流体力学与传热学共39页

合集下载

流体力学与传热学ppt课件

流体力学与传热学ppt课件

动(泵、风机等)
2) 流动状态
h紊流 h层流
层流运动:流体微团沿着主流方向做有规 则的分层运动
湍流运动:流体质点做复杂无规则的运动
3) 流体有无相变
h相变 h单相
单相换热:流体显热的变化实现对流换热中的热量
变换
相变换热:在有相变的换热过程中,流体相变热
(潜热)的释放或吸收常常其主要作用
4) 换热表面的几何因素
换热表面的形状,大小,换热表面与流体运动方向的相对位置以及换热表 面的状态(光滑或粗糙)
5) 流体的物理性质 流体的热物理性质对换热的影响很大: 热导率λ ;密度ρ;比热容c ; 动力粘度η ;运动粘度ν ;体胀系数β 综上所述,表面传热系数是众多因素的函数
h f (v, tw , t f , , cp , , ,, l)
在稳定的状态下 壁面与流体之间的对流传热量就等于贴壁处静止流体层的导热量
hx


tw


t

t y

w
,
x
对流传热过程微分方程式
hx取决于流体热导率、温度差和贴壁的温度梯度
要求解一个对流换热问题,获得该问题的对流传热系数或交换的热流量
获得流场的温度分布,即温度场
确定壁面上的温度梯度
计算出在参考温差下的对流传热系数
温度梯度或温度场取决于流体热物性、流动状态(层流或湍流)、流速的大 小及其分布、表面粗糙度等。
温度场取决于流场
§8.2 对流传热问题的数学描写
1、假设条件
为简化分析,对于影响常见对流换热问题的主要因素,做如下假设:
1) 流动是二维的; 2) 流体为不可压缩的牛顿型流体; 3) 流体物性为常数,无内热源;

5-传热学与流体力学基础

5-传热学与流体力学基础

不同换热状态下表面传热系数的大 致数值范围
• 和导热系数相似的是,物体的状态对表面 换热系数也有极大的影响:水蒸气的换热 系数低于水的表面换热系数; • 另外还应该注意到,在水的沸腾和凝结换 热时其表面换热系数有显著的提高,尤其 是蒸发过程的沸腾换热,说明流体的状态 对换热系数的影响规律; • 在热泵工质循环的蒸发器和冷凝器中,也 发生着制冷剂的沸腾和凝结,对换热过程 有很大的影响。
热辐射是由热运动产生的,以电磁 波形式传递的能量
• 任何物质都具有热辐射的能力,热辐射的唯 一条件是它的温度必须高于绝对温标的零度 (0K),而达到或低于这一绝对零度是绝对 不可能的,所以,任何物体,都会不停地向 周围空间发出热辐射; • 同一件物体,它的辐射能与它自身的温度正 相关,即温度越高,发射的热量就越多,但 是物质不同,或者其表面形状不同,在同样 的温度下辐射能力也不相同,受材料粗糙度、 氧化情况等因素的影响 • 热辐射具有强烈的方向性,辐射能与温度以 及波长有关 。
传热过程与传热系数
• 传热过程的定义:两流体间通过固体壁面 进行的换热。 • 传热过程中,固体壁面两侧不同温度的流 体不能互相混合,仅能透过改固体壁面进 行热的传递。 • 工程上实际发生的热量传递,基本上都不 会是单一的热量传递形式 ,三种热量传递 的形式经常是同时存在的 。
• 传热过程中,固体壁面两侧的温差越大, 高温流体向低温流体传递热量的能力就 越强,这一点和导热及对流的热传递规 律是一致的; • 但是温差不是影响传热量唯一的因素, 传热量还与流体流动状况和固体壁面材 料本身有关,传热量公式表达式为 : • Φ=KA(T1-T2) =KAΔT • 式中,K为单位面积固体表面(参与换热 的面积)的总传热系数,简称传热系数, 单位是W/m· K 。

流体力学与传热学ppt课件

流体力学与传热学ppt课件
2) 物理条件 物性参数λ、ρ 、c 和η 的数值,是否随温度和压力变化;有无 内热源、大小和分布
3) 时间条件 稳态对流换热过程不需要时间条件—与时间无关
4) 边界条件 第一类边界条件:已知任一瞬间对流换热过程边界上的温度值 第二类边界条件:已知任一瞬间对流换热过程边界上的热流密度值
§8.3 边界层概念及边界层换热微分方程组
计算出在参考温差下的对流传热系数
温度梯度或温度场取决于流体热物性、流动状态(层流或湍流)、流速的大 小及其分布、表面粗糙度等。
温度场取决于流场
§8.2 对流传热问题的数学描写
1、假设条件
为简化分析,对于影响常见对流换热问题的主要因素,做如下假设:
1) 流动是二维的; 2) 流体为不可压缩的牛顿型流体; 3) 流体物性为常数,无内热源;
比拟法 数值法
通过研究动量传递及热量传递的共性或类似特性,以建立起表 面传热系数见的相互关系的方法。
近20年内得到迅速发展,并将会日益显示出其重要的作用。
7、如何从解得的温度场来计算对流传热系数
当粘性流体在壁面上流动时,由于粘性的作 用,流体的流速在靠近壁面处随离壁面的距 离的缩短而逐渐降低;
在贴壁处被滞止,处于无滑移状态(即:y=0, u=0) 在这极薄的贴壁流体层中,热量只能以导热方式传递
c 数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速
2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流时的局部 表面摩擦系数推知局部表面传热系数
3)实验法 用相似理论指导
4、对流传热过程的单值性条件
完整数学描述:对流传热微分方程组+ 单值性条件
1) 几何条件 平板、圆管;竖直圆管、水平圆管;长度、直径等

【精品】流体力学与传热学教案设计

【精品】流体力学与传热学教案设计

流体力学与传热学流体静力学:研究静止流体中压强分布规律及对固体接触面的作用问题流体动力学:研究运动流体中各运动参数变化规律,流体与固体作用面的相互作用力的问题传热学研究内容:研究热传导和热平衡规律的科学上篇:流体力学基础第一章流体及其主要力学性质第一节流体的概念一流体的概述⒈流体的概念:流体是液体和气体的统称⒉流体的特点:易流动性—在微小剪切力的作用下,都将连续不断的产生变形(区别于固体的特点)⑴液体:具有固定的体积;在容器中能够形成一定的自由表面;不可压缩性⑵气体;没有固定容积;总是充满所占容器的空间;可压缩性二连续介质的模型⒈连续介质的概念所谓连续介质即是将实际流体看成是一种假想的,由无限多流体质点所组成的稠密而无间隙的连续介质.而且这种连续介质仍然具有流体的一切基本力学性质.⒉连续介质模型意义所谓流体介质的连续性,不仅是指物质的连续不间断,也指一些物理性质的连续不间断性.即反映宏观流体的密度,流速,压力等物理量也必定是空间坐标的连续函数(可用连续函数解决流体力学问题)第二节流体的性质一密度—--表征流体质量性质⒈密度定义:单位体积内所具有的流体质量⑴对于均质流体:ρ=m/v式中ρ-流体的密度(㎏/m 3)m-流体的质量(㎏)v —流体的体积(m 3)⑵对于非均质流体:ρ=⒉比体积(比容):单位质量流体所具有的体积(热力学和气体动力学概念)⑴对于均质流体:v=V/m=1/ρ(m 3/㎏)3.液体的密度在一般情况下,可视为不随温度或压强而变化;但气体的密度则随温度和压强可发生很大的变化。

二流体的压缩性和膨胀性dv dm v m v =∆∆→∆0lim㈠压缩性⒈定义:当温度不变时,随作用在流体上的压力增大被所产生的流体体积减小,称为流体的压缩性。

⒉压缩性的大小表示⑴流体压缩系数κT -—等温压缩率当温度不变时,由压强变化所引起的流体体积的相对变化量。

即式中K T —体积压缩系数(P a -1)∆V —压缩前后流体体积改变量(m 3)V —流体原有体积(m 3)∆P —压强的变化量(P a )⑵体积弹性系数(弹性模量)E-—单位形变所需压力dPdV V P V V P V V K T 1lim 1/lim 00-=∆∆-=∆∆=→∆P →∆P(P a )☆一般情况下,液体可看作不可压缩流体。

流体力学与传热学

流体力学与传热学

1、对流传热总是概括地着眼于壁面和流体主体之间的热传递,也就是将边界层的(热传导)和边界层外的(对流传热)合并考虑,并命名为给热。

2、在工程计算中,对两侧温度分别为 t1,t2 的固体,通常采用平均导热系数进行热传导计算。

平均导热系数的两种表示方法是或。

答案;λ =3、图 3-2 表示固定管板式换热器的两块管板。

由图可知,此换热器为或。

体的走向为管程,管程流1 1 4 22 33 5图 3-2 3-18 附图答案:4;2 → 4 → 1 → 5 → 3;3 → 5 → 1 → 4 → 2 4、4.黑体的表面温度从 300℃升至 600℃,其辐射能力增大到原来的(5.39)倍. 答案: 5.39 分析: 斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的 4 次方成正比,? 600 + 273 ? 摄氏温度,即 ? ? =5.39。

? 300 + 273 ?5、 3-24 用 0.1Mpa 的饱和水蒸气在套管换热器中加热空气。

空气走管内, 20℃升至 60℃,由则管内壁的温度约为(100℃)6、热油和水在一套管换热器中换热,水由 20℃升至 75℃。

若冷流体为最小值流体,传热效率 0.65,则油的入口温度为 (104℃)。

7、因次分析法基础是 (因次的一致性),又称因次的和谐性。

8、粘度的物理意义是促使流体产生单位速度梯度的(剪应力)9、如果管内流体流量增大 1 倍以后,仍处于滞流状态,则流动阻力增大到原来的(2 倍)10、在滞流区,若总流量不变,规格相同的两根管子串联时的压降为并联时4 倍。

11、流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的(速度梯度),即使(粘度)很小,(内摩擦应力)仍然很大,不容忽视。

12、雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的(惯性力)与(粘性力)之比。

13、滞流与湍流的本质区别是(滞流无径向运动,湍流有径向运动)二、问答题:问答题: 1、工业上常使用饱和蒸汽做为加热介质而不用过热蒸汽,为什么?答:使用饱和蒸汽做为加热介质的方法在工业上已得到广泛的应用。

流体力学和传热学

流体力学和传热学
3)通过包壳(圆筒壁)的热传导 38
4) 堆芯冷却剂通道内的换热 燃料裂变所产生的热量,主要
通过元件的包壳传给冷却剂—— 对流换热。
Z
t0
tu
tg
tw tf
牛顿冷却定律
燃料包壳外表面热流密度(W/m2)
q h(Tw Tf ) hf
T
燃料芯块
包壳
表面传热系数
冷却剂主流温度℃
燃料包壳外表面温度℃
传热过程的总热阻等于各局部热阻之和,为了减少总热阻 首先就应减小局部热阻中最大的。
例如两侧分别为蒸汽和空气的金属管壁,若空气侧的换热
系数h1=30W/(m2·K),蒸汽冷凝侧的换热系数h2 =5000W/(m2·K)。 一般金属管壁的导热系数较大,管壁较薄,所以管壁热阻常可忽
略。传热系数 h2增大一倍,k的值仅由29.82增大到29.91,
tmin
37Biblioteka 3.7 堆内传热过程1)核燃料元件内的热传导
裂变能主要产生于核燃料 元件内部,燃料元件的长径 比很大,因此可忽略轴向传 热,核燃料元件可看成是带 内热源的仅存在径向传热的柱状固体:
2)燃料芯块与包壳之间间隙的传热 没有内热源的薄层,热量通过这个充气的间隙主要是靠导热。
这个间隙虽然很薄,但它引起的温度一般可以达到几十甚至几 百℃,要对间隙热导进行精确的计算是很困难的。
表面传热系数是众多因素的函数:
h f (v, tw , tf , , cp , , , , l, Ω)
一些表面传热系数的数值范围
对流换热类型
表面传热系数 h /[W /( m2K])
空气自然对流换热
1~10
水自然对流换热
100~1 000
空气强迫对流换热

流体力学与传热学详解

流体力学与传热学详解
并联管系:
Q Q1 Q2 Q3
hw1 hw2 hw3
26
5. 管路特性曲线

风机
所谓管路特性曲线,就是管路中通过的 流量与所需要消耗的能头之间的关系曲线
27
减小流动损失的措施 1. 减小管长、增大直径、降低粗糙度; 2. 减少附加管件、平滑过渡、弯头导流; 3. 管路特性与驱动机械内特性相匹配。

tw1 tw,n1 1 n 1 ln di1
2L i1 i di
39
2.对流换热
基本概念 热对流——流体的宏观运动,使流体各部分之间发生相 对位移,冷热流体相互掺混所引起的热量传递过程。 对流的形式 自然对流:因流体的密度差而引起的流动; 强制对流:流体的流动是由水泵、风机或其他外力 所引起的; 对流换热——流体流过物体表面时的热量传递过程;
1
2
3
i1 i
通过n层平壁的热流密度:
q

tw1
tw,n1
n i

tw1
tw,n1 Ri
i1 i
37
1.稳态导热
圆筒壁的稳态导热
单层圆筒壁的稳态导热: 对于长度为L、无内热源的内、外
径分别为d1、d2的单层圆筒壁,若 其内、外壁温度为tw1和tw2,导热

29
(3)k/de,k=0.15mm
k 5.62 104 de
(4)λ Re = 1.7×105 在湍流过渡区
用希弗林松公式

0.11 k

68
0.25


d Re
(5)R
Rp l de 8.31
λ=0.0194
(6)Δp

1_流体力学与传热学

1_流体力学与传热学

P p lim A
A 0
返回首页
第二节 流体静力学
一、流体静压强及其特性
P Z dA n

流体静压强的方向与受 压面垂直并指向受压面
Y X 0

作用于同一点上各方 向的静压强大小相等
流体静 压强的 特性
第二节 流体静力学
二、流体静压强的分布规律
分析静止液体中压强分布 作用于轴向的外力有:
可忽略。 2、气体有显著的压缩性和膨胀性,t与P的变化对v 影响很大。 3、当气体的温度不过低压强不过高时,T、P、v三
者关系服从理想气体状态方程。
第二节 流体静力学
目的:学习和讨论流体静止状态下 的力学规律及其应用
流体静止时的特点:
不显示其粘滞性,不存在切相应力
流体静止是运动中的一种特殊状态
流体静力学研究的中心问题:
流体静压强的分布规律
第二节 流体静力学
一、流体静压强及其特性
静水压力与静水压强

静止液体作用在与之接触的表面上的水压力称为 静水压力P.
在静水中表面积为A的水体,微小面积△A所受作 用力△P, P P 该微小面积上的平均压强为 A 当△A无限缩小至趋于点K时,K点的静水压强
p1
2
2
图2-5
圆管中有压流动的总水头线与测压管水头线
第四节 流动阻力和水头损失
能量损失的计算
沿程损失
hf
l v2 d 2g
沿管长 均匀发 生
局部损失
局部障 碍引起 的
hm
v2 2g
整个管路的能量损失等于:
各管段的沿程损失和局部 损失之和
第五节 流动阻力和水头损失
整个管路的能量损失等于各管段的沿程损失和局部损失之和.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档