第六章 蒸汽动力装置

合集下载

第六章—热力循环

第六章—热力循环

● 实际生产中并不采用蒸汽卡诺循环
◆ 卡诺循环的4个过程,前3个过程可近似实现,但绝热 压缩(c-5)过程较难实现,因为这一过程中工质为
汽液混合物,缺少合适的设备;
◆ 定熵膨胀末期,蒸汽湿度较大,对汽轮机工作不利; ◆ 蒸汽的比体积比水大上千倍,压缩时体积变化大—— 设备庞大,功耗大; ◆ 蒸汽卡诺循环仅限于湿蒸汽区,上限温度受限于临界 温度(374.15℃),因此热效率不高,每循环完成的 功也不大。
低参数 中参数 高参数 超高参数 亚临界参数
汽轮机 进汽压力 (MPa)
汽轮机进 汽温度℃ 发电功率 kW
1.3
3.5
9.0
13.5
16.5
340 1500~ 3000
435 6000~ 25000
535
550,535
550,535
5~10万
12.5万, 20万,30万, 20万 60万
6.1.2.4 实际循环
朗肯循环中有两个定压非定温吸热过程:
4-5 定压下将过冷水加热至沸腾的饱和水;
6-1 定压下将饱和水蒸汽加热至过热状态。 这两个过程都存在较大的传热温差,是造成循 环效率低的主要原因。为了提高效率,工程实际中 常对朗肯循环进行改进,采用回热循环和再热循环。
6.1.3.1 回热循环
上述理想的回热循环是难以实现的。首先锅 炉给水在汽轮机中被加热到沸腾很难控制(4~ 5);其次,膨胀终点 d 的干度太小,对汽轮机工 作不利。实际上采用抽汽回热循环。
● 乏汽压力
p2
◆ 在p1,t1不变的前提下, 降低p2,效率提高 ◆ p2降低,干度下降 ◆ 乏汽压力取决于冷凝器的冷凝温度,受环境温 度限制,现在大型机组p2为0.0035~0.005MPa,相 应的饱和温度约为27~ 33℃ ,已接近事实上可能 达到的最低限度。

化工热力学习题答案第六章

化工热力学习题答案第六章

欢迎大家来到共享资源第六章 蒸汽动力循环和制冷循环―――― 会员:newsusan 一、选择题(共43小题,43分)1、(1分)对同一朗肯循环装置,如果提高蒸汽的过热度,则其热效率( A. 有所提高,乏气干度下降B. 不变,乏气干度增加 C. 有所提高,乏气干度增加D. 热效率和干度都不变2、(1分)节流效应T-P 图上转化曲线是表示的轨迹。

B. μ<0A. μ=0 C. μ>03、(1分)对同一朗肯循环装置,如果提高蒸汽的过热度,则其热效率( A. 有所提高,乏气干度下降B. 不变,乏气干度增加 C. 有所提高,乏气干度增加D. 热效率和干度都不变4、(1分)14.节流效应T-P 图上转化曲线是表示的轨迹。

A. μ=0 C. μ>05、(1分)理想的Rankine 循环工质是在汽轮机中作_____膨胀 A ) A ) 等温 等温 B) 等压 B) 等压 B )降低C )等焓 C )等焓 C )不变D )等熵 D )等熵6、(1分)节流膨胀的过程是不计流体位差等速度变化,可近似看作______过程7、(1分)流体作节能膨胀时,当μ>0,节流后温度A )升高B. μ<0).).8、(1分)气体经过稳流绝热过程,对外作功,如忽略动能和位能变化,无摩擦损失,则此过程 气体焓值() A. 增加B . 减少 C .不变D. 不能确定9、(1分)Rankine 循环是由锅炉、过热器、汽轮机、冷凝器和水泵组成 A ) A ) A ) 正确 正确 正确B) 错误 B) 错误 B) 错误10、(1分)吸收式制冷将热由低温物体向高温物体,冷凝器置于低温空间 11、(1分)蒸汽压缩制冷中蒸发器置于高温空间,冷凝器置于低温空间 12、(1分)单级蒸汽压缩制冷是由冷凝器、节流阀、蒸发器、过热器组成 A ) 正确B ) 错误13、(1分)在相同的温度区间工作的制冷循环,制冷系数以卡诺循环为最大 A ) 正确 B) 错误14、(1分)吸收式制冷采用吸收器、解吸器、溶液泵和换热器,替代蒸汽压缩制冷装置中的压缩机构成 A ) 正确 B) 错误15、(1分)热泵的工作目的是供热,有效的利用低品味的能量,因此热泵的工作原理循环过程不同于制冷装置。

蒸汽动力装置

蒸汽动力装置
20世纪60年代从苏联引进图纸, 由大连造船厂建造了9555kW(hp)汽轮机用作万吨远洋货船“跃进”号和 “红旗”号的主机。到了70年代, 由上海汽轮机厂根据“跃进”号引进的汽轮机图纸, 改进为功率1 1800kW(hp)的汽轮机用于“远望”号航天测量船上, 当时主要是考虑船上有许多测量仪器和设备对振动和噪声要 求较高。该 船动力装置的主要参数为蒸汽压力5MPa, 过热蒸汽470℃, 主机额定功率11 800kW, 5台汽轮发电机 组5×1200kW。主副汽轮机组由2台32t/h的D型水管锅炉并行供汽机舱采用集控, 主机启动、停车、换向、变速, 以及主锅炉和 其他辅机均在主机集控室监视, 并通过微处理机对全部热工参数监视报警、彩色屏幕显示、自动 打印。 用汽轮机动力装置推进的船舶, 在国际上1970年~1976年每年建造约120艘, 1977年-1980年每年仅建造20 艘左右, 1986年以后除了核动力舰船和大型航空母舰、船外已很少采用。但在我国80年代以后大型舰船上仍有采 用。
安装布置
安装布置
蒸汽动力装置的安装布置以俄罗斯“现代”级(SOVERMENNY)驱逐舰具有普遍的代表性, 主锅炉、蒸汽轮机 及齿轮箱通常设置在同一个水密舱中, 组成完整的一套蒸汽动力装置。通常左、右舷分别安装布置主锅炉、蒸汽 轮机及齿轮箱。原则上机舱中各设备的布置应便于安装、调试、操作、维修与损害管制, 并尽可能使机舱内形成 一环形通道, 以便于舰员在应急状态下及时到达战位。

特点
特点
蒸汽动力装置由于汽轮机采用高参数工质和高转速工作转子的连续工作过程, 所以机组功率大;工作时运转 稳定、噪音小、振动小、工作可靠性好, 寿命长、使用期限可高达105小时以上;可使用劣质燃料油等。但由于舰 用蒸汽动力装置的单位功率的质量大, 尺寸大, 管路系统复杂;燃油消耗率大, 装置效率低;在相同的燃料储藏 量, 其续航力低;机动性差, 暖机所需时间长, 工况过渡时间也长, 对于舰船动力来说是其致命的弱点, 因此从 发展的眼光来看限制了舰船蒸汽动力装置的发展。

简述蒸汽动力装置中冷凝器的作用。

简述蒸汽动力装置中冷凝器的作用。

简述蒸汽动力装置中冷凝器的作用。

蒸汽动力装置是一种常用的能量转换装置,广泛应用于发电、汽车、船舶等领域。

在蒸汽动力装置中,冷凝器是一个关键的组件,它的作用是将蒸汽冷凝成水,从而使其重新进入锅炉回路循环使用,以提高能量利用效率。

本文将详细介绍蒸汽动力装置中冷凝器的作用及其工作原理。

冷凝器位于蒸汽动力装置的末端,位置接近于涡轮机的出口。

当蒸汽流经涡轮机后,会形成高温高压蒸汽。

这时,进入冷凝器的蒸汽会受到冷却,并逐渐转化为水。

冷凝器的作用主要有以下几个方面:1. 能量回收:冷凝器能够将蒸汽的潜热转化为热量释放出来,使其温度降低。

通过这种方式,蒸汽动力装置可以回收并再次利用蒸汽中的能量,提高能量利用效率。

冷凝器回收的热量可以用于加热液体、供暖、生活热水等用途,进一步提高能源利用效率。

2. 减压:蒸汽经过涡轮机后的压力较高,需要通过冷凝器进行降压。

冷凝器内部的管道设计使蒸汽在流动中逐渐降压,使其达到与锅炉前的压力相适应。

这种降压的过程可以保证整个系统的稳定性,减少蒸汽管道和设备的压力冲击。

3. 水循环:通过冷凝器,蒸汽被冷凝成水后,可以重新进入锅炉回路,形成循环。

这种循环可以减少水的消耗,降低成本,同时也减少了对自然水资源的需求,具有环保的优势。

冷凝器的工作原理如下:蒸汽在进入冷凝器后,首先与冷却介质(通常为冷水或冷却塔冷却水)进行热量传递,蒸汽的温度逐渐降低。

热量传递的方式通常是通过冷凝器内外表面的热传导,也可以通过喷淋装置将冷却介质喷洒到冷凝器内部,使蒸汽与冷却介质之间充分接触。

冷凝器内部通常有大量的管道,用于增加热交换面积,提高热传导效率。

此外,冷凝器内部还设置有冷凝器表面使水蒸气通过冷凝器内部的管道流动时不会形成干度过高,影响热量传递的阻塞物。

冷却介质在与蒸汽进行热量交换后,会被加热,形成热水或蒸气。

这些热水或蒸气可以再次利用,例如用于供暖或发电。

最后,蒸汽在冷凝器内部的热量传递过程中,逐渐冷凝成水。

热工基础第六章-第七章

热工基础第六章-第七章

T3
T2
P3 P2
T2
T3 T2
863 673
1.2823
5 到 1 为定容过程,所以有:
1
1
T5
T1
P5 P1
T1k
T5 T1
k
573
1.4
1.2823 363
1.16
3 到 4 为定压过程,所以有:
T4
T3
v4 v3
T3
863 1.16
1001 .08K
所以循环热效率为:
1
1 61.41
51.16%
每 kg 空气对外所作的功为:
w q1 540 0.5116 276 .26kJ / kg
所以输出功率为:
W m w 100 276.26 27626kJ / h 7.67kW
6-8 解:1 到 2 为可逆绝热过程,所以有:
k 1
T2
T1
v1 v2
T1 k1 300 141.41 862K
热效率:= wnet = 1175.58 =37.99% q1 3094.42
干度:x=0.789 ②1 点:由 P1=4MPa, t1=550C
查表得:h1=3558.58kJ/kg, s1=7.233kJ/(kg.K) 2 点:由 s2=s1=7.233kJ/(kg.K), P2=4kPa
查表得:h2=2179.11kJ/kg, x=0.846 3(4)点:由 P3=4kPa, 查表得: h3=121.29kJ/kg 吸热量:q1=h1-h3=3558.58-121.29=3437.29kJ/kg 净功量:wnet=h1-h2=3558.58-2179.11=1379.47kJ/kg
k

第六章蒸汽动力装置

第六章蒸汽动力装置

第六章蒸汽动力装置部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第六章 动力装置循环英文习题1. Power generation by a steamturbineThe power output of an adiabaticsteam turbine is 5MW, and the inlet and the exit conditions of the steam are as indicated in Fig.6-1.(a> Compare t he magnitudes of Δh, Δke, Δpe.(b> Determine the work done per unit mass of the steam flowing through the turbine. (c> Calculate the mass flow rate of the steam.b5E2RGbCAP 2. The simple ideal Rankine cycleConsider a steam power plant operating on the simple ideal Rankine cycle. The steam enters the turbine at 3 MPa and 350℃ and is condensed in the condenser at a pressure of 75 kPa. Determine the thermal efficiency of this cycle.p1EanqFDPw3. Effect ofboilerpressure andtemperatureonefficiencyDXDiTa9E3dFIGURE 6-1FIGURE 6-2Consider asteam powerplantoperatingon the ideal Rankine cycle. The steam enters the turbine at 3 MPa and 350℃ and is condensed in the condenser at a pressure of 10 kPa. Determine (a> the thermal efficiency of this power plant, (b> the thermal effic iency if the steam is superheated to 600℃ instead of 350℃, and (c> the thermal efficiency if the boiler pressure is raised to 15 MPa while the turbine inlet temperature is maintained at 600℃.RTCrpUDGiT 4. The ideal reheat Rankine cycleConsider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600℃ and is condensed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4 percent, determine (a> the pressure at which the steam should be reheated and (b> the thermal efficiency of the cycle. Assume the steamisFIGURE 6-3reheated to the inlet temperature of the high-pressure turbine.5PCzVD7HxA5. The idealregenerative Rankine cycleConsider a steam power plant operating on the ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 15 MPa and 600℃ and is condensed in the condenser at a pressure of 10 kPa. Some steam leaves the turbine at a pressure of 1.2 MPa and enters the open feedwater heater. Determine the fraction of steam extracted from the turbine and the thermal efficiency of the cycle.jLBHrnAILg工程热力学与传热学 第六章动力装置循环习题1. 试画出简单蒸汽动力装置的系统图,简单蒸汽动力装置循环的p-v 图与T-s 图。

化工热力学第六章 蒸汽动力循环与制冷循环

化工热力学第六章 蒸汽动力循环与制冷循环

WS=(1-)(H3- H2)+(H2-H1)
6.1 蒸汽动力循环
ws 热效率 QH ws Qh 能量利用参数 QH
6 蒸汽动力循环与制冷循环
6.1 蒸汽动力循环 6.2 膨胀过程 6.3 制冷循环
6.2 膨胀过程
膨胀过程在实际当中经常遇到,如:高压流 体流经喷嘴、汽轮机、膨胀器及节流阀等 设备或装置所经历的过程,都是膨胀过程。 下面讨论膨胀过程的热力学现象。着重讨 论工业上经常遇到的节流膨胀和绝热膨胀 过程及其所产生的温度效应
⑵H1升高,因为水不可压缩耗功很少,一般 可忽略不计,但H1增加,必须使P1、t1增加, P1太大会使设计的强度出现问题,从而使制 造成本增加,提高效率的收益,并不一定 能弥补成本提高的花费。
6.1 蒸汽动力循环
卡诺循环要求等温吸热和等温放热以及等 熵膨胀和等熵压缩。在朗肯循环中,等温 放热、等熵膨胀和等熵压缩这三各过程基 本上能够与卡诺循环相符合,差别最大的 过程是吸热过程。现在主要问题是如何能 使吸热过程向卡诺循环靠近,以提高热效 率。显然改造不等温吸热是提高热效率的 关键,由此提出了蒸汽的再热循环和回热 循环。
6.1 蒸汽动力循环
1)蒸汽动力循环与正向卡诺循环 2)蒸汽动力循环工作原理及T-S图 3)朗肯循环 4)提高朗肯循环热效率的措施 5)应用举例
6.1 蒸汽动力循环
4)提高朗肯循环热效率的措施
要提高朗肯循环的热效率,首先必须找出影响热 效率的主要因素,从热效率的定义来看
对卡诺循环 对朗肯循环
ws TL c 1 QH TH
H ( )T P H ( )p T
H ( ) P CP T
6.2 膨胀过程
H ( )T T J ( ) H P P CP

化工热力学-第六章

化工热力学-第六章

S C p T p T
说明了任何气体在任何状 态下经绝热膨胀,都可致
T V
冷。这与节流膨胀不同。
S
T p
S
T Cp
T 0 Cp 0
(6-16)
V T
p
0
∴μS衡大于0
将(6-16)式与(6-13)式比较,得
S
ቤተ መጻሕፍቲ ባይዱ
J
V Cp
∵ 任何气体均有V>0 Cp>0
∴ S J 恒大于零.
S
耗功过程:耗功量最小。
实际过程的耗功量要大于逆向卡诺循环
二.蒸汽压缩制冷循环
1. 工作原理及T-S图 主要设备有: 压缩机 冷凝器 膨胀机(节流阀) 蒸发器 四部分组成。
在制冷过程中,要涉及到相变、工质、压力、沸点等问题
(1)卡诺压缩制冷循环
特点: 传热过程可逆
T
T放 3
T吸 4
压缩、膨胀过程可逆
由热力学第一定律: H Q Ws
2 WS
1
S
H 0 循环过程
Q Ws Q Q放 Q吸
Q放 TH S3 S2 TH(S4 S1)
Q吸 T(L S1 S4) T(L S4 S1)
故:
Q (TH TL)(S4 S1) Ws (TH TL)(S4 S1)
衡量制冷效果好坏的一个技术指标是制冷系数。
(1)工质进汽轮机状态不同
卡诺循环:湿蒸汽 郎肯循环:干蒸汽
(2)膨胀过程不同
卡诺循环:等熵过程 郎肯循环:不可逆绝热过程
(3)工质出冷凝器状态不同 卡诺循环:气液共存
(4)压缩过程不同 (5)工作介质吸热过程不同
郎肯循环:饱和水
卡诺循环:等熵过程 郎肯循环:不可逆绝热过程,若忽 略掉工作介质水的摩擦与散热,可 简化为可逆过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 动力装置循环
英文习题
1. Power generation by a steam turbine
The power output of an adiabatic steam turbine is 5MW, and the
inlet and the exit conditions of the steam are as indicated in
Fig.6-1. (a) Compare the magnitudes of Δh, Δke, Δpe. (b) Determine the work done per unit mass of the steam flowing through the turbine. (c) Calculate the mass flow rate of the
steam.
2. The simple ideal Rankine cycle
Consider a steam power plant operating on the simple
ideal
Rankine cycle. The steam enters the turbine at 3 MPa and 350℃ and is condensed in the condenser at a pressure of 75 kPa. Determine the thermal efficiency of this cycle.
3. Effect of boiler pressure and temperature on efficiency
Consider a steam
power plant operating on the ideal Rankine cycle. The steam enters the turbine at 3 MPa and 350℃ and is condensed in the condenser at a pressure of 10 kPa. Determine (a) the thermal efficiency of this power plant, (b) the thermal efficiency if the steam is superheated to 600℃ instead of 350℃, and (c) the thermal efficiency if the boiler pressure is raised to 15 MPa while the turbine inlet temperature is maintained at 600℃
.
FIGURE 6-1
FIGURE 6-2
FIGURE 6-3
4. The ideal reheat Rankine cycle
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600℃ and is condensed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4 percent, determine (a) the pressure at which the steam should be reheated and (b) the thermal efficiency of the cycle. Assume the steam is reheated to the inlet temperature of the high-pressure turbine.
5. The ideal regenerative Rankine cycle
Consider a steam power plant operating on the ideal regenerative Rankine cycle with one open feedwater heater. Steam enters the turbine at 15 MPa and 600℃ and is condensed in the condenser at a pressure of 10 kPa. Some steam leaves the turbine at a pressure of 1.2 MPa and enters the open feedwater heater. Determine the fraction of steam extracted from the turbine and the thermal efficiency of the cycle.
工程热力学与传热学
第六章 动力装置循环 习题
1. 试画出简单蒸汽动力装置的系统图,简单蒸汽动力装置循环的p-v 图与T-s 图。

2.
既然利用抽气回热可以提高蒸汽动力装置循环的热效率,能否将全部蒸汽抽出来用于回热?为
习 题
FIGURE 6-4
FIGURE 6-5
什么回热能提高热效率?
3.蒸汽动力装置循环热效率不高的原因是冷凝器放热损失太大,如取消冷凝器而用压缩机将乏汽直接升压送回锅炉是否可以?
4.卡诺循环优于相同温度范围的其它循环,为什么蒸汽动力循环不采用卡诺循环?
5.某朗肯循环,新蒸汽的参数为p1=4MPa,t1=400℃,乏汽的压力p2=4kPa,忽略泵功,试计算此循环的循环净功,加热量,热效率及乏汽的干度x。

若t1=550,p1和p2不变,以上各量为多少?
6.某船用理想蒸汽动力装置,汽轮机入口新蒸汽的参数为p1=6MPa,t1=560℃,冷凝器内蒸汽压力为6 kPa,忽略泵功,试求循环热效率。

若该装置的功率为10MW,试求每小时耗气量。

习题解答
1.答:简单蒸汽动力装置的系统组成锅炉,汽轮机,冷凝器,给水泵。

2.答:不能,还要保证部分蒸汽在汽轮机中继续膨胀对外作功。

回热提高了给水温度,相应地提高了吸热平均温度,从而提高了蒸汽动力装置的热效率。

3.答:不可以。

根据热力学第二定律,在热能和机械能的相互转换过程中,至少需要两个热源,才能产生动力,要想将热能转变为机械能,至少需要一个吸热过程,膨胀对外作功的过程,以及一个放热过程。

4.答:热力学第二定律证明,在相同的高温恒温热源和低温恒温热源间卡诺循环的热效率最高。

在采用气体作工质的循环中,因为定温加热和放热难于进行,而且气体的定温线和绝热线在p-v图上的斜率相差不多,以致卡诺循环所作的功并不大,故在实际上难于实现。

5.解:新蒸汽的参数为p1=4MPa,t1=400℃,乏汽的压力p2=4 kPa时,循环净功w net=1171.8 kJ/kg,加热量q=3093.2 kJ/kg,热效率ηt=37.9%,乏汽的干度x=0.79;若温度t1=550,p1和p2不变时,循环净功w net=1370.6 kJ/kg,加热量q=3437.9 kJ/kg,热效率ηt=39.9%,乏汽的干度x=0.85。

6.解:循环的热效率ηt=40.7%,每小时耗气量q m=2.59×104 kg/hr。

相关文档
最新文档