高中数学零起点(艺术生专用)---集合与简易逻辑(-学生版)

合集下载

2020高考数学艺体生文化课第一章集合、逻辑联结词、复数、程序框图测试第2节命题及简要逻辑课件

2020高考数学艺体生文化课第一章集合、逻辑联结词、复数、程序框图测试第2节命题及简要逻辑课件

12.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根,则 下列命题为真命题的是( )
A.p∧﹁q B.﹁p∧q C.﹁p∧﹁q D.p∧q
【答案】 A 【解析】 因为命题p为真命题,命题q为假命题,所以A选项正确.
13.(2015浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( ) A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0
给出了四个命题:
①p∨q
②¬p∨q ③p∧¬q ④¬p∧¬q
这四个命题中,所有真命题的编号是( )
A.①③
B.①②
C.②③
D.③④
【答案】 D 【解析】 写全称命题的否定时,要把量词∀改为∃,并且否定结论, 注意把“且”改为“或”.
14.已知命题p:“∃x0∈R,使得x02+2ax0+1<0成立”为真命题,则实 数a满足 ( )
A.[-1,1)
B.(-∞,-1)∪(1,+∞)
C.(1,+∞)
D.(-∞,-1)
【答案】 B 【解析】 “∃x0∈R, x02+2ax0+1<0”是真命题, 即不等式x2+2ax+1<0有解,
∴Δ=(2a)2-4>0,得a2>1,即a>1或a<-1.
15.已知命题“x R, x2 5x 15 a 0”的否定为假命题,则实
2
数a的取值范围是
.
【答案】(5 , ) 6

集合与简易逻辑知识点总结- 高三数学一轮复习

集合与简易逻辑知识点总结- 高三数学一轮复习

知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。

高一数学《集合与简易逻辑》教案

高一数学《集合与简易逻辑》教案

高一数学《会合与简略逻辑》教学设计教材:逻辑联络词(1)目的:要修业生认识复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联络词,并能由简单命题组成含有逻辑联络词的复合命题。

过程:一、提出课题:简单逻辑、逻辑联络词二、命题的观点:例: 12 ① 3是12的约数② 0.5是整数③定义:能够判断真假的语句叫命题。

正确的叫真命题,错误的叫假命题。

如:①②是真命题,③是假命题反例: 3 是 12 的约数吗? 5 都不是命题不波及真假 ( 问题 ) 没法判断真假上述①②③是简单命题。

这类含有变量的语句叫开语句(条件命题)。

三、复合命题:1.定义:由简单命题再加上一些逻辑联络词组成的命题叫复合命题。

2.例: (1)10 能够被 2 或 5 整除④ 10 能够被 2 整除或 10能够被 5 整除(2) 菱形的对角线相互菱形的对角线相互垂直且菱形的第 1页垂直且均分⑤角相互均分(3)0.5非整数⑥非“ 0.5是整数”察:形成观点:命在加上“或”“且”“非” 些成复合命。

3.其,有些观点前方已碰到如:或:不等式x2x60 的解集 { x | x2或x3 }且:不等式x2x60 的解集 { x | 23 }即{ x | x2且x3 }四、复合命的组成形式假如用 p, q, r, s ⋯⋯表示命,复合命的形式接触的有以下三种:即: p 或 q ( 如④) 作 pqp 且 q ( 如⑤) 作 pq非 p ( 命的否认 ) ( 如⑥) 作 p小: 1.命 2 .复合命 3 .复合命的组成形式第 2页。

高考数学专题1 集合与简易逻辑

高考数学专题1 集合与简易逻辑

专题1 集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.三.知识要点(一)集合1.集合的基本概念(1)集合的描述性定义:某些指定的对象集在一起就成为一个集合.认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法集合的一般表示方法主要有(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:; ;; ,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x∈R)点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为y y是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B 是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是x x是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是x x是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈A x∈B,则A B(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φ A显然:任何一个集合都是自身的子集, 即A A.(II)集合的相等:若A B且B A,则A=B.(III)真子集定义:若A B且A≠B;则A B(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义设I是一个集合,A I,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且x A}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x ∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x ∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且x B;x∈B且x A;x∈A且x∈B.(III)基本运算性质①“交”的运算性质A∩A=A;A∩φ=φ;A∩B= B∩A;A∩ A =φ;(A∩B)∩C= C∩(A∩B)= A∩B∩C②“并”的运算性质A∪A=A;A∪φ=A;A∪B= B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)= A∪B∪C③交.并混合运算性质A∪(B∩C)= (A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=AA∪(A∩B)=A( IV )重要性质①A∩B=A A B; A∪B=B A B;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x| x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩ B;B∩ A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q”p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为原命题:若p则q;逆命题:若q则p;否命题:若p则q逆否命题:若q则p.(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.2.充分条件与必要条件(I)定义:若p q则说p是q的充分条件,q是p的必要条件;若p q则说p 是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若p q则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则p Q;(3)设,则M N;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知M N,故命题正确.(4)不正确.反例:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.揭示:一般地,设函数f(x),g(x)的定义域依次为P、Q,且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=B B A即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0 a=1或a=7 当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0x=-12或x=-4此时B={-12,-4} A.(III)注意到B A,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)<0 a<-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素 B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若A B,试求实数a的取值范围.解:A={x|1<x<3}=(1,3)注意A B,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x, x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤g min(x) a≤-1 ②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(1)当f(x)在给定区间上有最值时a≤f(x)恒成立a≤f min(x)a≥f(x)恒成立a≥f max(x)(2)当f(x)在给定区间上没有最值时a≤f(x)恒成立a≤f(x)的下确界a≥f(x)恒成立 a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若是q的必要而不充分条件,求实数m的取值范围.分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x<-2或x>10;q:x<1-m或x>1+m(m>0).令A={x|x<-2或x>10},B={x| x<1-m或x>1+m(m>0)},则由是q的必要而不充分条件B A或m9∴所求实数m的取值范围为[9,+∞).点评:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的又一基本策略.例5.设有两个命题,p:函数f(x)=+2ax+4的图像与x轴没有交点;Q:不等式恒成立,若“P或Q”为真,“P且Q”为假,则实数a的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)分析:(ⅰ)化简或认知P、Q:函数f(x)=+2ax+4的图像与x轴没有交点,△=-2<a<2∴P: -2<a<2 ①又不等式恒成立a小于的最小值②+≥=2 ③∴由②、③得 a﹤2即Q: a﹤2(ⅱ)分析、转化已知条件“P或Q”为真P、Q中至少有一个为真a﹤2 ④“P且Q”为假P、Q中至少有一个为假或为真a≤-2或a≥2 ⑤于是由④⑤得,同时满足上述两个条件的a的取值范围是 a≤-2∴实数a的取值范围为(-∞,-2].例6. 若p:-2﹤m﹤0,0﹤n﹤1;q:关于x的方程有两个小于1的正根,试分析p是q的什么条件?分析:在这里,q是关于x的二次方程有两个小于1的正根的条件,为便于表述,设该方程的两个实根为,且.然后根据韦达定理进行推理.解:设,为方程的两个实根,且,则该方程的判别式为:△=又由韦达定理得∴当0﹤﹤1时,由②得-2﹤m﹤0,0﹤n﹤1即 q p ③另一方面,若在p的条件下取m=-1,n=0.75,则这一关于x的二次方程的判别式△===1-3﹤0,从而方程无实根∴p q ④于是由③④得知,p是q的必要但不充分的条件.点评:若令f(x)=,则借助二次函数y=的图像易得关于x的二次方程有两个小于1的正根的充要条件为在这里容易产生错误结论为:方程x2+mx+n=0有两个小于1的正根的充要条件是注意到这里的p由※式中部分条件构造而成,它关于m、n的限制当然更为宽松.五.高考真题1.设I为全集,S1,S2,S3是I的三个非空子集,且S1∪S2∪S3=I,则下面判断正确的是()A.S1∩(S2∪S3)=φ B. S1(S2∩S3)C.S1∩S2∩S3=φ D. S1(S2∪S3)分析:对于比较复杂的集合运算的问题,一要想到利用有关结论化简,二要想到借助特取法或文氏图筛选.解法一(直接法):注意到A∩B=(A∪B),A∪B=(A∩B)及其延伸,∴S1∩S2∩S3=(S1∪S2∪S3)=I=φ,故选C解法二(特取法):令S1={1,2},S2={2,3},S3={1,3}I={1,2,3}则S1={3}S2={1}S3={2}由此否定A、B;又令S1=S2=S3={a},则I={a},S2=S3=φ,由此否定D.故本题应选C2.已知向量集合,则M∩N等于()A.{(1,1)} B. {(1,1),(-2,-2)} C .{(-2,-2)} D.φ分析:首先考虑化生为熟.由向量的坐标运算法则得,又令=(x,y),则有,消去λ得4x-3y+2=0,∴M={(x,y)|4x-3y+2=0,x,y∈R}.同理={(x,y)|5x-4y+2=0,x,y∈R}∴M∩N=={(-2,-2)},∴本题应选C点评:从认知集合切入,适时化生为熟,乃是解决集合问题的基本方略.3.设集合I={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是()A. m>-1,n<5 B m<-1,n<5 C m>-1,n>5 D m<-1,n>5分析:由题设知P(2,3) ∈A,且P(2,3)∈ B (※)又B={(x,y)|x+y-n>0},∴由(※)得,故本题应选A4.设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B 1个 C 2个 D 无数多个分析:从认知集合切入.这里的集合N为函数f(x),(x∈M)的值域.注意到f(x)的表达式中含有|x|,为求f(x)的值域,先将f(x)化为分段函数的形式,以便于化整为零,逐段分析.∴当x>0时,f(x)<0;当x=0时,f(x)=0;当x<0时,f(x)>0.由此可知,当x≠0时,f(x) (x∈M)的值域与定义域M不可能相等;又当x=0时,f(x)的定义域为{0},故不存在a<b使区间[a,b]仅含元素0,因此,本题应选A.点评:解决分段函数问题的基本策略:分段考察,综合结论.在这里,认知集合N仍是解题成败的关键所在.5.函数,其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P}f(M)={y|y=f(x),x∈M},给出下列四个判断:①若P∩M=φ,则f(P)∩f(M)= φ;②若P∩M≠φ,则f(P)∩f(M)≠φ;③若P∪M=R,则f(P)∪f(M)= R;④若P∪M≠R,则f(P)∪f(M)≠ R其中正确判断有()A. 1个 B 2个 C 3个 D 4个分析:首先认知f(P),f(M):f(P)为函数y=f(x)(x∈P)的值域;f(M)为函数y=f(x)(x∈M)的值域.进而考虑仿照第1题,从构造反例切入进行筛选.(1)取P={x|x≥0},M={x|x<0},则f(P)={x|x≥0}, f(M)={x|x>0}此时P∩M=φ,P∪M=R,但f(P)∩f(M) ≠φ,f(P) ∪f(M)≠ R由此判断①.③不正确(2)当P∩M≠φ时,则由函数f(x)的定义知P∩M={0}(否则便由f(x)的解析式导出矛盾),所以0∈f(P),0∈f(M),从而f(P)∩f(M)≠φ.由此判断②正确.(3)当P∪M≠R时,若0P∪M,则由函数f(x)的定义知,0f(P) ∪f(M)若存在非零x0P∪M, (※),易知x0f(P)当x0f(M)时,有x0f(P)∪f(M);当x0∈f(M)时,则易知-x0∈M.注意到这里-x0≠0,所以-x0P,从而-x0f(P).又∵x0M,∴-x0f(M),∴-x0f(P)∪f(M) (※※)∴由①.②知当P∪M≠R时,一定有f(P) ∪f(M)≠ R.故判断④正确.点评:认知f(P).f(M)的本质与特殊性,是本题推理和筛选的基础与保障.6.设全集I=R,(1)解关于x的不等式|x-1|+a-1>0(a∈R);(2)设A为(1)中不等式的解集,集合,若(A)∩B恰有3个元素,求a的取值范围.分析:(1)原不等式|x-1|>1-a,运用公式求解须讨论1-a的符号.(2)从确定 A与化简B切入,进而考虑由已知条件导出关于a的不等式(组),归结为不等式(组)的求解问题.解:(1)原不等式|x-1|>1-a当1-a<0,即a>1时,原不等式对任意x∈R成立;当1-a=0,即a=1时,原不等式|x-1|>0x≠1;当1-a>0,即a<1时,原不等式x-1<a-1或x-1>1-ax<a或x>2-a于是综合上述讨论可知,当a>1时,原不等式的解集为R;当a≤1时,原不等式的解集为(-∞,a)∪(2-a,+ ∞)(2)由(1)知,当a>1时,A=φ;当a≤1时, A={x|a≤x≤2-a}注意到==∴∴(A)∩B恰有3个元素A恰含三个整数元素.(A有三个元素的必要条件)(对A=[a,2-a]的右端点的限制)(对A=[a,2-a]的左端点的限制)故得-1<a≤0,∴所求a的取值范围为.点评:不被集合B的表象所迷惑,坚定从化简与认知集合B切入.当问题归结为A恰含三个整数时,寻觅等价的不等式组,既要考虑A含有三个整数的必要条件(宏观的范围控制),又要考虑相关区间的左\右端点的限制条件(微观的左右“卡位”),两方结合导出已知条件的等价不等式组.。

高中数学知识汇总 第一章 集合与简易逻辑

高中数学知识汇总 第一章 集合与简易逻辑

第一章 集合与简易逻辑1.1 集合1)常用的数集有以下几类:2)集合的特征:确定34)集合的表示方法:。

5)集合的分类:有限集、无限集。

1.2 子集、全集、补集1)子集A B ⊂:集合A 包含于集合B 或集合B 包含集合A ,我们也说集合A 是集合B 的子集。

一般地:a :空集是任何集合的子集; b :任何集合是它本身的子集。

B A ≠⊂:集合A 真包含于集合B 。

一般地:空集是任何非空集合的真子集。

2)全集与补集S 是全集,A 是S 的一个子集,S C A 是补集(或余集),{,}S C A x x S x A =∈∉。

1.3 交集、并集交集:{,}A B x A x B ⋂=∈∈且。

并集:{,}A B x A x B ⋃=∈∈或。

交集并集1.4 含绝对值的不等式的解法1){}(0)x a a x a a <=-<<<, 2){,}(0)x a x a x a a >=<-><或。

1.5 一元二次不等式解法1)求根; 2)画图。

1.6 逻辑联结词1)与命题:2)或命题3)非命题:1.7 四种命题(1)四种命题的形式:1)原命题:若p 则q ; 2)逆命题:若q 则p ; 3)否命题:p ⌝则q ⌝; 4)逆否命题:若q ⌝则p ⌝; (2)四种命题的相互关系:(3)原命题与其他三个命题的真假关系: 1)原命题为真,它的逆命题不一定为真; 2)原命题为真,它的否命题不一定为真; 3)原命题为真,它的逆否命题一定为真;。

高中数学竞赛讲义第一章 集合与简易逻辑

高中数学竞赛讲义第一章 集合与简易逻辑

第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。

规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ∉∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。

章集合与简易逻辑(高中数学竞赛标准教材)

章集合与简易逻辑(高中数学竞赛标准教材)集合与简易逻辑一、基础知识定义1一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。

例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。

集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。

例如{有理数},分别表示有理数集和正实数集。

定义2子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。

规定空集是任何集合的子集,如果A是B的子集,B 也是A的子集,则称A与B相等。

如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。

定义3交集,定义4并集,定义5补集,若称为A在I中的补集。

定义6差集,。

定义7集合记作开区间,集合记作闭区间,R记作定理1集合的性质:对任意集合A,B,c,有:;【证明】这里仅证、,其余由读者自己完成。

若,则,且或,所以或,即;反之,,则或,即且或,即且,即若,则或,所以或,所以,又,所以,即,反之也有定理2加法原理:做一件事有类办法,类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。

定理3乘法原理:做一件事分个步骤,步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。

二、方法与例题.利用集合中元素的属性,检验元素是否属于集合。

例1设,求证:;;若,则[证明]因为,且,所以假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以设,则。

高三数学第二轮专题复习系列(1)-- 集合与简易逻辑

高三数学第二轮专题复习系列(1)-- 集合与简易逻辑一、【重点知识结构】二、【高考要求】1. 理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的述语和符号,能正确地表示一些较简单的集合. 2. 理解|ax+b |<c,|ax+b |>c(c>0)型不等式的概念,并掌握它们的解法.了解二次函数、一元二次不等式及一元二次方程三者之间的关系,掌握一元二次不等式及简单分式不等式的解法. 3. 理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件的意义和判定.4. 学会运用数形结合、分类讨论的思想方法分析和解决有关集合问题,形成良好的思维品质;学会判断和推理,解决简易逻辑问题,培养逻辑思维能力. 三、【高考热点分析】集合与简易逻辑是高中数学的重要基础知识,是高考的必考内容.本章知识的高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用、判断命题的真假、四种命题的关系、充要条件的判定等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 四、【高考复习建议】概念多是本章内容的一大特点,一是要抓好基本概念的过关,一些重点知识(如子、交、并、补集及充要条件等)要深刻理解和掌握;二是各种数学思想和数学方法在本章题型中都有较好体现,特别是数形结合思想,要善于运用韦氏图、数轴、函数图象帮助分析和理解集合问题. 五、【例 题】集合 集合的基本概念 集合与集合的关系 集合的应用 集合及元素 集合分类及表示 子集、包含与相等交集、并集、补集 解含绝对值符号、一元二次、简单分式不等式 简易逻辑命题 逻辑联结词 简单命题与复合命题四种命题及其关系 充分必要条件【例1】 设}13|{},13|{,,22++==+-==∈y y b b B x x a a A R y x ,求集合A 与B 之间的关系。

高考数学 艺考生文化课 第一章 专题一 集合与逻辑用语课件.pptx

7.集合U={1,2,3,4,5,6},S={1,4,5},T={2,3,4},则S∩(∁UT)等于
()
A.{1,4,5,6} B.{1,5}
C.{4}
B 【D解.{1析,2】,3 ,4由,5题} 意得痧UT {1,5, 6},所以S ( UT ) {1,5}, 故选B.
8.已知集合P={x|x ≤1},M={a},若P∪M=P,则a的取值范围是
5.已知集合A={(x,y)|x,y为实数,且x2+y2=1},集合
B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为 ( )
A.4
B.3
C.2
D.1
C 【解析】 由题意可知, A B的元素个数
即为圆x2 y2 1与直线x y 1的交点的个数,
如图可知圆与直线有两个交点.故选C.
() 2
A.p为真 B.﹁q为假 C.p∧q为假 D.p∨q为真
C 【解析】 Q 函数y sin 2x的最小正周期为 ,
命题p为假命题;
Q 函数y cos x的图象的对称轴所在直线方程为x k , k Z,
命题q为假命题, 由真值表可得p q为假命题.故选C.
22.命题“若p则q”的否命题是 ( )
.
{x | 1 x 1} 【解析】 集合A {x | x 1}, B {x | 1 x 1},
2
2
所以A B {x | 1 x 1}. 2
16.集合A={x∈R||x-2|≤5}中最小整数是
.
3 【解析】 集合A {x | 3 x 7},所以集合A中最小整数是 3.
17.“x>0”是“3 x2 0 ”成立的 ( )
24.下列命题是真命题的为 ( )

集合和简易逻辑

集合和简易逻辑
集合是由一组确定的元素组成的。

集合中的元素是无序的,且每个元素在集合中只能出现一次。

集合可以以各种形式表示,例如用大括号{}包围元素列表,或使用特定的集合符号表示。

例如,给定两个集合A和B,可以定义集合的交集(表示为A∩B)为包含同时属于A和B的所有元素的集合。

集合的并集(表示为A∪B)是包含属于A或B (或两者)的所有元素的集合。

集合的差集(表示为A-B)是指所有属于A但不属于B的元素的集合。

简易逻辑是一种基于真和假的推理系统。

它使用逻辑运算符(如与、或、非)对命题进行组合,并根据预定义的逻辑规则推导出其他命题。

简易逻辑中的命题可以是真(真命题)或假(假命题)。

逻辑运算符包括:
- 与运算(表示为∧或&&):只有在两个命题都为真时,整个表达式才为真。

- 或运算(表示为∨或):只要有一个命题为真,整个表达式就为真。

- 非运算(表示为¬ 或!):将真命题变为假命题,将假命题变为真命题。

逻辑推理可以通过应用真值表来确定整个逻辑表达式的真假。

真值表列出了逻辑表达式中各个命题的真值,并根据逻辑运算符确定整个表达式的真值。

集合和简易逻辑在数学和计算机科学中都有广泛的应用,用于构建和解决各种问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学零起点(艺术生专用)---集合与简易逻辑(-学生版)
2 / 16
第一节 集合与集合运算
1.设全集U={1,2,3,4,5,6,7,8},集合=A {2,3,4,5},=B {2,4,6,8},则集合A B 等于
( )
A {3,5}
B {1,2,3,4,5,7}
C {6,8}
D {1,2,4,6,7,8} 2.若集合
{
}0
|2≤=x x A ,则下列结论中正确的是
( )
A A=0
B 0A ⊆
C ∅=A
D 0 A 3.集合
}
,02{2R x a x x x M ∈=-+=,且φM ,则实数a 的范围是( )
A、1-≤a
B、1≤a
C、1-≥a
D、1≥a
4.(2012年北京东城区模拟)设全集U R,若集合P=,Q=,则()A.Q P B. P Q C.
P C
U Q D.Q C
U
P
5.(2012届淮南二中月考)设U=R,A={x|x>0},
B={x|x>1},则A∩∁
U
B=( )
A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}
B
6.(06安徽文)设全集{1,2,3,4,5,6,7,8}
U=,集合{1,3,5}
S=,{3,6}
T=,则
3 / 16
4 / 16
()
U C S T U 等于( )
.A ∅
.B {2,4,7,8} .C {1,3,5,6} .D {2,4,6,8}
6.已知集合A ={x|x <3},B ={1,2,3,4},则(∁R A )∩B =________. (∁R A )∩B ={3,4}
7.(2011年高考课标卷)已知集合M =
{0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )
A .2个
B .4个
C .6个
D .8个 B
8.(2012年郑州模拟)已知集合A ={2,3},B ={x|mx -6=0},若B ⊆A ,则实数m 的值为( )
5 / 16
A .3
B .2
C .2或3
D .0或2或3 D
9.(2011年高考江西卷)若全集U =

⎨⎧⎭⎬⎫1,2,3,4,5,6,M =⎩⎨⎧⎭⎬⎫2,3,N =⎩⎨⎧⎭
⎬⎫1,4,则集
合⎩
⎨⎧⎭
⎬⎫5,6等于( )
A .M ∪N
B .M∩N
C .(∁
U
M)∪(∁U N) D .(∁U M)∩(∁U N) D
10.(2011年高考辽宁卷)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N ∩∁I M =∅,则M ∪N =( )
A .M
B .N
C .I
D .∅ A
6 / 16
11.(2011年高考湖南卷)设全集U =M ∪N =

⎨⎧⎭⎬⎫1,2,3,4,5,M∩∁U N =⎩⎨⎧⎭
⎬⎫2,4,则N =( )
A.⎩
⎨⎧⎭
⎬⎫1,2,3 B.⎩
⎨⎧⎭
⎬⎫1,3,5 C.⎩
⎨⎧⎭
⎬⎫1,4,5 D.⎩
⎨⎧⎭
⎬⎫2,3,4 B 12.(2012年太原模拟)已知集合A =B ={0,1},集合C ={u|u =xy ,x ∈A ,y ∈B},则集合C 的子集个数是( )
A .4
B .7
C .8
D .16 A
13.(2012年合肥质检)已知A ={1,2,3},B ={x ∈R|x 2
-ax +1=0,a ∈A},则A∩B=B 时a 的值是( )
A .2
B .2或3
C .1或
7 / 16
3 D .1或2 D
14.(2011年高考天津卷)已知集合A ={x ∈R||x -1|<2},Z 为整数集,则集合A∩Z 中所有元素的和等于
________.
3
15.(07湖北文)若{|U x x =是小于9的正整数},{}1234A =,
,,,{}
3456B =,,,,则U
U
C A C B =I
.A {}12,
.B {}34,
.C {}56,
.D {}78,
16.(06重庆)已知{}1,2,3,4,5,6,7U =,{}{}2,4,5,7,3,4,5A B ==,则
()()U U C A C B U =( ).A {}6,1 .B {}5,4 .C {}7,5,4,3,2
.D {7,6,3,2,1}
第二节命题与四种条件
1.已知a,b都是实数,那么“a2>b2”是“a>b” 的( )
A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件
2.(2012年北京西城区期末)命题“若a>b,则a+1>b”的逆否命题是( )
A.若a+1≤b,则a>b B.若a+1<b,则a >b
C.若a+1≤b,则a≤b D.若a+1<b,则a
8 / 16
<b
3.已知四个命题A、B、C、D,若A是B的充分不
必要条件,C是B的必要不充分条件,D是C的充
分必要条件,试问D是A的________条件(填:充
分不必要、必要不充分、充要、既不充分也不必要).
4.已知p:-4<x-a<4,q:(x-2)(x-3)<0
且q是p的充分条件,求a的取值范围.
5.命题“若m>1,则m>-1”以及它的逆命题、
否命题、逆否命题中,假命题的个数为( )
A.0 B.2 C.3 D.4
6.已知a∈R,则“a>1”是“a>1”的( )
9 / 16
A.既不充分也不必要条件 B.充要条件C.充分不必要条件 D.必要不充分条件7.对于a,b,c,“a>b”是“ac2>bc2”的________条件.
8.(2011年高考四川卷)“x=3”是“x2=9”的( )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
9. (2011年高考重庆卷)“x<-1”是“x2-1>0 ”的( )
A.充分而不必要条件 B.必要而不充分条件
10 / 16
C.充要条件 D.既不充分也不必要条件
A
10. (2012年福建模拟)已知p:|x|<2;q:x2-x-2<0,则 p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
A
11.(2012届浏阳一中月考)已知条件p:|x-
4|≤6;条件q:(x-1)2-m2≤0(m>0),若p是q 的充分不必要条件则m的取值范围是( )
11 / 16
A.[21,+∞)B.[9,+∞)
C.[19,+∞)
D.(0,+∞)
B
简单的逻辑连接词
全称量词与存在量词
1.命题“∃x∈R,x2-2x+4>0”的否定是( )
A.∃x∈R,x2-2x+4<0 B.∀x∈R,x2-2x+4>0
C.∀x∈R,x2-2x+4≥0 D.∀x∈R,x2-2x+4≤0
12 / 16
2.(2012年威海模拟)如果命题“綈(p∨q)”是假命题,则下列说法正确的是( )
A.p、q均为真命题 B.p、q中至少有一个为真命题
C.p、q均为假命题 D.p、q中至多有一个为真命题
3.(2012年临沂模拟)已知命题p:∀x∈R,x2+
3x+m>0,则“m<9
4
”是“命题p为假命题”的
( )
A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件
13 / 16
4.(2012年连云港模拟)命题p:∀x∈R,x2+1≥2x,则綈p:_______.
5.若命题“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是________.
6.命题“∀x>0,x2+x>0”的否定是( )
A.∃x
0>0,x2
+x
>0 B.∃x
>0,x2
+x
≤0
C.∀x>0,x2+x≤0 D.∀x≤0,x2+x >0 B
7.下列四个命题中是真命题的为( )
A.∃x
0∈Z,1<4x
<3 B.∃x
∈Z,5x
+1=0
C.∀x∈R,x2-1=0 D.∀x∈R,x2+x+2>0 D
14 / 16
8.若命题“∃x
0∈R,x2
+ax
+1<0”是真命题,
则实数a的取值范围是________. a>2或a<-2
9.(2012年山西四校联考)已知p:∃x∈R,mx2+1≤0,q:∀x∈R,x2+mx+1>0,若p∨q为假命题,则实数m的取值范围为( )
A.m≥2 B.m≤-2 C.m≤-2或m≥2 D.-2≤m≤2 A
10.(2011年高考北京卷)若p是真命题,q是假命题,则( )
A.p∧q是真命题B.p∨q是假命题C. p是真命题 D. q是
15 / 16
真命题 D 11.(2011年高考安徽卷)命题“所有能被2整除
的整数都是偶数”的否定是( )
A.所有不能被2整除的整数都是偶数
B.所有能被2整除的整数都不是偶数
C.存在一个不能被2整除的整数是偶数
D.存在一个能被2整除的整数不是偶数
D
12.命题“∀x∈R,x3-x2+1≤0”的否定是( ) A.不存在x∈R,x3-x2+1≤0
B.∃x∈R,x3-x2+1≤0
C.∃x∈R,x3-x2+1>0
D.∀x∈R,x3-x2+1>0 C
16 / 16。

相关文档
最新文档