李雅普诺夫稳定性方法

合集下载

第六章李亚普诺夫稳定性分析

第六章李亚普诺夫稳定性分析

如图5-3李雅普诺夫意义下的稳定性示意图
2.古典理论稳定性定义(渐近稳定性)
设 xe 是系统 的一个孤立平衡状态,如果
(1) xe 是李雅普诺夫意义下稳定的;
(2)
则称此平衡状态是渐近稳定的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
- 初始状态 - 平衡状态
图6-2 二维空间渐近稳定性的几何解释示意图
3.内部稳定性与外部稳定性的关系
1)若系统是内部稳定(渐近稳定)的,则一定是外部稳定( BIBO稳定)的。
2)若系统是外部稳定(BIBO稳定)的,且又是可控可观测的, 则系统是内部稳定(渐近稳定)的。此时内部稳定和外部稳定 是等价的。
2009-08
CAUC--空中交通管理学院
§6-1 李雅普诺夫稳定性定义
(外部稳定性也称为BIBO(Bounded Input Bounded Output )稳定性)
说明:
(1) 所谓有界是指如果一个函数 ,在时间区间[0,∞] 中,它的幅值不
会增至无穷,即存在一个实常数k ,使得对于所有的t∈ [0 ∞] ,恒有
|h(t)| ≤ k ≤ ∞成立。 (2) 所谓零状态响应,是指零初始状态时非零输入引起的响应。
若对所有t,状态x满足
,故有下式成立:
,则称该状态x为平衡状态,记为
(5-2)
由平衡状态在状态空间中所确定的点 ,称为平衡点。
2.平衡状态的求法
(1)线性定常系统
其平衡状态xe满足Ax=0
A非奇异,则存在唯一的一个平衡状态xe =0 。 (2)非线性系统
方程
的解可能有多个。
2009-08
CAUC--空中交通管理学院

第5章李雅普诺夫稳定性分析

第5章李雅普诺夫稳定性分析
3
第5章 李雅普诺夫稳定性分析
第五章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性 5.2 李雅普诺夫第一法(间接法) 5.3 李雅普诺夫第二法(直接法) 5.4 线性定常系统的李雅普诺夫稳定性分析
4
第5章 李雅普诺夫稳定性分析
5.1 李雅普诺夫意义下的稳定性
1.自治系统
没有外输入作用时的系统称为自治系统,可 用如下系统状态方程来描述:
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x ,t) W ( x), V (0,t) 0, t t0
则称时变函数V(x,t)在域S(域S包含状态空间的 原点)内是正定的。
24
第5章 李雅普诺夫稳定性分析
3. 负定函数:如果-V(x)是正定函数,则标量函数 V(x)为负定函数。
则称平衡状态xe在李雅普诺夫意义下是稳定的。
在上述稳定的定义中,实数δ通常与ε和初始时
刻t0都有关,如果δ只依赖于ε ,而和t0的选取无关,
则称平衡状态是一致稳定的。
9
第5章 李雅普诺夫稳定性分析
5. 渐近稳定性
若系统的平衡状态xe不仅具有李雅普诺夫意 义下的稳定性,且有
lim
t
||
x(t;
x0 ,
(s)
则 m(s) 为矩阵A的最小多项式。
注:换言之,矩阵A的最小多项式就是(sI-A)-1
中所有元素的最小公分母。
17
第5章 李雅普诺夫稳定性分析
例5-1(补充):判断下述线性定常系统的稳定性
0 0 0
x 0 0
0
x
0 0 1
解:1)系统矩阵A为奇异矩阵,故系统存在无穷

稳定性与李雅普诺夫

稳定性与李雅普诺夫

1
V (x) xT
2
0
0
x
n
上式,为二次型函数的标准型。它只包含变量的平方项,其中 i
为对称阵P的互异特征值,且均为实数。 •二次型函数的标准形正定的充要条件式对称阵P的所有特征值
i 均大于零。
矩阵P的符号性质
设P为n×n的实对称阵,V(x)=xTPx为由P所决定的二次型函 数。 1)若V(x)正定,则P正定,记做P > 0; 2)若V(x)负定,则P负定,记做P < 0; 3)若V(x)半正定(非负定),则P半正定(非负定), 记做P ≥ 0; 4)若V(x)半负定(非正定),则P半负定(非正定), 记做P ≤ 0;
p2n
x2
pnn
xn
如果pij=pji,则称P为实对称阵。
二次型函数的标准型
对于二次型函数,V (x) xTPx 若P为实对称阵,则必 存在正交矩阵T,通过变换 x Tx ,使之化成
V (x) xTPx (Tx)T PTx xTT TPTx xT (T TPT)x
P T T PT
不稳定
分析下列系统的稳定性
小范围(局部) 稳定性 渐进稳定性
大范围(全局)
不稳定性
表面有摩擦
李雅普诺夫稳定性判别方法
第一法(间接法):先求解系统的微分方程,然后 根据解的性质来判断系统的稳定性。
第二法(直接法):构造李雅普诺夫函数,根据这 个函数的性质判断系统的稳定性。--适用与任何 复杂系统
1)V(x) > 0,则称V(x)为正定。例如V(x)=x12 +x22; 2)V(x) ≥ 0,则称V(x)为半正定(或非负定)。例如
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如

稳定性与李雅谱诺夫方法

稳定性与李雅谱诺夫方法

(3)
成立,则称 为系统的平衡状态。 对于一个任意系统,不一定都存在平衡状态,有时即使存在也未必是唯一的。
1.2
稳定性的几个定义
,有:
若用 那么
表示状态矢量
与平衡状态
的距离,用点集
表示以
为中心 为半径的超球体,
(4)
在n维状态空间中,有:
(5)
当 很小时,则称 为 的邻域。因此,若有 位于球 , 则意味着 域 内,便有: 同 理,若方程式(1)的解
为矩阵微分方程式的初始条件。
当选取正定矩阵
时,可由函
计算出
;再根据
是否具有连续、
对称、正定性来判别线性时变系统的稳定性。
证明
设李雅普诺夫函数取为:
式中,
为连续的正定对称矩阵。取V(x,t)对时间的全导数,得:
即 (5) 式中
由稳定性判据可知,当 一个正定对称矩阵,则 定的。
为正定对称矩阵时,若
也是
判别其稳定性的问题。例如高阶的非线性系统或时变系统。
4
4.1
李雅普诺夫方法在线性系统中的应用
线性定常连续系统渐近稳定判据
设线性定常连续系统为:
则平衡状态 证明书171页
为大范围渐阵A所有特征根均具有负实部等价于存在正定实对称矩阵P,使得ATP+PA<0
定理:线性连续定常系统
其平衡态xe=0大范围渐近稳定的充要条件为:任意给定正定实对称矩阵Q,若存在正定实对称矩阵P, 满足 则可取
Ax x
AT P PA Q
V ( x) xT Px
为系统的李雅谱诺夫函数。
运用时应注意: 1. 先选Q>0,之后代入李雅谱诺夫方程求取P,然后判定P的正定性,进而得出系统稳定与否的结论; 2. 通常选Q=I;

李雅普诺夫稳定性的基本定理

李雅普诺夫稳定性的基本定理

李雅普诺夫稳定性定理的直观意义(2/5)
右图所示动力学系统的平衡态在 一定范围内为渐近稳定的平衡态。
对该平衡态的邻域,可定义其
能量(动能+势能)函数如下:
h
f
x
v

mg
V 1 mv2 mgh 2
1 mx2 mg(x cos ) 0
2
渐近稳定 平衡态
其中x为位移, x’为速度,两者且选为状态变量。
其中P称为二次型函数V(x)的权矩阵,它为如下nn维实对称矩阵:
a11 P a12/2
...
a12 / 2 a22 ...
... a1n/2 ... a2n/2 ... ...
a1n/2 a2n/2 ... ann
二次型函数和对称矩阵的正定性(3/4)
二次型函数与一般函数一样,具有正定、负定、非负定、非 正定和不定等定号性概念。 二次型函数V(x)和它的对称权矩阵P是一一对应的。 因此,由二次型函数的正定性同样可定义对称矩阵P的正 定性。
矩阵正定性的判别方法(4/5)—例5-2
例3-2 试用合同变换法判别下列实对称矩阵P的定号性:
1 -1 -1
P -1 3
2

-1 2 5
解 先对对称矩阵P作合同变换如下
矩阵正定性的判别方法(5/5)—例5-2
1 -1 -1
1 0 -1
P -1 3
矩阵正定性的判别方法(1/5)
(3) 矩阵正定性的判别方法
判别矩阵的正定性(定号性)的方法主要有 塞尔维斯特判别法、 矩阵特征值判别法和 合同变换法。
下面分别介绍。
矩阵正定性的判别方法(2/5)--塞尔维斯特定理

第4章 稳定性与李雅普诺夫方法

第4章 稳定性与李雅普诺夫方法

lim x xe
t
则称系统的平衡状态xe渐近稳定的。
4.1 李雅普诺夫关于稳定性的定义
第二种:渐近稳定 x2 S( )
经典 理论 中的 稳定 就是 这里 所说 的渐 近稳 定

S( )

x0 xe x1
x
4.1 李雅普诺夫关于稳定性的定义
第三种:大范围渐近稳定
定义: 如果系统 x f ( x, t ) 对对整个状态空间中的任意初 始状态x0的每一个解,当t→,都收敛到xe,称系统的平 衡状态xe大范围渐近稳定。
RCx1 x1 0
电容器储存的电场能为
x1 (t ) x1 (0)e
2t

t RC
1 1 2 1 2 2 v( x ) CU c Cx1 Cx1 (0)e RC 0 2 2 2
v( x )
2 v( x ) 0 RC
4.3 李雅普诺夫第二法
3 几个稳定判据
4.2 李雅普诺夫第一法
4.2 李雅普诺夫第一法
绪论
本章结构 • 第4章 稳定性与李雅普诺夫方法
4.1 李雅普诺夫关于稳定性的定义 4.2 李雅普诺夫第一法 4.3 李雅普诺夫第二法 4.4 李雅普诺夫方法在线性系统中的应用 4.5 李雅普诺夫方法在非线性系统中的应用
4.3 李雅普诺夫第二法
f ( xe , t ) 0
由平衡状态xe在状态空间中所确定的点,称为平衡点
4.1 李雅普诺夫关于稳定性的定义
(1)平衡状态
4.1 李雅普诺夫关于稳定性的定义
(1)平衡状态
对于非线性系统,方程f ( xe,t) = 0的解可能有多个,即 可能有多个平衡状态。如

第四章稳定性与李雅普诺夫方法

第四章稳定性与李雅普诺夫方法

第四章稳定性与李雅普诺夫方法稳定性与李雅普诺夫方法是控制理论中的两个重要概念。

稳定性是控制系统分析中的基本问题之一,它描述了系统在受到干扰后能否回到平衡状态的能力。

李雅普诺夫方法是一种常用的稳定性分析方法,通过构造李雅普诺夫函数来判断系统的稳定性。

稳定性是控制系统设计中最基本的要求之一、一个稳定的系统能够在受到干扰后迅速恢复到平衡状态,而不会发生不可控制的震荡或不稳定的行为。

稳定性可以分为两种类型:渐近稳定性和有界稳定性。

渐近稳定性要求系统的状态能够收敛到一个稳定的平衡点,而有界稳定性要求系统的状态能够保持在一个有限范围内。

李雅普诺夫方法是一种通过构造李雅普诺夫函数来判断系统稳定性的方法。

李雅普诺夫函数是一个标量函数,它满足以下条件:1)对于任意非零的向量,李雅普诺夫函数的导数都是负的或零;2)当且仅当系统达到稳定时,李雅普诺夫函数的导数为零。

通过构造李雅普诺夫函数并分析其导数的符号,可以判断系统的稳定性。

在实际应用中,人们通常使用李雅普诺夫直接法、李雅普诺夫间接法和李雅普诺夫-克拉洛夫稳定性定理等方法来进行稳定性分析。

其中,李雅普诺夫直接法是最常用的方法之一,它通过选择一个合适的李雅普诺夫函数来判断系统的稳定性。

如果可以找到一个李雅普诺夫函数,使得该函数的导数对于所有非零的初始条件都是负的,则系统是渐近稳定的。

李雅普诺夫间接法是通过构造一个李雅普诺夫方程来判断系统的稳定性。

李雅普诺夫方程是一个微分方程,其中包含系统的状态向量和一个非负标量函数,满足一定的条件。

如果可以找到一个满足李雅普诺夫方程的解,并且该解是有界的,则系统是有界稳定的。

李雅普诺夫-克拉洛夫稳定性定理是李雅普诺夫方法的重要理论基础。

该定理表明,如果系统的李雅普诺夫函数存在并且连续可导,并且李雅普诺夫函数的导数满足一定的条件,则系统是渐近稳定的。

这个定理为李雅普诺夫方法的应用提供了重要的理论依据。

总之,稳定性与李雅普诺夫方法是控制理论中基础且重要的概念。

现代控制理论第四章-李雅普诺夫稳定性

现代控制理论第四章-李雅普诺夫稳定性

0s
0
1
s
0 1 1 1 1
(s
s 1 1)(s 1)
s
1 1
可见传递函数的极点 s 1位于s的左半平面,故系统
输出稳定。这是因为具有正实部的特征值2 1 被系统的零
点 s 1 对消了,所以在系统的输入输出特性中没被表现出
来。由此可见,只有当系统的传递函数W(s)不出现零、极
点对消现象,并且矩阵A的特征值与系统传递函数W(s)的
2020/3/22
6
现代控制理论
第4章 李亚普诺夫稳定性分析
4.2 李亚普诺夫第二法的概述
1892年俄国学者李亚普诺夫发表了《运动稳定性一般 问题》,最早建立了运动稳定性的一般理论,并把分析常 微分方程组稳定性的全部方法归纳为两类。第一类方法先 求出常微分方程组的解,而后分析其解运动的稳定性,称 为间接方法;第二类方法不必求解常微分方程组,而是提 供出解运动稳定性的信息,称为直接方法,它是从能量观 点提供了判别所有系统稳定性的方法。
即Xe f ( X e ,t) ,0 则把 叫X e做系统的平衡状态。
对于线性定常系统 X AX而言,其平衡状态满足
Xe AX e ,0 若A是非奇异矩阵,则只有 X e ,0 即对线性系 统而言平衡状态只有一个,在坐标原点;反之,则有无限
多个平衡状态。
对于非线性系统而言,平衡状态不只一个。
2020/3/22
9
现代控制理论
第4章 李亚普诺夫稳定性分析
3、李亚普诺夫第二法
李亚普诺夫第二法建立在这样一个直观的物理事实上:
如果一个系统的某个平衡状态是渐近稳定的,即
im
t
X
X,e 那么随着系统的运动,其储存的能量将随时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

李雅普诺夫稳定性方法
李雅普诺夫第一方法又称间接法,它是通过系统状态方程的解来判断系统的稳定性。

如果其解随时间而收敛,则系统稳定;如果其解随时间而发散,则系统不稳定。

李雅普诺夫第二方法又称直接法,它不通过系统状态方程的解来判断系统的稳定性,而是借助李雅普诺夫函数对稳定性作出判断,是从广义能量的观点进行稳定性分析的。

例如有阻尼的振动系统能量连续减小(总能量对时间的导数是负定的),系统会逐渐停止在平衡状态,系统是稳定的。

由于李雅普诺夫第一方法求解通常很烦琐,因此李雅普诺夫第二方法获得更广泛的应用。

李雅普诺夫第二方法的难点在于寻找李雅普诺夫函数。

迄今为止,尚没有通用于一切系统的构造李雅普诺夫函数的方法。

对于系统[]t ,f x x
= ,平衡状态为,0e =x 满足()0f e =x 。

如果存在一个标量函数()x V ,它满足()x V 对所有x 都具有连续的
一阶偏导数;同时满足()x V 是正定的;则 (1)若()x V 沿状态轨迹方向计算的时间导数()dt /)(dV V
x x = 为半负定,则平衡状态稳定;
(2) 若()x V 为负定,或虽然()x V 为半负定,但对任意初始状
态不恒为零,则平衡状态渐近稳定。

进而当∞→∞→)(V x x 时,,则系统大范围渐近稳定;
(3) 若()x V
为正定,则平衡状态不稳定。

判断二次型
x x x P )(V τ=的正定性可由赛尔维斯特
(Sylvester )准则来确定,即正定(记作V(x)>0)的充要条件为P 的所有主子行列式为正。

如果P 的所有主子行列式为非负,为正半定(记作V(x)≥0);如果-V(x)为正定,则V(x)为负定(记作V(x)<0);如果-V(x)为正半定,则V(x)为负半定(记作V(x)≤0)。

例:
[]正定。

则)(V 01121412
110,04
1110,010x x x 1121412110x x x )(V 321321x x >---->>----=⎥⎥⎦
⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡ 例:
)x x (x x x )
x x (x x x 22212122221121+--=+-=
(0,0)是唯一的平衡状态。

设正定的标量函数为
∞→∞→<+-=+--++-=+=∂∂+∂∂=+=)V(,且当0
)x 2(x )]x (x x x [2x )]x (x x [x 2x x 2x x
2x dt
dx x V dt dx x V )(V x x )V(2222122212122221121221122112
2
21x x x x
故系统在坐标原点处为大范围渐近稳定。

相关文档
最新文档