磁盘调度算法实验报告 (2)(推荐文档)
磁盘调度操作系统实验报告

磁盘调度操作系统实验报告一、实验目的:本次实验主要目的是通过模拟实现磁盘调度算法,加深对操作系统磁盘调度原理的理解,并学会使用操作系统磁盘调度算法解决实际问题。
二、实验内容:1.磁盘调度算法原理分析:磁盘调度算法是操作系统中的重要组成部分,它的任务是合理安排磁盘上数据的存取顺序,以提高磁盘的效率。
常见的磁盘调度算法有先来先服务(FCFS)、最短寻道时间优先(SSTF)、电梯算法(SCAN)等。
2.模拟实现磁盘调度算法:本实验选择最短寻道时间优先算法(SSTF)作为示例进行模拟实现。
SSTF算法的原理是优先选择离当前磁头位置最近的磁道进行访问,以减少磁头移动时间。
实验步骤:1.根据实际情况,创建一个磁道队列,记录需要访问的磁道序号。
2.初始化磁盘的起始位置和访问队列。
3.对访问队列进行排序,按照磁头当前位置到磁道的距离从小到大排列。
4.根据排序后的队列顺序,依次访问磁道,并记录磁头移动的距离。
5.计算平均寻道长度。
三、实验结果分析:通过模拟实现SSTF磁盘调度算法,我们获得了磁头对每个磁道的访问顺序和总共的磁头移动距离。
根据实验结果,我们可以发现SSTF算法相对于其他算法具有一定的优势。
在实际应用中,根据不同的实际情况,可以选择合适的磁盘调度算法以优化磁盘的访问效率。
四、实验总结:通过本次实验,我们对磁盘调度算法的原理和实现有了更深入的了解。
磁盘调度算法作为操作系统中一个重要的模块,对提高磁盘的读写效率起着重要的作用。
在实际应用中,我们需要根据具体问题选择合适的磁盘调度算法,以达到最优的访问效果。
操作系统磁盘调度算法实验报告及代码

操作系统磁盘调度算法实验报告及代码一、实验目的通过实验掌握磁盘调度算法的实现过程,了解各种不同磁盘调度算法的特点和优缺点,并比较它们的性能差异。
二、实验原理磁盘调度是操作系统中的重要内容,其主要目的是提高磁盘的利用率和系统的响应速度。
常见的磁盘调度算法有:FCFS(先来先服务)、SSTF (最短寻道时间)、SCAN(扫描)、C-SCAN(循环扫描)等。
三、实验过程1.编写代码实现磁盘调度算法首先,我们需要定义一个磁盘请求队列,其中存放所有的IO请求。
然后,根据所选的磁盘调度算法,实现对磁盘请求队列的处理和IO请求的调度。
最后,展示运行结果。
以FCFS算法为例,伪代码如下所示:```diskQueue = new DiskQueue(; // 创建磁盘请求队列while (!diskQueue.isEmpty()request = diskQueue.dequeue(; // 取出队列头的IO请求//处理IO请求displayResult(; // 展示运行结果```2.运行实验并记录数据为了验证各种磁盘调度算法的性能差异,我们可以模拟不同的场景,例如,随机生成一批磁盘IO请求,并使用不同的磁盘调度算法进行处理。
记录每种算法的平均响应时间、平均等待时间等指标。
3.撰写实验报告根据实验数据和结果,撰写实验报告。
实验报告通常包括以下内容:引言、实验目的、实验原理、实验步骤、实验结果、实验分析、结论等。
四、实验结果与分析使用不同的磁盘调度算法对磁盘IO请求进行处理,得到不同的实验结果。
通过对比这些结果,我们可以看出不同算法对磁盘IO性能的影响。
例如,FCFS算法对于请求队列中的请求没有排序,可能会导致一些请求等待时间过长。
而SSTF算法通过选择离当前磁道最近的请求进行处理,能够减少平均寻道时间,提高磁盘性能。
五、实验总结通过本次实验,我们学习了操作系统中磁盘调度算法的原理和实现过程。
不同的磁盘调度算法具有不同的优缺点,我们需要根据实际情况选择合适的算法。
磁盘调度实验报告

实验五磁盘调度实验学时:2学时实验类型:设计实验要求:必修一、实验目的:磁盘是高速、大容量、旋转型、可直接存取的存储设备。
它作为计算机系统的辅助存储器,担负着繁重的输入输出工作,在现代计算机系统中往往同时会有若干个要求访问磁盘的输入输出要求。
系统可采用一种策略,尽可能按最佳次序执行访问磁盘的请求。
由于磁盘访问时间主要受寻道时间T的影响,为此需要采用合适的寻道算法,以降低寻道时间。
本实验要求学生模拟设计一个磁盘调度程序,观察调度程序的动态运行过程。
通过实验让学生理解和掌握磁盘调度的职能。
二、实验内容:模拟电梯调度算法,对磁盘进行移臂操作三、提示及要求:1、假设磁盘只有一个盘面,并且磁盘是可移动头磁盘。
2、磁盘是可供多个进程共享的存储设备,但一个磁盘每个时刻只能为一个进程服务。
当有进程在访问某个磁盘时,其它想访问该磁盘的进程必须等待,直到磁盘一次工作结束。
当有多个进程提出输入输出请求而处于等待状态时,可用电梯调度算法从若干个等待访问者中选择一个进程,让它访问磁盘。
为此设置“驱动调度”进程。
3、由于磁盘与处理器是并行工作的,所以当磁盘在为一个进程服务时,占有处理器的其它进程可以提出使用磁盘(这里我们只要求访问磁道),即动态申请访问磁道,为此设置“接受请求”进程。
4、为了模拟以上两个进程的执行,可以考虑使用随机数来确定二者的允许顺序,程序结构图参考附图:5、“接受请求”进程建立一张“进程请求I/O”表,指出等待访问磁盘的进程要求访问的磁道,表的格式如下:6、“磁盘调度”的功能是查“请求I/O”表,当有等待访问的进程时,按电梯调度算法(SCAN算法)从中选择一个等待访问的进程,按其指定的要求访问磁道。
SCAN算法参考课本第九章。
算法模拟框图略。
7、附图中的“初始化”工作包括:初始化“请求I/O”表,设置置当前移臂方向;当前磁道号。
并且假设程序运行前“请求I/O”表中已有若干进程(4~8个)申请访问相应磁道。
磁盘调度实验报告实验总结

磁盘调度实验报告实验总结磁盘调度是操作系统中的一个重要概念,它是指操作系统通过合理的算法和策略来管理和调度磁盘上的数据访问请求。
磁盘调度的目的是提高磁盘的读写效率,减少磁盘访问的时间开销,从而提高系统的整体性能。
本次实验主要对比了三种常见的磁盘调度算法:先来先服务(FCFS)、最短寻道时间优先(SSTF)和电梯算法(SCAN)。
通过对比实验结果分析各种算法的性能表现和特点,并给出相应的实验总结。
实验总结如下:一、先来先服务(FCFS)算法FCFS算法是一种简单直接的磁盘调度算法,它按照请求的顺序依次进行访问。
实验结果表明,FCFS算法的平均寻道时间较高,且易产生长期等待现象。
这是因为FCFS算法无法优化磁头的移动顺序,只能按照请求的先后顺序安排磁道的访问,从而导致了较差的性能表现。
二、最短寻道时间优先(SSTF)算法SSTF算法根据当前磁头位置选择距离最近的请求进行服务。
实验结果表明,SSTF算法的平均寻道时间明显优于FCFS算法,且缓解了长期等待现象。
这是因为SSTF算法可以选择离当前磁头位置最近的请求,从而减少了寻道时间,提高了磁道的访问效率。
三、电梯算法(SCAN)算法SCAN算法也称为电梯算法,它模拟了电梯运行的原理。
SCAN算法先将磁头移动到一个极限位置,然后沿着一个方向依次访问请求,直到到达另一个极限位置,再改变方向重复上述过程。
实验结果表明,SCAN算法的平均寻道时间与SSTF 算法相当,且具有较好的均衡性。
这是因为SCAN算法可以使得磁头在磁盘上的行进路线保持平衡,避免了过多的磁道之间的跳跃,从而提高了磁道的访问效率。
综上所述,不同的磁盘调度算法具有不同的性能表现和特点。
在实际应用中,需要根据具体的场景和需求选择合适的磁盘调度算法。
一般而言,SSTF算法和SCAN算法在性能上表现较好,可以提高磁盘的读写效率,减少寻道时间开销。
而FCFS算法在实际应用中较为有限,对于长期等待和寻道时间要求较高的场景不太适用。
磁盘调度的实验报告(3篇)

第1篇一、实验目的1. 理解磁盘调度算法的基本原理和重要性。
2. 掌握几种常见的磁盘调度算法,包括先来先服务(FCFS)、最短寻道时间优先(SSTF)、扫描(SCAN)和循环扫描(C-SCAN)算法。
3. 通过模拟实验,分析不同磁盘调度算法的性能差异。
4. 优化磁盘调度策略,提高磁盘访问效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 磁盘调度算法模拟库:PyDiskScheduling三、实验内容1. FCFS算法:模拟实现先来先服务算法,按照请求顺序访问磁盘。
2. SSTF算法:模拟实现最短寻道时间优先算法,优先访问距离当前磁头最近的请求。
3. SCAN算法:模拟实现扫描算法,磁头从0号磁道开始向0号磁道移动,访问所有请求,然后返回到0号磁道。
4. C-SCAN算法:模拟实现循环扫描算法,与SCAN算法类似,但磁头在到达末尾磁道后返回到0号磁道。
四、实验步骤1. 导入PyDiskScheduling库。
2. 创建一个磁盘调度对象,指定磁头初始位置、请求序列和调度算法。
3. 运行调度算法,获取磁头移动轨迹和访问时间。
4. 分析算法性能,包括磁头移动次数、平均访问时间和响应时间等。
五、实验结果与分析1. FCFS算法:在请求序列较短时,FCFS算法表现较好。
但随着请求序列长度增加,磁头移动次数和访问时间明显增加。
2. SSTF算法:SSTF算法在请求序列较短时表现最佳,平均访问时间和响应时间较低。
但当请求序列较长时,算法性能下降,磁头移动次数增加。
3. SCAN算法:SCAN算法在请求序列较短时性能较好,但随着请求序列长度增加,磁头移动次数和访问时间逐渐增加。
与SSTF算法相比,SCAN算法在请求序列较长时性能更稳定。
4. C-SCAN算法:C-SCAN算法在请求序列较短时表现较好,但随着请求序列长度增加,磁头移动次数和访问时间逐渐增加。
与SCAN算法相比,C-SCAN算法在请求序列较长时性能更稳定,且磁头移动次数更少。
操作系统模拟磁盘调度实验报告

操作系统课程设计成绩单开设时间:2015-2016学年第一学期一、需求分析本实验主要在于用随机生成的磁道序号和初始磁头位置,来模拟磁盘调度的实现过程。
(1)输入的形式和输入值的范围输入的形式是各种命令,由于在图形界面上操作,所以输入值的范围已在图形界面上约束。
(2)输出的形式调用每种磁盘调度方法后,相关结果显示在图像界面上,并以折线图的形式输出调度算法的过程。
(3)程序所能达到的功能能够模拟磁盘调度算法的过程和实现比较。
(4)测试数据:包括正确的输入及其输出结果和含有错误的输入及其输出结果。
程序中主要的数据是由程序随机生成磁道序号,用户点击按钮输入选择相关方法;测试得输入方面没有出现意料之外的结果;输出的结果也是各种合理的折线图和比较信息。
二、概要设计(1)程序中主要用到的抽象数据类型程序中主要的抽象数据类型是数组,定义如下:int [] num = new int[400];主要用于存放程序随机生成的400个磁道序号,以便在需要时便于使用。
(2)主程序的流程图(3)各个模块之间的调用关系三、详细设计(1)实现概要设计中定义的所有数据类型,对每个操作只需要写出伪码算法。
int [] num = new int[400];if(user statrt to use the project){SourceNum sourceNum = new SourceNum();} // 生成随机数于类SourceNum 中使用静态数组保存(2)对主程序和其他模块也都需要写出伪码算法(伪码算法达到的详细程度应能够按照伪码算法在计算机键盘上直接输入高级程序设计语言程序)。
主程序If(user select some operate){Show the result;}其他模块Process process = new Process();If(user click one btn){int [] source = new int[400];source = process.getNumbers(); // 获取实验数据give the source to related Chart to make Chart to show;}(3)画出函数的调用关系图。
磁盘调度操作系统实验报告

实验一磁盘调度算法实现一、实验目的本课程设计的目的是通过磁盘调度算法设计一个磁盘调度模拟系统,从而使磁盘调度算法更加形象化,容易使人理解,使磁盘调度的特点更简单明了,能使使用者加深对先来先服务算法、最短寻道时间优先算法、扫描算法以及循环扫描算法等磁盘调度算法的理解。
二、实验内容系统主界面可以灵活选择某种算法,算法包括:先来先服务算法(FCFS)、最短寻道时间优先算法(SSTF)、扫描算法(SCAN)、循环扫描算法(CSCA)N。
2.1 先来先服务算法(FCFS )这是一种比较简单的磁盘调度算法。
它根据进程请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次得到处理,不会出现某一进程的请求长期得不到满足的情况。
此算法由于未对寻道进行优化,在对磁盘的访问请求比较多的情况下,此算法将降低设备服务的吞吐量,致使平均寻道时间可能较长,但各进程得到服务的响应时间的变化幅度较小。
2.2 最短寻道时间优先算法(SSTF )该算法选择这样的进程,其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次的寻道时间最短,该算法可以得到比较好的吞吐量,但却不能保证平均寻道时间最短。
其缺点是对用户的服务请求的响应机会不是均等的,因而导致响应时间的变化幅度很大。
在服务请求很多的情况下,对内外边缘磁道的请求将会无限期的被延迟,有些请求的响应时间将不可预期。
2.3 扫描算法(SCAN)扫描算法不仅考虑到欲访问的磁道与当前磁道的距离,更优先考虑的是磁头的当前移动方向。
例如,当磁头正在自里向外移动时,扫描算法所选择的下一个访问对象应是其欲访问的磁道既在当前磁道之外,又是距离最近的。
这样自里向外地访问,直到再无更外的磁道需要访问才将磁臂换向,自外向里移动。
这时,同样也是每次选择这样的进程来调度,即其要访问的磁道,在当前磁道之内,从而避免了饥饿现象的出现。
由于这种算法中磁头移动的规律颇似电梯的运行,故又称为电梯调度算法。
操作系统磁盘调度算法实验报告

目录一、课程设计目的 (3)二、课程设计要求 (3)三、课程设计原理 (3)四、程序代码 (5)五、流程图设计 (11)六、运行结果 (14)七、调试分析 (16)八、心得体会 (16)一、课程设计目的操作系统是最重要的计算机系统软件,同时也是最活跃的学科之一,发展极为迅速。
我们在本课程的实验过程中,要了解实际操作系统的工作过程,加深对操作系统基础理论和重要算法的理解,在实践过程中加深对操作系统原理的理解。
通过设计一个磁盘调度模拟系统,以加深对先来先服务、最短寻道时间、电梯算法以及循环扫描算法等磁盘调度算法的理解。
让我们更好地掌握操作系统中磁盘调度的原理及实现方法,增强动手能力。
本实验通过对磁盘调度算法的实现,加深对算法的理解,同时通过用C++语言编写程序实现这些算法,并在windows平台上实现,也再一次提高了自己编程的能力,提高了综合运用专业课知识的能力。
二、课程设计要求本设计的具体要求如下:1.模拟一个磁盘调度算法2.要求能够模拟FCFS、最短寻道时间、电梯算法等磁盘调度算法3.输入为一组作业的磁道请求4.输出为按选择的算法执行时的磁头移动轨迹三、课程设计原理1.各个算法分析(1)先来先服务算法(FCFS)这是一种最简单的磁盘调度算法。
它根据请求访问磁盘的先后次序进行调度。
此算法的优点是公平、简单,且每个进程的请求都能依次地得到处理,不会出现某一进程的请求长期得不到满足的情况。
但是此算法由于未对寻道进行优化,致使平均寻道时间可能较长。
当有进程先后提出磁盘I/O请求时,先按他们发出请求的先后次序排队。
然后依次给予服务。
其平均寻道距离较大,故先来先服务算法仅适用于请求磁盘I/O进程数目较少的场合。
(2)最短寻道时间优先算法(SSTF)该算法选择这样的进程:其要求访问的磁道与当前磁头所在的磁道距离最近,以使每次寻道时间最短。
但这种算法不能保证平均寻道时间最短。
有可能导致某个进程出现“饥饿”现象,因为只要不断有新进程请求到达,且其所要访问的磁道与磁头当前所在的磁道的距离较近,这种新进程的I/O请求必然优先满足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁盘调度算法学生姓名:学生学号:专业班级:指导老师:2013年6月20日1、实验目的:通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。
2、问题描述:设计程序模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN 和循环SCAN算法的工作过程。
假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。
3、需求分析通过这次实验,加深对磁盘调度算法的理解,进一步掌握先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的实现方法。
通过已知开始磁道数、访问磁道总数、磁道号访问序列、访问方向及访问方式得到访问序列及移动距离和平均移动距离!(1)输入的形式;int TrackOrder[MaxNumber];//被访问的磁道号序列 int direction;//寻道方向int Num;//访问的磁道号数目int start;//(2)输出的形式;int MoveDistance[MaxNumber]={0};//移动距离double AverageDistance=0;//平均寻道长度移动的序列!(3)程序所能达到的功能;模拟先来先服务FCFS、最短寻道时间优先SSTF、SCAN和循环SCAN算法的工作过程。
假设有n个磁道号所组成的磁道访问序列,给定开始磁道号m和磁头移动的方向(正向或者反向),分别利用不同的磁盘调度算法访问磁道序列,给出每一次访问的磁头移动距离,计算每种算法的平均寻道长度。
(4)测试数据,包括正确的输入及其输出结果和含有错误的输入及其输出结果。
开始磁道号:100磁道号方向:内(0)和外(1)磁道号数目:9页面序列:55 58 39 18 90 160 150 38 1844、概要设计说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。
int TrackOrder[MaxNumber];//被访问的磁道号序列int MoveDistance[MaxNumber]={0};//移动距离double AverageDistance=0;//平均寻道长度int direction;//寻道方向int Num;//访问的磁道号数目int start;//开始磁道号5、详细设计实现程序模块的具体算法。
6、调试分析(1)调试过程中遇到的问题以及解决方法,设计与实现的回顾讨论和分析;在SCAN_CSAN算法中在访问不同的数组时没有注意到上一个磁道号和要访问的磁道号的大小比较导致结果不对,后来在分析结果中找出原因。
(2)算法的性能分析(包括基本操作和其它算法的时间复杂度和空间复杂度的分析)及其改进设想;FCFS:时间复杂度为O(1)空间复杂度为:O(1)SSTF:时间复杂度为O(n^2)空间复杂度为:O(1)SCAN_CSAN:时间复杂度为O(n^2)空间复杂度为:O(1)7、用户使用说明程序的使用说明,列出每一步的操作步骤。
(1)输入开始磁道号(2)输入访问磁道号总数(3)输入访问磁道号序列序列(4)选择算法(5)选择方向(6)得出结果8、测试结果9、存在问题在求移动距离时,若调用C++的库函数求绝对值会更方便!10、心得体会首先要明确磁盘调度的原理,画出算法流程图!这样在解决问题时更容易!11、附录程序源代码:#include <iostream.h>#define MaxNumber 100void FCFS(int TrackOrder[MaxNumber],int MoveDistance[MaxNumber], double AverageDistance,int start,int Num){int i,temp=start,sum=0;cout<<"移动顺序移动距离"<<endl;for(i=0;i<Num;i++){if(TrackOrder[i]>temp)MoveDistance[i]=TrackOrder[i]-temp;elseMoveDistance[i]=temp-TrackOrder[i];sum+=MoveDistance[i];temp=TrackOrder[i];cout<<TrackOrder[i]<<" "<<MoveDistance[i]<<endl;}cout<<endl;AverageDistance=sum*1.0/Num;cout<<"平均寻道长度:"<<AverageDistance<<endl;}void SSTF(int TrackOrder[MaxNumber],int MoveDistance[MaxNumber], double AverageDistance,int start,int Num){int temp=start, sum=0,s,count=0,min;int kind[MaxNumber]={0};cout<<"移动顺序移动距离"<<endl;while(count<Num){for(int i=0;i<Num;i++){if(kind[i]==0){if(TrackOrder[i]>temp)min=TrackOrder[i]-temp;elsemin=temp-TrackOrder[i];s=i;break;}}int temp1;for( i=0;i<Num;i++) //找出里此时磁道距离最近的磁道号{if(TrackOrder[i]>temp)temp1=TrackOrder[i]-temp;elsetemp1=temp-TrackOrder[i];if(temp1<min && kind[i]==0){min=temp1;s=i;}}MoveDistance[count]=min;sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;kind[s]=1;count++;}cout<<endl;AverageDistance=sum*1.0/Num;cout<<"平均寻道长度:"<<AverageDistance<<endl;}void paixu(int a[MaxNumber],int n,int TrackOrder[MaxNumber])//从小到大排序{int sym=0;while(sym==0){int kind=0;for(int i=0;i<n-1;i++){int s1=a[i];int s2=a[i+1];i f(TrackOrder[s1]>TrackOrder[s2]){int s=a[i+1];a[i+1]=a[i];a[i]=s;kind=1;}}if(kind==0)sym=1;}}void SCAN_CSAN(int TrackOrder[MaxNumber],int MoveDistance[MaxNumber], double AverageDistance,int start,int Num,int direction,int chioce) {int sum=0;int a[MaxNumber],b[MaxNumber];int temp=start;int i,num1=0,num2=0;cout<<"移动顺序移动距离"<<endl;for(i=0;i<Num;i++)//分类{if(TrackOrder[i]> temp){a[num1]=i;num1++;}else{b[num2]=i;num2++;}}paixu(a,num1,TrackOrder);//将数组按从小到达排序paixu(b,num2,TrackOrder);//将数组按从小到达排序int s;if(direction==0) //访问方向向外{for(i=0;i<num1;i++)//先访问num1并从前往后访问{s=a[i];MoveDistance[s]=TrackOrder[s]-temp;sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;}if(chioce==3)//SCAN算法{for(i=num2-1;i>=0;i--) //再访问num2并且从后往前访问{s=b[i];MoveDistance[s]=temp-TrackOrder[s];sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;}}else //CSAN算法{s=b[0];MoveDistance[s]=temp-TrackOrder[s];sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;for(i=1;i<num2;i++) //再访问num2并且从前往后访问{s=b[i];MoveDistance[s]=TrackOrder[s]-temp;sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;}}}else //访问方向向内{for(i=num2-1;i>=0;i--)//先访问num2并且从后往前访问{s=b[i];MoveDistance[s]=temp-TrackOrder[s];sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;}if(chioce==3) //SCAN算法{f or(i=0;i<num1;i++)//再访问num1并且从前往后访问{s=a[i];MoveDistance[s]=TrackOrder[s]-temp;sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;}}else //CSAN算法{s=a[num1-1];MoveDistance[s]=TrackOrder[s]-temp;sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;f or(i=num1-2;i>=0;i--)//再访问num1并且从后往前访问{s=a[i];MoveDistance[s]=temp-TrackOrder[s];sum+=MoveDistance[s];temp=TrackOrder[s];cout<<TrackOrder[s]<<" "<<MoveDistance[s]<<endl;}}}cout<<endl;AverageDistance=sum*1.0/Num;cout<<"平均寻道长度:"<<AverageDistance<<endl;}void main(){int TrackOrder[MaxNumber];//被访问的磁道号序列int MoveDistance[MaxNumber]={0};//移动距离double AverageDistance=0;//平均寻道长度int direction;//寻道方向int Num;//访问的磁道号数目int start;//开始磁道号int kind=0,chioce;cout<<"请输入开始磁道号:";cin>>start;cout<<"请输入访问的磁道号数目:";cin>>Num;cout<<"请输入被访问的磁道号序列:";for(int i=0;i<Num;i++)cin>>TrackOrder[i];while(kind==0){cout<<"请选择算法:1-FCFS,2-SSTF,3-SCAN,4-循环SCAN: ";cin>>chioce;if(chioce==1)FCFS(TrackOrder,MoveDistance,AverageDistance,start, Num);else{if(chioce==2)SSTF(TrackOrder,MoveDistance,AverageDistance,start, Num);else{cout<<"请输入磁道号访问方向,0:增加;1:减少: ";c in>>direction;SCAN_CSAN(TrackOrder,MoveDistance, AverageDistance,start,Num,direction,chioce);}}cout<<"**********************************************"<<endl;cout<<"请选择继续还是结束,0:继续;1:结束 ";cin>>kind;}}。