................................................................................错误!未定义书签。 5.2 焊接速度的选择 (10) 5.3 钨极直径与保护气体流量............................................................ 错误!未定义书签。 6 焊前预热、焊接过程及焊后处理 (11) 6.1 焊前预热 (11) 6.2 焊接过程与焊后处理 (11) 7 焊后检验 (12) 7.1 外观检验 (12) 8 总结 (13) 参考文献 (14)

焊接工艺与焊接性分析设计

学科门类:单位代码: 毕业设计说明书(论文) 奥氏体不锈钢及Q235钢焊接工艺要点与焊接性分析 学生姓名 所学专业 班级 学号 指导教师 XXXXXXXXX系 二○**年X X月

目录 摘要........................................................ - 3 - 绪论........................................................ - 4 - 第一章奥氏体不锈钢及Q235钢简介.................................. - 5 - 1.1奥氏体不锈钢及其物理性质简介..................................... - 5 - 1.2低碳钢物理性质及其特点........................................... - 5 - 1.3奥氏体不锈钢及其焊接性........................................... - 6 - 1.4低碳钢及其焊接性................................................. - 6 - 1.5不锈钢焊接的防范措施............................................. - 6 - 第二章 18-8钢及Q235焊接时容易遇到的问题 .......................... - 7 - 2.1晶间腐蚀......................................................... - 7 - 2.2焊接热裂纹...................................................... - 7 - 2.3应力腐蚀开裂..................................................... - 7 - 2.4焊缝脆化......................................................... - 7 - 2.5焊接变形的防止方法............................................... - 8 - 2.6 Q235钢焊接时容易遇到的问题...................................... - 8 - 第三章奥氏体不锈钢的焊接特点 .................................. - 8 - 3.1焊接热裂纹....................................................... - 8 - 3.2晶间腐蚀......................................................... - 9 - 3.3应力腐蚀开裂..................................................... - 9 - 3.4焊接接头的σ相脆化............................................... - 9 - 第四章奥氏体不锈钢与Q235焊材选用............................... - 10 - 4.1奥氏体不锈钢的选材.............................................. - 10 - 4.2奥氏体不锈钢焊接要点............................................ - 10 - 4.3 Q235的选材..................................................... - 10 - 第五章低碳钢与奥氏体不锈钢的焊接性分析........................... - 11 - 5.1焊缝金属化学成分的稀释.......................................... - 11 - 5.2凝固过渡层的形成................................................ - 12 - 5.3碳迁移过渡层的形成.............................................. - 13 - 5.4残余应力的形成.................................................. - 13 - 第六章低碳钢与奥氏体不锈钢的焊接工艺要点......................... - 13 - 6.1焊接方法........................................................ - 13 - 6.2焊接材料........................................................ - 13 - 6.3焊接工艺要点.................................................... - 14 - 第七章实例分析............................................... - 14 -

(完整word版)焊接课程设计

焊接工艺课程设计题目1035铝板平板对接 指导教师石增敏 姓名陈卓学号2011106230 专业材料成型及控制工程班级20111062 完成日期2014 年 6 月25 日

目录 1、1035铝板焊接性分析 (3) 1.1、本次设计所用材料 (3) 1.2、1035铝板钢的化学成分及力学性能 (3) 1.3、铝与铝合金的焊接特点 (4) 1.4、1035铝板焊接方法的选择 (4) 2、MIG工作原理和工艺特点 (4) 2.1工作原理 (5) 2.2工作特点 (5) 2.3 焊接层数和坡口的选择 (5) 2.4焊接变形 (5) 3、MIG焊设备 (5) 3.1焊接电源 (6) 3.2控制系统 (6) 3.3送丝系统 (6) 3.4焊枪 (6) 3.5供气系统 (7) 3.6水冷系统 (7) 4、焊接工艺参数 (7) 4.1 .1焊接电流 (7) 4.1.2 电弧电压 (8) 4.1.3焊接速度 (8) 4.1.4 焊枪的操作 (8) 4.2焊前准备 (8) 4.2.1坡口制备 (8) 4.2.2清理 (9) 4.2.3预热 (9) 5焊接注意事项 (9) 6 外观检验 (10) 7无损检测 (10) 9参考文献: (11)

三峡大学课程设计任务书 (2013――2014学年) 课题名称焊接工艺课程设计 学生姓名陈卓班级20111062 指导教师石增敏 课题概述: 根据提供的原始资料,进行平板对接焊或环焊缝焊接工艺设计。设计人员制定焊接方法和焊接工艺,要求同一课题的学生使用不同的焊接方法进行设计,焊接工艺可靠、合理。 ⒈制定焊接工艺卡。⒉课程设计说明书包括:封面;目录;摘要;被焊接材料的基本数据与焊接性分析;焊接方法的选择;焊接工艺的制定和论证(具体项目可参考焊接工艺卡)、焊接操作注意事项和安全要求、焊后检验、参考文献等。 材料:35材料1035铝板两块,规格:—4×100×300,平板对接

灰铸铁焊接性分析

灰铸铁焊接性分析 一、灰铸铁焊接性分析 灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。在力学性能上的特点是强度低,基本无塑性。焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。这些因素导致焊接性不良。 主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。 另一方面焊接接头易出现裂纹。 (一)焊接接头易出现白口及淬硬组织 见P103,以含碳为3%,含硅2.5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。 1.焊缝区 当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。 防止措施: 焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。如:增大线能量。②调整焊缝化学成分来增强焊缝的石墨化能力。 异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0.7%~1.0%,属于高碳钢(C>0.6%)。这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。 采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。思路是:改变C的存在状态,使焊缝不出现淬硬组织并具有一定的塑性,例如使焊缝分别成为奥氏体,铁素体及有色金属是一些有效的途径。 2.半熔化区 特点:该区被加热到液相线与共晶转变下限温度之间,温度范围1150~1250℃。该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。 1)冷却速度对半熔化区白口铸铁的影响 V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。继续冷却则为C所饱和的奥氏体析出二次渗碳体。在共析转变温度区间,奥氏体转变为珠光体。由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体。 该区金相组织见P104 图4-5 其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。还可看到一些未熔化的片状石墨。 当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。最后其室温组织由石墨+铁素体组织组成。 当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。 影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。 例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再进行焊接的过程称热焊。这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。

焊接工艺课程设计指导书

材料成形及控制工程专业课程设计 焊接工艺设计指导书 一、设计目的 1.通过实际产品的焊接工艺设计,使学生了解焊接结构的生产工艺过程; 2.掌握焊接工艺的设计方法及工艺文件的制定; 3.培养学生运用专业理论知识解决实际焊接生产问题的能力,锻炼查阅文献资料及工具书籍的基本技能。 二、设计内容 在规定时间内,完成由教师指定的某一个结构件的焊接工艺设计任务,主要内容包括: 1. 焊接结构件的设计简图与技术要求; 2. 产品的制造工艺性能分析; 3. 主要接头的焊接方法选择与说明,坡口型式及尺寸的设计与说明; 4. 主要部件(筒节、封头等)的加工工艺过程卡; 5. 产品的装焊工艺过程卡; 6. 壳体的焊接工艺卡。 三、设计要求 1.手绘产品的结构设计简图,标注出产品的主要结构尺寸;主要零件的名称、材质与规格;设计技术要求(包括制造技术要求与检验要求)等。 2.产品的制造工艺性能分析主要包括容器主体材料的焊接性分析与结构的装焊工艺性能分析。容器主体材料的焊接性能主要分析材质的焊接裂纹倾向及产生其它焊接缺陷的倾向,说明为保证焊接质量应采取的工艺措施,如合理选用焊接方法、焊接材料、焊前预热、焊后热处理、层间温度等;结构的装焊工艺性能分析主要针对特殊、复杂容器结构,分析需要采用的装焊顺序与方法。 2. 接头焊接方法的选择和坡口型式的设计应包括纵焊缝、环焊缝、封头拼缝、 人孔接管与筒体的焊缝等,绘制接头的局部放大图。选择与设计的依据主要从容器结构尺寸、接头位置、材质及厚度、施焊条件与可操作性、焊接变形与应力、装焊顺序等方面考虑。 3. 主要部件(筒节、封头等)的加工过程卡要求制定部件从原材料备料至组 装焊接之前的全部加工工艺过程,包括各加工工序的名称、加工内容、所用的工装设备与检验要求等,必要时绘制出加工工艺简图; 4. 壳体的装焊工艺设计包括装焊工艺顺序、工序名称与内容、各工序所涉及

焊接工艺学课程设计

课程设计论文(说明书) 课程:焊接工艺学课程设计 题目:09MnD钢焊接性试验设计 院、系:材化学院 学科专业:金属材料工程 学生: / 学号: / 校对: / 指导教师: / 2012年 11月

1.前言 09MnD属于无镍低温钢,常用于石油、化工技术和压力容器设备,用于制造使用温度在-50℃的压力容器构件、重要锻件,石油化工中的压力容器。含碳量为0.2%,硅含量在0.17%到0.35%之间,锰含量在0.95%到1.35%之间,磷含量和硫含量均小于0.25%,钒含量小于等于0.03%。其化学成分见:表1.1,其机械性能见:表1.2。 牌号化学成分(质量分数)(%) C Si Mn P S V 09MnD ≤0.12 0.17-0.35 0.95-1.35 ≤0.025 ≤0.025 ≤0.03 表1.1 09MnD的化学成分 牌号抗拉强度/MPa 屈服强度/MPa 伸长率(%)冲击功/J 09MnD 400-540 ≥240 ≥26 ≥21 表1.2 09MnD的机械性能 本实验主要通过熔化极混合气体保护焊对焊接材料为09MnD厚度为10mm 板材的焊接性及焊接特点进行探索,在制出实验试板后,根据国家的一系列标准对此次焊接工艺进行焊后组织及力学性能进行评定,进而分析09MnD的焊接性能。 2.焊接工艺 2.1 09MnD的焊接特点 焊接材料的选择应保证接头与母材有同样的低温性能,焊条、焊丝、焊剂都必须保证焊缝中的油含杂质S、P、N、O最少。焊接时需要最大限度地减小过热程度,防止出现粗大的铁素体或粗大的马氏体组织。 2.2 焊接方法及焊丝的确定 低温钢的焊接方法可选焊条电弧焊、埋弧焊及熔化极气体保护焊。采用含Ni低温焊条电弧焊,虽可保证低温韧性,但成本高、生产效率低且焊缝成形差。故选用普通的焊丝H08Mn2SiA,用混合气体保护半自动焊,其生产成本为焊条电弧焊的55%-60%,生产率高2-3倍。焊材选择见:表2.2.1。

焊接工艺评定报告(DOC)

古城副井行政办公楼 钢结构挑檐手工电弧焊焊接工艺评定报告 编制部门: 编制: 审定: 批准部门: 批准:

手工电弧焊焊接工艺评定报告 1.评定材质: 16M n钢材评定厚度δ=36mm 2.评定目的: 为了验证施焊中的焊接工艺性的正确性。 3. 评定接头形式: 背部带衬板的组合焊缝。 衬板和腹翼板应根据拼点规定,点焊牢固,每一边都有拼点焊缝。 施焊分9层焊接,采用直线运条,当焊宽超过3-4φ焊时采用分道焊。其中φ焊为焊条直径。 4.参数选择: 打底层:φ3.2mm E5015 I=120±10(A) U=22±2(v) V=10±1c m/min 其余层:φ4mm E5015 I=190±10(A) U=22±2(v) V=13±1m/h 随着焊缝宽度增加,对焊速可作相应的调整. 焊接材质都选用J506或J507焊接. 5. 极性及电流种类; 选用交流弧焊机(J506) 6. 检测: Ⅰ主控项目

焊缝表面不得有裂纹、焊瘤等缺陷。一级、二级焊缝不得有表面气孔、夹渣、弧坑裂纹、电弧擦伤等缺陷。且一级焊缝不得有咬伤、未焊满、根部收缩等缺陷。 2、不允许有表面裂纹、夹渣、未焊透、焊缝宽度,应盖边每边2-4㎜,平缓过渡,飞溅应清除干净。 3、力学试验: 取试件进行力学试验,应符合建筑工程试验、检验标准。

焊接工艺评定报告 编号:001 评定项目:手工电弧焊 焊接方法:手工电弧焊 焊接工艺评定人:赵海职称:职务:负责评定单位:山西宏图建设工程有限公司 填写评定日期:2012年11月18日 批准人:职称:职务:批准评定报告单位: 批准评定日期:2012年5月18日 接头: 接头形式:组合焊缝 衬垫(有、无):背部采用如图衬垫 衬垫材料:A3 其它:摭点时拉开 母材:

5A03焊接性分析

《金属材料焊接性》课程设计说明书 题目:铝合金5A03的焊接性分析 材料:5A03 班级学号:13130501 姓名:王玮 专业:焊接技术及其自动化

金属材料焊接性课程设计任务书 学生:王玮班级:13130501 指导教师:李增荣题目:铝合金5A03的焊接性分析 材料:5A03 要求: 1、分析材料的化学成分,机械力学性能; 2、利用碳当量法计算并分析材料的焊接性; 3、根据材料的特性分析材料焊接时出现的各种缺陷; 4、提出解决措施并推荐适当的焊接方法; 5、制定字数在5000字左右的说明书。

目录 第一章绪论 第二章铝合金5A03的化学成分及物理性能 2.1.铝合金5A03的化学成分 (4) 2.2.铝合金5A03的物理性能 (4) 第三章铝合金在应用中的问题 3.1铝合金在热加工时的问题 (6) 第四章金属材料5A03的焊接性分析 4.1.金属材料焊接性简介 (8) 4.2.5A03铝合金焊接性分析 (9) 4.21.5A03在焊接中遇到的问题及解决方案 (12) 4.22.铝合金5A03的焊接工艺特点 (15) 第五章5A03铝合金在生活中的应用 附录1 (17) 附录2 (19)

第一章绪论 铝及铝合金原来只有皇帝用的的起的有色金属,而今它不仅在我们日常生活中起着重要的作用。而且随着现代工业的发展其应用前景也越来越广阔。特别是近代工业对工业材料的要求也越来越向着质量轻,强度高,易加工的方向发展。而铝及铝合金材料具有这一系列的优良特性,因此被广泛用于国民经济的各个领域,如:航空航天,交通运输,机械电器,石油化工,能源动力,家电五金,文体卫生的行业。它已成为发展国民经济和提高人民物资生活的重要基材料。 近二十年来,我国的铝加工业也发展的十分迅速,不但其产量成几何倍增加。同时,出现了许多新材料,新技术,新工艺以及新设备。我国已成为名副其实的铝业大国。铝及铝合金渗透到了社会的各个角落。 铝合金保持了质轻的特点,但其机械性能明显提高。铝合金材料在日常生活中的应用主要有:一,作为受力构件;二,作为装饰门窗盖壳等的材料;三,作为装饰材料和绝缘材料。铝合金板材,型材表面可以防腐,轧花,喷漆,印刷等二次加工,制成各种装饰板材。 因为铝合金具有易加工和高的散热性。特别是车辆的发动机部分特别适合使用铝合金材料。 此外,在航空航天方面,它是运载火箭和各种航天器的主要结构材料。 放眼未来,铝及铝合金家族会不断壮大,你会在社会的更多领域见到它出现的身影。其应用前途不可估量。

工字梁焊接工艺课程设计

工字梁焊接工艺课程设计

《焊接工艺》课程设计 工字型梁的焊接工艺设计 班级:08焊接1 班 姓名: 学号: A0852111

目录 1 结构与母材性能分析 (6) 1.1 工字形梁结构分析及作用 (6) 1.1.1 工字梁结构特点 (6) 1.1.2 工字梁作用 (6) 1.2 母材性能分析 (6) 1.2.1 Q345-B钢简介 (6) 1.2.2 Q345B化学成分 (7) 1.2.3 Q345B机械性能 (8) 1.2.4 Q345B焊接性分析 (8) 2生产工艺流程图。 (10) 3 钢板预处理 (11) 3.1 复检 (11) 3.2 钢材的表面预处理 (11) 3.3 钢板的矫正 (11) 3.4 钢板规格选择 (11) 3.5 划线、下料 (12) 3.6 坡口形式 (13) 4.1 下料方法及设备 (15)

4.1.1 下料采用半自动火焰切割 (15) 4.1.2 CG1-30型半自动火焰切割设备 (15) 4.1.3 常用切割气体比较 (16) 5 装配与焊接 (18) 5.1 翼板与腹板的装配焊接 (18) 5.1.1 装配 (18) 5.1.2 定位焊 (19) 5.1.3 焊接工艺 (19) 6 工字梁的焊接变形及防止 (21) 6.1 焊接变形种类 (21) 6.2 工字梁焊接时变形的防止 (22) 6.2.1 预留收缩量 (22) 6.2.2 反变形 (22) 6.2.3 制定合理的焊接工艺 (22) 7 二氧化碳气体保护焊简介 (24) 7.1 简介 (24) 7.2 焊机 (24) 7.3 CO2气体保护焊特点 (24) 7.4 CO2气体保护焊工艺参数 (25)

16MnDR焊接性分析

16MnDR的焊接性分析 摘要:16MnDR钢一般在-40°C以上使用的低合金钢,本文重点对此钢材的焊接性作简要分析,为现场焊接16MnDR钢材提供参考。 关键词:热裂纹冷裂纹焊接性能 1.前言 低温用钢和普通低合金高强度钢的主要差别,就在于低温用钢除了要满足通常的强度要求外,还必须保证相应的低温条件下具有足够高的低温韧性。这种钢大部分是一些含Ni的低碳低合金钢,一般在正火或调质状态下使用。在贵州天福年产50万吨合成氨项目两台低温液氨储罐用的16MnDR是正火状态下使用的。而16Mn系列钢材的低温下限是-40°C,满足现场-38.9°C的低温要求。 2.16MnDR成分上对焊接的影响 钢材的焊接性和它的其他性能一样,主要取决于它的化学成份。 若钢中含Si量超过06%后对冲击韧度不利,使脆性转变温度提高。 含C量超过0.3%和含Mn量超过1.6%后,焊接时经常出现裂纹,同时在热轧钢板上还会出现脆性的贝氏体组织。对比成份(见表1)来看,贵州天福年产50万吨合成氨项目所用16MnDR还是可以保证不容易出现这类问题的。

表1 GB3531-1996关于16MnDR化学成份规定 16MnDR属于正火钢的一种,从成分上看其含碳量较低而含 Mn量较高。如果材料的Mn/S比能达到要求,具有较好的抗热裂性能,正常条件下不会出现热裂纹。但当材料成分不合格,或因严重 偏析使局部C、Si含量偏高时,Mn/S就可能低于要求而出现热裂纹。如果出现这种情况,我们就要从工艺上设法减少熔合比,在焊接材 料上采用低碳高锰的焊材,以此降低焊缝中的含碳量和提高焊缝中 的含锰量,来避免热裂纹的产生。 4.冷裂纹 冷裂纹是焊接16MnDR的一个主要问题。从材料本身考虑,淬 硬组织是引起冷裂纹的决定因素。因此,在焊接中尽量减少形成对 氢致裂纹敏感的淬硬组织的出现是防止出现焊接冷裂纹的重要手段。 16MnDR的含碳量并不高,但含少量的合金元素。因此,它的淬硬倾向比低碳钢的大一些。而冷裂敏感性一般随强度的提高而增加。

焊接结构课程设计指导书

焊接结构与生产工艺课程设计指导书通用桥式起重机金属结构和生产工艺设计 曹永胜李慕勤曹丽杰 佳木斯大学材料工程学院

通用桥式起重机金属结构和生产工艺课程设计指导书 一、设计目的 1.培养学生综合运用所学知识的技能.通过对典型焊接结构和生产工艺的设计,使学生能针对产品使用性能和使用条件,制定焊接结构的设计方案及生产工艺方案。在具体的设计过程中,应根据结构的特点和技术要求,提出问题,分析问题产生的原因,并找到解决问题的途径和具体措施,制定合理的结构设计方案和生产工艺方案,从而得到一次解决实际工程问题的锻炼. 2.培养学生自学能力.使学生熟悉工具书,参考书的查找与使用方法,在学习前人的设计经验的基础上,发挥主观能动性,有所创新. 3.了解焊接工程技术人员的主要任务,工作内容和方式方法. 二、设计内容与计划 (一)设计内容 1. 5~50T通用桥式起重机主梁箱型结构设计。 2. 5~50T通用桥式起重机主梁生产工艺指定。 3.5~50T通用桥式起重机主梁结构生产图纸绘制。 (二)设计计划 1.接受设计任务、查阅资料和制定设计方案。(2天) 2.主梁结构设计计算;(7天) 3.主梁结构生产图纸绘制;(1天) 4.主梁结构生产工艺分析;(2天) 5.主梁生产工艺规程制定。(2天) 6.总结和考核。(1天) (三)任务完成 课程设计完成后,学生应交付以下材料: 1 主梁结构设计计算说明书; 2 主梁结构生产工艺分析报告; 3 主梁结构生产用施工图纸; 4 主梁生产工艺规程.

通用桥式起重机主梁结构及生产工艺设计 §1 通用桥式起重机简介 通用桥式起重机是指用吊钩或抓斗(有的也有用电磁盘)吊取货物的一般用途的桥式起重机,它桥架(大车)和起重小车两大部分组成,桥架横跨于厂房或露天货物上空,沿吊车梁上的起重机轨道纵向运行。通用桥式起重机有大车运行机构(装在桥架上),起升机构和小车运行机构(装在小车上)等三种工作性机构,皆为电动。通用桥式起重机的起重量可达500吨,跨度50~60米。 1.1 通用桥式起重机的基本组成 1.2 通用桥式起重机的基本参数 1额定起重量Q(tf) 2 跨度L(m) 3大车运行速度(m/min) 4 小车运行速度(m/min) 5 起升高度(m) 6 起升速度(m/min) 7 接电持续率JC JC = 100t i /T % t i —在起重机的一个工作循环中该机的总运转时间。 T --起重机一个工作循环所需的时间。 T = 360/N h (s) 通用桥式起重机 大车 小车桥架 大车运行机构 主梁 端梁小车架 小车运行机构 起升机构 图 1 通用桥式起重机组成

焊接工艺评定报告

PQR编号:QZ-HC1612-25焊接工艺评定报告 编制: 审核: 批准:

叮叮小文库 焊接工艺评定报告 衢州市河川翻板闸门有限公司 QZ-HC1612-25 焊接工艺指导卡编号HC-161225 SMAW 机械化程度(手工、半自动、全自动)手工 接头简图:(坡口形式、尺寸、衬板、每种焊接方法或焊接工艺、焊缝金属厚度) 根据推荐先前提供的资料,按照图 1结构画图,钝边0.5?1mm, 坡口 角度30?40 °,间隙2? 3mm 母 材: 材料标准:GB3274-88 钢号:Q 235B 类、组别号: I -1与类、组别号I -1 相焊 厚度: 8 mm 直径: / 苴/、他: / 焊后热处理: 热处理温度(C): / 保温时间(h): / 保护气 气体种类 / 混合比 / 流量(L/ min)/ 尾部保护气/ / / 背面保护气/ / / 填充金属:碳钢焊条 焊材标准:GB/ T5117-2012 焊材牌号:CHT711 焊材规格:①1.2 焊缝金属厚度:8 其他:/ 电流种类:交流极性:正极性钨极尺寸:/ 焊接电流(A): 160焊接电压(V): 36其他:/ 表HC-GYPD NO : 01 焊接位置: 对接焊缝位置: 角焊缝位置: 平焊方向:(向上、向下) ___ / ______ 方向:(向上、向下) 技术措施: 焊接速度(cm/mi n ): ____________ / 摆动或不摆动:/ 摆动参数:___________ / 多道焊或单道焊(每面):/ 单位名称焊接工艺评定报告编号焊接方法

结 论:本评定按 QZ-HC1612-25规定焊接试件、检验试样、测定性能、确认试验记 录正确 焊工姓名 焊工代号 施焊日期 编制 日 期 审核 日 期 批准 日 期 评定结果 合格 表 HC-GYPD 衢州市河川翻板闸们有限公司 QZ-HC1612-25 焊接工艺指导卡编号 HC-161225 SMAW 机械化程度(手工、半自动、全自动) 手工 接头简图: (坡口形式、尺寸、衬板、每种焊接方法或焊接工艺、焊缝金属厚度) 根据推荐先前提供的资料,按照 图1结构画图,钝边 0.5?1mm, 坡口角度30?40°,间隙2? 3mm NO : 03 单 位 名称 焊接工艺评定报告编号 焊 接 方法 母 材: 材料标准: GB3274-88 钢 号: Q 235B 类、 组别号: T -1与类、组别号T -1 相焊 厚 度: 8 mm 直 径: / 苴 丿 他: / 热处理温度 : / 保温时间(h ): / 保护气体: 气体种类 混合比 流量(L / min ) 保护气 / / / 尾部保护气 / / / 背面保护气 / / / 65°± 焊后热处理:

焊接工艺解析

焊接工艺 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、焊接接头的种类及接头型式 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于180°夹角的接头,叫做对接接头。在各种焊接结构中它是采用最多的一种接头型式。 钢板厚度在6mm以下,除重要结构外,一般不开坡口。 厚度不同的钢板对接的两板厚度差(δ—δ1)不超过表1—2规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选取;否则,应在厚板上作出如图1—8所示的单面或双面削薄;其削薄长度L≥3(δ—δ1)。

(二)角接接头 两焊件端面间构成大于30°、小于135°夹角的接头,叫做角接接头,见图1—9。这种接头受力状况不太好,常用于不重要的结构中。 (三)T形接头 一件之端面与另一件表面构成直角或近似直角的接头,叫做T形接头,见图1—10。

(四)搭接接头 两件部分重叠构成的接头叫搭接接头,见图1—11。 搭接接头根据其结构形式和对强度的要求,分为不开坡口、圆孔内塞焊和长孔内角焊三种形式,见图1—11。 I形坡口的搭接接头,一般用于厚度12mm以下的钢板,其重叠部分≥2(δ1+δ2),双面焊接。这种接头用于不重要的结构中。 当遇到重叠部分的面积较大时,可根据板厚及强度要求,分别采用不同大小和数量的圆孔内塞焊或长孔内角焊的接头型式。 二、焊缝坡口的基本形式与尺寸 (一)坡口形式

相关文档
最新文档