产品库存优化模型数学建模
数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)
《数学建模实验》

《数学建模》上机作业信科05-3韩亚0511010305实验1 线性规划模型一、实验名称:线性规划模型—设备的最优配备问题。
二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。
三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。
四、实验要求:1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。
2、利用相应的数值方法求解此问题的数学模型。
3、谈一谈你对这类线性规划问题的理解。
4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。
5、用软件lindo 或lingo 求解上述问题。
(选做题)6、编写单纯形算法的MATLAB 程序。
(选做题) 五、实验内容:解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为:1211109871211109711109871211109875.232427252628252528262729)2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-=整理后得:90024255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件150030001500300015003000150030001500300015003000111210119108978710119108978791089787897877877≤-+-+-+-+-++≤≤-+-+-+-++≤≤-+-+-++≤≤-+-++≤≤-++≤≤+≤y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x又有年底库存量不少于300则:300300121112101191089787≥--+-+-+-+-++y y x y x y x y x y x x化为抽象的线性规划模型为:90024255.28275.2831255.25295.27295.31max 121110987121110987-------+++++=x x x x x x y y y y y y z ,;12,,8,7;0,0120030012003001200300120030012003001200300121112101191089787111210119108978710119108978791089787897877877 =≥≥--+-+-+-+-+≤-+-+-+-+-+≤-≤-+-+-+-+≤-≤-+-+-+≤-≤-+-+≤-≤-+≤-≤≤-i y x y y x y x y x y x y x x y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x STi i线性规划目标函数的系数:f = [31; 28.5; 27; 28.5;25;24;-31.5;-29;-27.5;-29;-25.5;-25]; 约束方程的系数及右端项: A=[1,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,-1,0,0,0,0,0 1,1,1,0,0,0,-1,-1,0,0,0,0 1,1,1,1,0,0,-1,-1,-1,0,0,0 1,1,1,1,1,0,-1,-1,-1,-1,0,0 1,1,1,1,1,1,-1,-1,-1,-1,-1,0 -1,0,0,0,0,0,0,0,0,0,0,0 -1,-1,0,0,0,0,1,0,0,0,0,0 -1,-1,-1,0,0,0,1,1,0,0,0,0 -1,-1,-1,-1,0,0,1,1,1,0,0,0 -1,-1,-1,-1,-1,0,1,1,1,1,0,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,1];b=[1200;1200;1200;1200;1200;1200; 300; 300; 300; 300; 300; 300;0]; lb=zeros(12,1);[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);实验2 非线性规划模型一、实验名称:非线性规划模型。
数学建模论文--生产与存贮问题的优化模型

数学建模论文--生产与存贮问题的优化模型摘要本文针对生产与存贮问题,建立了一种优化模型。
通过分析生产与存贮过程中的各种因素,包括供应链、库存管理、生产调度、成本控制等,建立了相应的数学模型,并使用线性规划方法对模型进行求解。
本文的模型可以为企业在生产与存贮过程中提供有效的参考,帮助企业实现成本最小化和效益最大化。
关键词:生产与存贮;优化模型;供应链;库存管理;生产调度;成本控制AbstractThis paper establishes an optimization model for production and storage problems. By analyzing various factors in the process of production and storage, including supply chain, inventory management, production scheduling, cost control, etc., corresponding mathematical models are established, and linear programming method is used to solve the model. The model of this paper can provide effective reference for enterprises in the process of production and storage, helping enterprises to achieve cost minimization and benefit maximization.Keywords: production and storage; optimization model; supply chain; inventory management; production scheduling; cost control 1. 引言生产与存贮是企业的核心业务之一,对企业的发展和运营至关重要。
数学建模-简单的优化模型

3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3
火势以失火点为中心,
均匀向四周呈圆形蔓延,
假设1) 的解释
半径 r与 t 成正比
r
B
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
假设1) 假设2)
dB
b t1,
t t b
由模型决定队员数量x
问题
4 最优价格
根据产品成本和市场需求,在产销平
衡条件下确定商品价格,使利润最大
假设
1)产量等于销量,记作 x 2)收入与销量 x 成正比,系数 p 即价格 3)支出与产量 x 成正比,系数 q 即成本 4)销量 x 依赖于价格 p, x(p)是减函数
进一步设 x( p) a bp, a, b 0
C~
c1
c2
Q 2
T
c1 c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解
dC 0 dT 模型分析
求 T 使C(T ) c1 c2rT Min T2
T 2c1 rc2
Q rT 2c1r c2
c1 T,Q
模型应用
c2 T,Q
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
2)t1tt2, 降为-x (为队员的平均灭火速度)
数学建模:第五章 运筹与优化模型

1
例1、某工厂制造A.B两种产品,制造A每吨 需用煤9t,电力4kw,3个工作日;制造B每吨需 用煤5t,电力5kw,10个工作日。已知制造产品A 和B每吨分别获利7000元和12000元,现工厂只有 煤360t,电力200kw,工作日300个可以利用,问 A、B两种产品各应生产多少吨才能获利最大? 解:设 x1 x 2 ,(单位为吨)分别表示A、B产 品的计划生产数; f表示利润(单位千元) 则问题归结为如下线性规划问题:
a21 x1 a22 x2 a2 n xn (, )b2
am1 x1 am 2 x2 amn xn (, )bm
x1 , x2 ,, xn 0
7
例3:生产组织与计划问题 设有m种资源,第i(i=1,2…,m)种资源的现存量 为 bi ,现要生产n种产品,已知生产j(j=1,2…,n)种 产品时,每单位产品需要第i种资源量为 a ij ,而每 单位j种产品可得利润 c j ,问如何组织生产才能使 利润最大? 解:用 x j 表示生产第j(j=1,2,…,n)种产品 的计划数, 上述问题可归结为如下的数学问题:
z 14.3750
即 第1年项目A,D分别投资3.8268和6.1732(万元);
第2年项目A,C分别投资3.5436和3(万元);
第3年项目A,B分别投资0.4008和4(万元); 第4年项目A投资4.0752(万元); 第5年项目D投资0.4609(万元); 5年后总资金 14。375万元,即盈利43.75%.
x 模型建立 设该容器底边长和高分别为 x1米、 2米, 则问题的数学模型为
min f ( X ) 40 x1 x2 20 x1 (容器的费用)
2
x12 x 2 12, (容器体积) 2 s.t . 12 x1 x 2 2 x1 68, (容器重量) x 0, x 0. 2 1
数学建模论文 两种随机存贮管理模型的建立和求解

两种随机存贮管理模型的建立和求解摘 要:本文建立了仓库容量有限条件下单品种、多品种的允许缺货随机存贮模型。
采用连续的时间变量更合理地描述了问题,简化了模型的建立。
模型的求解是一个以分段的平均损失费用函数作为目标的带约束最优化问题。
针对题目中的具体数据对随机量送货滞后时间的密度函数进行了估计,解出了单品种、多品种条件下最优订货点的值和存贮方案。
通过分情况讨论把单品种存贮模型推广为多品种(m 种)存贮模型,论证了目标函数的独立变量为21m -个,使模型更加清晰、求解方便。
类比控制论中的相关理论提出了一定条件下多品种存贮的最优性原理,给出了证明,指出该原理简化模型和验证模型求解结果的作用。
讨论了销售速率具有随机性时的存贮模型,实际当中调整修正订货点的方法,以及仓库最大存贮量的一种预测办法。
最后指出了模型的优缺点。
0问题重述工厂生产需定期地定购各种原料,商家销售要成批地购进各种商品。
无论是原料或商品,都有一个怎样存贮的问题。
存得少了无法满足需求,影响利润;存得太多,存贮费用就高。
因此说存贮管理是降低成本、提高经济效益的有效途径和方法。
问题1 某商场销售的某种商品。
市场上这种商品的销售速率假设是不变的,记为r ;每次进货的订货费为常数1c 与商品的数量和品种无关;使用自己的仓库存贮商品时,单位商品每天的存贮费用记为2c ,由于自己的仓库容量有限,超出时需要使用租借的仓库存贮商品,单位商品每天的存贮费用记为3c ,且32c c ≤;允许商品缺货,但因缺货而减少销售要造成损失,单位商品的损失记为4c ;每次订货,设货物在X 天后到达,交货时间X 是随机的;自己的仓库用于存贮该商品的最大容量为0Q ,每次到货后使这种商品的存贮量q 补充到固定值Q 为止,且Q Q <0;在销售过程中每当存贮量q 降到L 时即开始订货。
请你给出求使总损失费用达到最低的订货点*L (最优订货点)的数学模型。
问题 2 现给出来自某个大型超市的关于三种商品的真实数据,按你的模型分别计算出这三种商品各自相应的最优订货点*L 。
数学建模在商业分析中有哪些应用案例

数学建模在商业分析中有哪些应用案例数学建模在商业分析中的应用案例在当今竞争激烈的商业世界中,数据驱动的决策已成为企业取得成功的关键。
数学建模作为一种强大的工具,能够帮助企业从海量的数据中提取有价值的信息,预测市场趋势,优化运营流程,从而制定更加明智的商业策略。
以下将为您介绍一些数学建模在商业分析中的应用案例。
一、库存管理对于任何企业来说,库存管理都是至关重要的。
过多的库存会占用大量资金,增加仓储成本;而库存不足则可能导致缺货,影响客户满意度和销售业绩。
数学建模可以帮助企业确定最佳的库存水平。
例如,一家电子零售商通过建立数学模型来预测不同产品的需求。
该模型考虑了历史销售数据、季节性因素、市场趋势、促销活动等多个变量。
通过模型的分析,企业能够准确地预测每种产品在未来一段时间内的需求量,从而合理安排采购和库存,既避免了库存积压,又降低了缺货的风险。
此外,数学建模还可以用于确定再订货点。
当库存水平降至再订货点时,企业及时下达采购订单,以确保库存的持续供应。
通过精确计算再订货点,企业能够减少订货次数,降低订货成本,同时提高库存的周转率。
二、市场细分与客户关系管理数学建模在市场细分和客户关系管理方面也发挥着重要作用。
企业可以利用聚类分析等数学方法,将客户根据其购买行为、消费偏好、地理位置等因素进行细分。
例如,一家银行通过建立数学模型,将客户分为不同的群体,如高价值客户、潜在流失客户、新客户等。
针对不同的客户群体,银行可以制定个性化的营销策略和服务方案。
对于高价值客户,提供专属的理财顾问和优惠政策;对于潜在流失客户,及时采取挽留措施,如提供个性化的服务和优惠;对于新客户,设计有吸引力的开户奖励和入门产品。
通过数学建模进行客户细分和精准营销,企业能够提高客户满意度和忠诚度,增加客户的生命周期价值,从而提升市场竞争力。
三、定价策略合理的定价策略对于企业的盈利能力有着直接的影响。
数学建模可以帮助企业确定最优的产品价格。
数学模型-第03章(第五版)

存在恰当的x,使f1(x), f2(x)之和最小.
分析
• 关键是对B(t)作出合理的简化假设.
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻t森林烧毁面积B(t)的大致图形.
B
分析B(t)比较困难, 转而讨论单位时间 烧毁面积 dB/dt (森林烧毁的速度).
第三章
材料强度最大
简单优化模型
利润最高 风险最小
优化——工程技术、经济管理、科学研究中的常见问题. 运输费用最低
用数学建模方法解决优化问题的过程 优化目标与决策 模型假设与建立 数学求解与分析
简单优化模型归结为函数极值问题,用微分法求解. 属于数学规划的优化模型在第四章讨论.
第 三 章 简 单 优 化 模 型
3.2 森林救火
问题
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
分析
记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.
啤酒杯重心s(x)只与质量比a有关 对于每个a, s(x) 有一最小点. a=0.3, x=0.35左右 s最小, 即重心最低.
0.5
s
0.45 a=1 0.4 a=0.5 0.35 a=0.3 0.3
0.25 a=0.1 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
建立啤酒杯重心模型一
啤酒杯重心模型一
x
s=s(x) ~ 液面高度x的啤酒杯重心
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产品库存优化模型数学建模
(一)Weibull函数的引入
Weibull首先开发了三参数模型,并且将其应用到实际中,建模了的失效数据,从此weibull模型成为了失效建模和可靠性领域中使用的最广泛的模型, 之后,Harter和Moore给出Weibull模型有关货物的变质、物品的销售寿命、零件的寿命特征和电子元件的失效等方面的具体应用。
因此,本文研究中将认为易
(二)模型建立
库存水平是研究的基础,首先我们通过建立微分方程来描述库存系统的库存水平,由于缺货和不缺货的库存水平不同,因此下文我们将分别研究,又因为不
定 理 1 当0()()(0)k
j k
j
I d F e
t L β
αγψψ--≤
=⎡⎤+-⎣⎦
时,系统将不会发生缺货。
证明:若系统不缺货,即要求当k j t t L =+时,库存水平大于()0k k
j j I t L +≥。
将k
j t t L =+代人(3)式,()()0()0
()()0k k j j k
t L t L k k x j j
j I I t L d e
dx e
e β
β
βαγαγαγ+-+----⎡⎤+=-+≥⎢⎥⎣
⎦
⎰ 并化简即可得到定理1。
由定理可得知,当j d F ≤时,系统将不会发生缺货;当j d F >时,系统发生缺货。
以后我们将把情况分为缺货与不缺货分别进行讨论。
但因为库存水平0k I 未知,下面将给出定理2求解0k I 。
定 理 2
定理2证明:
思路:由于0k I Q r =-+上一周期末的库存水平为了简化模型,我们将库存水平到达再订购点r 的时刻作为0时刻,重新建立坐标系。
现在我们将't 视为当前时刻,''()k I t 表示需求率为k d 时,'t 时的库存水平;下面我们用微分方程来描述上一周期提前期内的库存水平变化趋势:
''''''()
()(),0k k k k dI t d t I t t dt θ=--≤≤∆ (9) ''''()
,k k k dI t d t L dt
=-∆≤< (10) 其中,'k ∆为库存水平下降到0的时刻;
下面分情况讨论:
由于以上讨论的是只是一个周期,为了简化原问题的求解,下面给出定理3和定理4。
定理 3 各周期初的库存水平是独立同分布的离散随机变量。
由假设可知,0D 和1D 是独立同分布的随机变量,又因为当前周期的库存水平是上一个周期内需求率的函数推出,因此0I 和1I 也是独立同分布的随机变量。
以此类推,各周期初的库存水平都是独立同分布的离散随机变量。
定理 4 各周期的周期时长的期望相等,各周期系统的平均期望运作成本相 等。
证明:由(6)和定理2可知,每个周期的周期时长仅与此周期以及上一个周期内的需求情况有关,因此第一个周期的周期时长的期望可表示为:
(){}(){}
(){}(){}
1101000010100()()()()()
()()()()
j k j k j k j k k k j
j k j
j k d F d F
d F d F k k j
j k j
j k d F d F
d F d F
E T L t
L P D d P D d t
L P D d P D d t
L P D d P D d t
L P D d P D d ≤≤≤≤≤≤≥≥≤≤≥≥=+==+
+==++==+
+==∑∑∑∑∑
∑∑∑令2T 表示第二个周期的周期时长,2D 表示第二个周期的需求率,则:
(){}(){}
(){}(){}
2101000010100()()()()()
()()()()
j i j i j i j i k k j
j i j
j i d F d F
d F d F k k j
j i j
j i d F d F
d F d F
E T t
L P D d P D d t
L P D d P D d t
L P D d P D d t
L P D d P D d ≤≤≤≤≤≤≥≥≤≤≥≥=+==+
+==++==+
+==∑∑∑∑∑
∑∑∑
由上易知:12()()E T L E T =。
以此类推,各周期的周期时长的期望相等。
因此,
各周期系统总的平均期望运作成本相等。
(三)模型简化
本文的问题可简化为求解最优的(r,Q)策略,使第一个周期内的平均期望成
本最小的问题。
即:00,1()()()min (,)()
r Q K c Q r E h I t dt I t dt TC r Q E T L π+-⎡⎤
+-++⎢⎥⎣⎦=
⎰⎰
其中,{}{}()max 0,(),()min 0,()I t I t I t I t +
-
==
下面分别求解系统的各项成本:
(1)系统总的订购成本(固定订购成本+可变订购成本) ()OD K c Q r =+-(18)
(2)[0,]k j t L +内,总的期望库存成本
()
()
()
()()()0()()10()00001()()()()(0)k j j k L x L k t x t j j k d F d F k x j r Q r d e dx e e IH h d e dx e dt P D d P D d e r Q r L d e h d e dx β
ββββ
βββαγαγαγαγαγαγαγαγψψ-----∆-----≤≤≤≤----⎧⎫⎡⎤⎛⎫⎡⎤-+-+⎪⎪⎢⎥ ⎪⎢⎥⎪⎪⎣⎦⎢⎥ ⎪=-+⋅==⎨⎬⎢⎥ ⎪⎪⎪
⎪⎢⎥⎪⎪⎝⎭⎣⎦⎩⎭
---++-+⎰∑∑⎰⎰()
()
()10()00
0()()()0()()0()()k j j k k t t j k d F d F L
x L k t x j d e dt P D d P D d e r Q r d e dx e e h d e dx e β
ββββββαγαγαγαγαγαγαγ∆----≤≤≥--------⎧⎫⎡⎤⎛⎫⎧⎫⎡⎤⎪⎪⎪⎪⎢⎥ ⎪⎢⎥⎨⎬⎪⎪⎢⎥ ⎪⎢⎥⎪⎪⎪⎪⎣⎦⎩⎭⋅==⎢⎥⎨⎬ ⎪⎢⎥⎪⎪ ⎪
⎢⎥⎪⎪ ⎪
⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭
⎛⎡⎤-+-+ ⎢⎥⎣⎦ +-+⎝∑∑⎰⎰⎰⎰()
()10001()()()
1()0
()()(0)(k j j k t j k d F d F k t k x t j j e dt P D d P D d r Q r L d d e h d e dx e dt P D d e β
ββββαγαγαγαγαγψψ∆--≥≤≤--------⎧⎫⎡⎤⎫⎪⎪⎢⎥⎪⎪⎪⎢⎥⎪⋅==⎨⎬⎢⎥ ⎪⎪⎪
⎪⎢⎥⎪⎪⎭⎣⎦⎩⎭
⎡⎤⎛⎫⎧⎫⎡⎤⎪⎪⎢⎥ ⎪---+⎢⎥⎨⎬⎢⎥ ⎪⎢⎥⎪⎪⎣⎦⎩⎭+-+⋅=⎢⎥ ⎪⎢⎥ ⎪
⎢⎥ ⎪
⎢⎥⎝⎭⎣⎦∑∑⎰⎰00)()k j j k k d F d F P D d ∆≥≥⎧⎫⎪⎪⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭
∑∑⎰(19)
(3)[0,]k j t L +内,总的期望缺货成本
)
⎫⎪⎬
⎪⎭
(四)模型求解
下面我们的目标是寻求,r Q 的最优值,使得(,)TC r Q 最小。
具体步骤如下: 步骤1:分别求(,)TC r Q 关于,r Q 的一阶偏导数,并令其为0,可得
(,)
0(,)
TC r Q r TC r Q Q ∂⎧=⎪∂⎪
⎨∂⎪=∂⎪⎩
(22) 我们在使得方程成立的多组取值中,取11,r r Q Q ==为这些取值中使得(,)TC r Q 最小的一组取值,并且把对应的目标函数值记作11(,)TC r Q 。
步骤2:将0,r r Q ==分别带入问题(1)P ,分别求Q 在这两种情况下的最优值23,Q Q 及对应的目标函数值22(,)TC r Q ,33(,)TC r Q 。
步骤3:比较11(,)TC r Q 22(,)TC r Q 33(,)TC r Q 的大小,其中使得(,)TC r Q 最大的,r Q 的取值即为最优策略。