上海三门中学数学分式填空选择(培优篇)(Word版 含解析)
八年级分式填空选择(篇)(Word版 含解析)

解:∵ ,
∴ ,
∴ ,
∴
故答案为:
【点睛】
此题主要考查了分式化简求值,关键是掌握代入求值时,有直接代入法,整体代入法等常用方法.
3.当 ____________时,解分式方程 会出现增根.
【答案】2
【解析】
分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.
试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出 的值.
若
求:A、B的值:
求: 的值.
【答案】
【解析】
【分析】
(1)根据题目的叙述的方法即可求解;
(2)①把等号右边的式子通分相加,然后根据对应项的系数相等即可求解;
②根据 把所求的每个分式化成两个分式的差的形式,然后求解.
详解:(1)x÷[1÷( + )]
=x÷[1÷ ]
=x÷
= .
答:甲单独完成的时间是乙丙合作完成时间的 倍;
(2)由题意得x= ①,y= ②,z= ③.
由①得a= + ,∴a+1= + +1,∴ = = ;
同理,由②得 = ;
由③得 = ;
∴ = + + = =1.
点睛:本题主要考查分式方程在工程问题中的应用及代数式求值.工程问题的基本关系式为:工作总量=工作效率×工作时间.注意两人合作的工作效率等于两人单独作的工作效率之和.本题难点在于将列出的方程变形,用含有x、y、z的代数式分别表示 、 、 的值.
解:(1)设原来平均每公顷产量是x吨,则现在平均每公顷产量是(x+0.8)吨,
根据题意可得:
解得:x=4,
八年级数学上册分式填空选择(篇)(Word版 含解析)

八年级数学上册分式填空选择(篇)(Word 版 含解析) 一、八年级数学分式填空题(难) 1.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++÷+有意义,则x 的取值范围是x ≠﹣2且x ≠0.其中正确的是________【答案】①③【解析】【分析】根据分式有意义的条件对各式进行逐一分析即可.【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21a a +都有意义; ②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误;③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确; ④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++÷+有意义,则x 的取值范围是即20010x x x x⎧⎪+≠⎪≠⎨⎪+⎪≠⎩,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③.【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.2.若关于x 的分式方程=3的解是负数,则字母m 的取值范围是 ___________ .【答案】m>-3且m≠-2【解析】【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是负数”建立不等式求m 的取值范围.【详解】原方程整理得:2x-m=3(m+1),解得:x=-(m+3),∵x<0,∴-(m+3)<0,即m>-3,∵原方程是分式方程,∴x≠-1,即-(m+3)≠-1,解得:m≠-2,综上所述:m 的取值范围是m>-3,且m ≠-2,故答案为:m>-3,且m ≠-2【点睛】此题考查了分式方程的解,解答本题时,易漏掉分母不等于0这个隐含的条件,熟练掌握解分式方程的方法及分式有意义的条件是解题关键.3.若32a b =,则a b a -的值为____________ 【答案】12-【解析】【分析】利用32a b =,在a b a -中,将b 用a 表示,约掉a 得到结果. 【详解】∵32a b =,∴3=2a b 代入a b a-得: 3122aa a -=- 故答案为:12-【点睛】本题考查分式的运算,解题关键是运用已知字母间的关系,将分式中的字母简化,以至可约分求得.4.若关于x 的分式方程333x a x x +--=2a 无解,则a 的值为_____. 【答案】1或12【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a (x-3),整理得:(1-2a )x=-3a ,当1-2a=0时,方程无解,故a=12;当1-2a≠0时,x=312aa--=3时,分式方程无解,则a=1,故关于x的分式方程333x ax x+-+=2a无解,则a的值为:1或12.故答案为1或12.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.5.若关于x的分式方程7311mxx x+=--无解,则实数m=_______.【答案】3或7.【解析】解:方程去分母得:7+3(x﹣1)=mx,整理得:(m﹣3)x=4.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7.综上所述:∴m的值为3或7.故答案为3或7.6.已知实数a,b,c满足a+b=ab=c,有下列结论:①若c≠0,则=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a,b,c中只有两个数相等,则a+b+c=8.其中正确的是____.(把所有正确结论的序号都选上)【答案】①③④【解析】试题分析:在a+b=ab的两边同时除以ab(ab=c≠0)即可得,所以①正确;把a=3代入得3+b=3b=c,可得b=,c=,所以b+c=6,故②错误;把 a=b=c代入得,所以可得c=0,故③正确;当a=b时,由a+b=ab可得a=b=2,再代入可得c=4,所以a+b+c=8;当a=c时,由c=a+b可得b=0,再代入可得a=b=c=0,这与a、b、c中只有两个数相等相矛盾,故a=c这种情况不存在;当b=c时,情况同a=c,故b=c这种情况也不存在,所以④正确.所以本题正确的是①③④.考点:分式的基本性质;分类讨论.7.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 【答案】2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-3=x-1,解得x=m-2,∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m >2且m≠3,故答案为m >2且m≠3.8.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.【答案】28【解析】设这种电子产品的标价为x 元,由题意得:0.9x −21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.9.方程的解是_____________.【答案】x =2【解析】试题分析:此题是分式方程的解法问题,先把方程两边同乘以x-3,化为整式方程为2-x=(x-3)+1,再解这个整式方程求得x=2,然后把x=2代入x-3≠0,检验出x=2是原分式方程的解即可.故答案为:x=2.点睛:解分式方程的步骤为:1、确定最简公分母;2、方程两边同乘以最简公分母,化为整式方程;3、解整式方程;4、代入检验,确定是否为分式方程的解.10.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.【答案】1209020x x=+【解析】【分析】设小江每小时分拣x个物件,分别表示出小李和小江分拣所用的时间,最后再根据“小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同”体现的等量关系即可列出方程.【详解】解:设小江每小时分拣x个物件,根据题意得:1209020x x=+.故答案为1209020x x=+.【点睛】本题考查了分式方程的应用,明确题意、确定等量关系是解答本题的关键.二、八年级数学分式解答题压轴题(难)11.已知:方程﹣=﹣的解是x=,方程﹣=﹣的解是x=,试猜想:(1)方程+=+的解;(2)方程﹣=﹣的解(a、b、c、d表示不同的数).【答案】(1)x=4;(2)x=.【解析】通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.解:解方程﹣=﹣,先左右两边分别通分可得:,化简可得:, 整理可得:2x =15﹣8, 解得:x =,这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)]; 解方程﹣=﹣,先左右两边分别为通分可得: ,化简可得:, 解得:x =, 这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差. (1)先把方程分为两边差的形式:方程﹣=﹣,由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8, 分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2, 所以方程的解为x ==4;(2)由所总结的规律可知方程解的分子为:cd ﹣ab ,分母为(a +b )﹣(c +d ), 所以方程的解为x =.12.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b =-≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x+的最大值为__________. (2)当0x >时,求2316x x y x++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.【答案】(1)2,-2;(2)11;(3)25【解析】【分析】(1)当x >0时,按照公式a+b ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.【详解】解:(1)当x >0时,112x x x x +≥⋅= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝⎭ ∵()1122x x x x ⎛⎫--≥-⋅-= ⎪⎝⎭∴12x x ⎛⎫---≤- ⎪⎝⎭ ∴当0x >时,1x x +的最小值为2;当0x <时,1x x+的最大值为-2; (2)由2316163x x y x x x++==++ ∵x >0, ∴16163311y x x x x =++≥⋅= 当16x x= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD∴x :9=4:S △AOD∴:S △AOD =36x∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.13.某市2018年平均每天的垃圾处理量为40万吨/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100万吨;2019年平均每天的垃圾处理量是2018年平均每天的垃圾处理量的2. 5倍. 若2019年平均每天的垃圾处理率是2018年平均每天的垃圾处理率的1. 25倍. (注:=垃圾处理量垃圾处理率垃圾排放量) (1)求该市2018年平均每天的垃圾排放量;(2)预计该市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加10%. 如果按照创卫要求“城市平均每天的垃圾处理率不低于90%”,那么该市2020年平均每天的垃圾处理量在2019年平均每天的垃圾处理量的基础上,至少还需要増加多少万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求?【答案】(1)100;(2)98.【解析】【分析】(1)设2018年平均每天的垃圾排放量为x 万吨,根据题意列方程求出x 的值即可;(2)设设2020年垃圾的排放量还需要増加m 万吨,根据题意列出不等式,解得m 的取值范围即可得到答案.【详解】(1)设2018年平均每天的垃圾排放量为x 万吨,40 2.540 1.25100x x⨯=⨯+, 解得:x=100,经检验,x=100是原分式方程的解,答:2018年平均每天的垃圾排放量为100万吨.(2)由(1)得2019年垃圾的排放量为200万吨,设2020年垃圾的排放量还需要増加m 万吨,40 2.5200(110%)m ⨯+⨯+≥90%, m ≥98,∴至少还需要増加98万吨才能使该市2020年平均每天的垃圾处理率符合创卫的要求.【点睛】此题考查分式方程的实际应用,一元一次不等式的实际应用,正确理解题意,找到各量之间的关系是解题的关键.14.一件工程,甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做 20 天,剩下的工程再由甲、乙两队合作 60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为 8.6 万元,乙队每天的施工费用为 5.4 万元,工程预算的施工费用为 1000 万元,若在甲、乙工程队工作效率不变的情况下使施工时间最短,问安排预算的施工费用是否够用?若不够用,需追加预算多少万元?【答案】(1)甲、乙两队单独完成这项工程分别需120天、180天 (2)工程预算的施工费用不够用,需追加预算8万元【解析】试题分析:(1)首先表示出甲、乙两队需要的天数,进而利用由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成得出等式求出答案;(2)首先求出两队合作需要的天数,进而求出答案.试题解析:解:(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要23x 天. 根据题意,得201160()12233x x x ++=,解得:x =180.经检验,x =180是原方程的根,∴23x =23×180=120,答:甲、乙两队单独完成这项工程分别需120天和180天;(2)设甲、乙两队合作完成这项工程需要y 天,则有11()1120180y +=,解得 y =72. 需要施工费用:72×(8.6+5.4)=1008(万元).∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元.点睛:此题主要考查了分式方程的应用以及一元一次方程的应用,正确得出等量关系是解题关键.15.探索:(1)如果32311x m x x -=+++,则m=_______; (2)如果53522x m x x -=+++,则m=_________; 总结:如果ax b m a x c x c +=+++(其中a 、b 、c 为常数),则m=________;(3)利用上述结论解决:若代数式431x x --的值为整数,求满足条件的整数x 的值. 【答案】(1)-5;(2)-13 ; b -ac ;(3)0或2【解析】试题解析: ()323(1)55133.1111x x m x x x x -+-==-=+++++ 5.m ∴=-()535(2)1313255.2222x x m x x x x -+-==-=+++++ 13.m ∴=-总结:().ax b a x c b ac b ac m a a x c x c x c x c +++--==+=+++++ .m b ac ∴=-()434(1)1134.111x x x x x --+==+--- 又∵代数式431x x --的值为整数, 11x ∴-为整数, 11x ∴-=或11x -=-2x ∴=或 0.。
上海三门中学数学分式解答题(培优篇)(Word版 含解析)

(2)两人到达滨江大道后约定先跑1000米再休息.小强的跑步速度是小明跑步速度的 倍,两人在同起点,同时出发,结果小强先到目的地 分钟.
(2)请用上述方法将分式 表示成部分分式.
【答案】(1) , ;(2) .
【解析】
【分析】
仿照例子通分合并后,根据分子的对应项的系数相等,列二元一次方程组求解.
【详解】
解:(1)∵ ,
∴ ,
解得: .
(2)设分式 =
将等式的右边通分得: = ,
由 = ,
得 ,
解得 .
所以 = .
5.阅读下面的解题过程:已知 ,求 的值。
解:由 知, ,所以 ,即 .
所以 .所以 .
该题的解法叫做“倒数法”。
已知:
请你利用“倒数法”求 的值。求 的值。
【答案】 ;
【解析】
【分析】
计算所求式子的倒数,再将 代入可得结论;将 进行变形后代入即可.
【详解】
解:∵ ,且x≠0,
∴ ,
∴ ,
∴ ,
∴ ,
∴
∵
∴
∴
【点睛】
本题考查分式的求值问题,解题的关键是正确理解题目给出的解答思路,注意分式的变形,本题属于基础题型.
(2)①设小明的速度为y米/分,由m=3,n=6,根据小明的时间-小强的时间=6列方程解答;
②根据路程一定,时间与速度成反比,可求小强的时间进而求出小明的时间,再根据速度=路程除以时间得到答案.
【详解】
分式填空选择(培优篇)(Word版 含解析)

分式填空选择(培优篇)(Word 版 含解析)一、八年级数学分式填空题(难)1.对实数a 、b ,定义运算☆如下:a ☆b=(,0){(,0)b b a a b a a a b a ->≠≤≠,例如:2☆3=2﹣3=18,则计算:[2☆(﹣4)]☆1=_____.【答案】16【解析】【分析】判断算式a ☆b 中,a 与b 的大小,转化为对应的幂运算即可求得答案.【详解】由题意可得:[2☆(﹣4)]☆1=2﹣4☆1 =116☆1 =(116)﹣1 =16,故答案为:16.【点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键.2.已知==x y n 为正整数),则当=n ______时,22101012902018x y xy +-+=.【答案】3【解析】【分析】根据分式的分母有理化把x 、y 化简,利用完全平方公式把原式变形,计算即可.【详解】解:221===+-x n221===++y n 1=xy ,2222221010129020181010129020181010+-+=+-+=+x y xy x y x y2222194019421942=+=++=+x y x xy y2()196+=x y ,14+=x y则212114+-++=n n ,解得,3n =,故答案为3.【点睛】考查的是分式的化简求值、完全平方公式,掌握分式的分母有理化的一般步骤是解题的关键.3.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5. 4.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 ▲ 【答案】0.【解析】方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x 的值,然后代入进行计算即可求出m 的值:方程两边都乘以(x -2)得,2-x -m=2(x -2).∵分式方程有增根,∴x -2=0,解得x=2.∴2-2-m=2(2-2),解得m=0.5.当x =1时,分式x b x a -+无意义;当x =2时,分式23x b x a-+的值为0,则a +b =_____. 【答案】3【解析】【分析】先根据分式无意义的条件可求出a 的值,再根据分式值为0的条件可求出b 的值,最后将求出的a,b 代入计算即可.【详解】因为当1x =时,分式x b x a -+无意义, 所以10a +=,解得: 1a =-,因为当2x =时,分式23x b x a-+的值为零, 所以4020b a -=⎧⎨+≠⎩, 解得: 4b =,所以143,a b +=-+=故答案为:3.【点睛】本题主要考查分式无意义和分式值为0的条件,解决本题的关键是要熟练掌握分式无意义和分式值为0的条件.6.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 【答案】k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解, ∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.7.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 【答案】1【解析】【分析】 增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值.【详解】解:方程两边都乘2x =,得22(2)x m m x -=-∵原方程有增根,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,故答案为1【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x 的方程12ax x +-=−1的解是正数,则a 的取值范围是________. 【答案】a>-1且a≠-0.5【解析】112+=--ax x 方程两侧同时乘以最简公分母(x -2),得 ()12ax x +=--,整理,得 ()11a x +=,①(1) 当a =-1时,方程①为01x ⋅=,此方程无解.(2) 当a ≠-1时,解方程①,得11x a =+. ∵原分式方程有解, ∴11x a =+不为增根, ∴当11x a =+时,最简公分母x -2≠0, ∴1201a -≠+,∴12a ≠-. ∵原分式方程的解为正数, ∴101x a =>+, ∴1a >-. 综上所述,a 的取值范围应该为1a >-且12a ≠-,即a >-1且a ≠-0.5. 故本题应填写:a >-1且a ≠-0.5.点睛:本题考查了分式方程的解的相关知识. 本题的难点在于准确且全面地理解分式方程的解为正数这一条件. 一方面,既然分式方程所转化成的整式方程只有一个解,那么这个解就不应该是增根;另一方面,当分式方程的解为正数时该整式方程的解也应该为正数. 另外,在去分母后,由于未知数x 的系数中含有未知参数a ,所以不能直接进行“系数化为1”的步骤,应该对参数a 的值进行讨论.9.若22440,x y x xy y x y--+=+则等于________. 【答案】13【解析】 解:∵x 2﹣4xy +4y 2=0,∴(x ﹣2y )2=0,∴x =2y ,∴x y x y -+=22y y y y -+=13.故答案为13. 点睛:根据已知条件x 2﹣4xy +4y 2=0,求出x 与y 的关系是解答本题的关键.10.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.226 24x x x --+- 2(2)6(2)(2)(2)(2)x x x x x x --=-+-+- 第一步 =2(x -2)-x +6 第二步=2x -4-x +6 第三步=x +2 第四步小明的解法从第___步开始出现错误,正确的化简结果是______.【答案】二12x - 【解析】根据分式的加减法,先对分式进行因式分解,然后通分为同分母的分式相加,再化简即可,因此错误在第二步,应为()()()()()2262222x x x x x x ---+-+-=24621(2)(2)(2)(2)2x x x x x x x x --++==+-+--. 故答案为二、12x -.二、八年级数学分式解答题压轴题(难)11.已知:方程﹣=﹣的解是x =,方程﹣=﹣的解是x =,试猜想:(1)方程+=+的解; (2)方程﹣=﹣的解(a 、b 、c 、d 表示不同的数).【答案】(1)x =4;(2)x =. 【解析】 通过解题目中已知的两个方程的过程可以归纳出方程的解与方程中的常数之间的关系,利用这个关系可得出两个方程的解.解:解方程﹣=﹣,先左右两边分别通分可得:,化简可得:,整理可得:2x =15﹣8,解得:x =,这里的7即为(﹣3)×(﹣5)﹣(﹣2)×(﹣4),这里的2即为[﹣2+(﹣4)]﹣[﹣3+(﹣5)];解方程﹣=﹣,先左右两边分别为通分可得:,化简可得:, 解得:x =, 这里的11即为(﹣7)×(﹣5)﹣(﹣4)×(﹣6),这里的2即为[﹣4+(﹣6)]﹣[﹣7+(﹣5)];所以可总结出规律:方程解的分子为右边两个分中的常数项的积减去左边两个分母中的常数项的积,解的分母为左边两个分母中的常数项的差减去右边两个分母中常数项的差.(1)先把方程分为两边差的形式:方程﹣=﹣,由所总结的规律可知方程解的分子为:(﹣1)×(﹣6)﹣(﹣7)×(﹣2)=﹣8,分母为[﹣7+(﹣2)]﹣[﹣6+(﹣1)]=﹣2,所以方程的解为x ==4;(2)由所总结的规律可知方程解的分子为:cd ﹣ab ,分母为(a +b )﹣(c +d ),所以方程的解为x =.12.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米; (2)设方案一所用时间为:111()222s s a b s t a b ab+=+=,方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->, ∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少.【点睛】 本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.13.某小麦改良品种后平均每公顷增加产量a 吨,原来产m 吨小麦的一块土地,现在小麦的总产量增加了20吨.(1)当a =0.8,m =100时,原来和现在小麦的平均每公顷产量各是多少?(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a 、m 的式于表示)(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n 小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?【答案】(1)原来和现在小麦的平均每公顷产量各是4吨,4.8吨;(2)20ma ,+2020ma a ;(3)两组一起收割完这块麦田需要2241n n n --小时. 【解析】【分析】(1)设原来小麦平均每公顷产量是x 吨,根据题意列出分式方程求解并验根即可;(2)设原来小麦平均每公顷产量是y 吨,根据题意列出分式方程求解并验根即可;(3)由题意得知,工作总量为m+20,甲的工作效率为:20m n +,乙的工作效率为:200.5m n +-,再由工作总量除以甲乙的工作效率和即可得出工作时间.【详解】 解:(1)设原来平均每公顷产量是x 吨,则现在平均每公顷产量是(x +0.8)吨, 根据题意可得:100100200.8x x +=+ 解得:x =4,检验:当x =4时,x (x +0.8)≠0,∴原分式方程的解为x =4,∴现在平均每公顷产量是4.8吨,答:原来和现在小麦的平均每公顷产量各是4吨,4.8吨.(2)设原来小麦平均每公顷产量是y 吨,则现在玉米平均每公顷产量是(y +a )吨, 根据题意得:20m m y y a +=+ 解得;y =20ma , 经检验:y =20ma 是原方程的解, 则现在小麦的平均每公顷产量是:202020ma ma a a ++= 故答案为:20ma ,2020ma a +; (3)根据题意得:()20.5202202020.5410.5n n m n n m m n n n n -+-==++--+- 答:两组一起收割完这块麦田需要2241n n n --小时. 【点睛】本题考查的知识点主要是根据题意列分式方程并求解,找出题目中的等量关系式是解题的关键.14.探索:(1)如果32311x m x x -=+++,则m=_______; (2)如果53522x m x x -=+++,则m=_________; 总结:如果ax b m a x c x c +=+++(其中a 、b 、c 为常数),则m=________; (3)利用上述结论解决:若代数式431x x --的值为整数,求满足条件的整数x 的值. 【答案】(1)-5;(2)-13 ; b -ac ;(3)0或2【解析】试题解析: ()323(1)55133.1111x x m x x x x -+-==-=+++++ 5.m ∴=-()535(2)1313255.2222x x m x x x x -+-==-=+++++ 13.m ∴=-总结:().ax b a x c b ac b ac m a a x c x c x c x c+++--==+=+++++ .m b ac ∴=-()434(1)1134.111x x x x x --+==+--- 又∵代数式431x x --的值为整数, 11x ∴-为整数, 11x ∴-=或11x -=-2x ∴=或 0.15.“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元;(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知,A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多.【答案】(1) 2000元;(2) A 型车20辆,B 型车40辆.【解析】【分析】(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由卖出的数量相同列出方程求解即可;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值.【详解】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x ﹣200)元,由题意,得 8000080000(110%)200x x -=-, 解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a )辆,获利y 元,由题意,得y=a+(60﹣a ),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a ,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y随a的增大而减小.∴a=20时,y最大=30000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点睛】本题考查分式方程的应用;一元一次不等式的应用.。
上海三门中学数学全等三角形(培优篇)(Word版 含解析)

上海三门中学数学全等三角形(培优篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.2.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.3.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角), 两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.4.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm2).故答案是:4.5.如图,在△ABC中,AB=AC,点D、E在BC的延长线上,G是AC上一点,且CG=CD,F是GD上一点,且DF=DE.若∠A=100°,则∠E的大小为_____度.【答案】10【解析】【分析】由DF=DE,CG=CD可得∠E=∠DFE,∠CDG=∠CGD,再由三角形的外角的意义可得∠GDC=∠E+∠DFE=2∠E,∠ACB=∠CDG+∠CGD=2∠CD G,进而可得∠ACB=4∠E,最后代入数据即可解答.【详解】解:∵DF=DE,CG=CD,∴∠E=∠DFE,∠CDG=∠CGD,∵GDC=∠E+∠DFE,∠ACB=∠CDG+∠CGD,∴GDC=2∠E,∠ACB=2∠CDG,∴∠ACB=4∠E,∵△ABC中,AB=AC,∠A=100°,∴∠ACB=40°,∴∠E=40°÷4=10°.故答案为10.【点睛】本题考查等腰三角形的性质以及三角形外角的定义,解题的关键是灵活运用等腰三角形的性质和三角形的外角的定义确定各角之间的关系.6.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B 根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..7.在下列结论中:①有三个角是60︒的三角形是等边三角形;②有一个外角是120︒的等腰三角形是等边三角形;③有一个角是60︒,且是轴对称的三角形是等边三角形;④有一腰上的高也是这腰上的中线的等腰三角形是等边三角形.其中正确的是__________.【答案】①②③④【解析】【分析】依据等边三角形的定义,含有一个600角的等腰三角形是等边三角形判断即可.【详解】有三个角是600的三角形是等边三角形,故①正确;外角是1200时,邻补角为600,即有一个内角是600的等腰三角形是等边三角形,故②正确;轴对称的三角形是等腰三角形,且含有一个600角,因此是等边三角形,故③正确;一腰上的高也是中线,故底边等于腰长,所以此三角形是等边三角形,故④正确.故此题正确的是①②③④.【点睛】此题考查等边三角形的判定方法,熟记方法才能熟练运用.8.如图,在四边形ABCD中,∠A=60°,∠ADC=∠ABC=90°,在AB、AD上分别找一点F、E,连接CE、EF、CF,当△CEF的周长最小时,则∠ECF的度数为______.【答案】60°【解析】【分析】此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.【详解】分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:在AD、AB上任意取E1、F1两点根据对称性:∴CE=C1E,CE1=C1E1,CF=C2F,CF1=C2F1∴△CEF的周长= CE+EF+CF= C1E+EF+C2F= C1C2而△CE1F1的周长= CE1+E1F1+CF1= C1E1+E1F1+C2F1根据两点之间线段最短,故C1E1+E1F1+C2F1>C1C2∴△CEF的周长的最小为:C1C2.∵∠A=60°,∠ADC=∠ABC=90°∴∠DCB=360°-∠A-∠ADC-∠ABC=120°∴∠C C1C2+∠C C2C1=180°-∠DCB=60°根据对称性:∠C C1C2=∠E CD,∠C C2C1=∠F CB∴∠E CD+∠F CB=∠C C1C2+∠C C2C1=60°∴∠ECF=∠DCB-(∠E CD+∠F CB)=60°故答案为:60°【点睛】此题考查的是周长最小值的作图方法(对称点),及周长最小值的证法:两点之间线段最短,掌握周长最小值的作图方法是解决此题的关键.9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】8 5【解析】【分析】首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B ′F 的长.【详解】解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC -=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85,故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.10.如图,在△ABC 中,AD 是高,DE 是 AC 的垂直平分线,AE=4cm ,△ABD 的周长为 15cm , 则△ABC 的周长为______【答案】23cm .【解析】【分析】根据线段垂直平分线的性质得到AC=2AE=8,DA=DC ,根据三角形的周长公式计算即可.【详解】解:∵DE 是AC 的垂直平分线,∴AC=2AE=8,DA=DC ,∵△ABD 的周长=AB+BD+AD=AB+BD+DC=AB+BC=15,∴△ABC 的周长=AB+BC+AC=15+8=23cm ,故答案是:23cm .【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;在FA 上截取FG ,使FG =FE ,根据全等三角形的判定与性质得出△AGE ≌△CFE ,可得AG =CF ,即可求得AF =CF +EF ,从而得出④正确;根据CF+EF=AF,CF+DF=CD,得出CD≠AF,从而得出FE≠FD,即可得出③错误.【详解】∵△ABD和△ACE是等边三角形,∴∠BAD=∠EAC=60°,AE=AC=EC.∵∠BAE+∠DAE=60°,∠CAD+∠DAE=60°,∴∠BAE=∠DAC,在△BAE和△DAC中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.12.如图,120AOB∠=︒,OP平分AOB∠,且2OP=,若点M N、分别在OA OB、上,且PMN∆为等边三角形,则满足上述条件的PMN∆有()A.1个B.2个C.3个D.无数个【答案】D【解析】【分析】根据题意在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可反推出△PMN是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,120AOB∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,PEM PONPE POEPM OPN∠⎪∠⎧⎩∠⎪∠⎨===∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.13.如图,已知:30MON∠=︒,点1A、2A、3A…在射线ON上,点1B、2B、3B…在射线OM上,112A B A△、223A B A△、334A B A△…均为等边三角形,若112OA=,则667A B A的边长为( )A.6 B.12 C.16 D.32【答案】C【解析】【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=12,得出△A1B1A2的边长为12,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.【详解】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2,∵∠MON=30°,∴∠OB1A1=60°-30°=30°,∴∠MON=∠OB1A1,∴B1A1=OA1=12,∴△A1B1A2的边长为12,同理得:∠OB2A2=30°,∴OA2=A2B2=OA1+A1A2=12+12=1,∴△A2B2A3的边长为1,同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,在直线AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.6个B.5个C.4个D.3个【答案】C【解析】【分析】根据等腰三角形的判定定理即可得到结论.【详解】解:根据题意,∵△PAB 为等腰三角形,∴可分为:PA=PB ,PA=AB ,PB=AB 三种情况,如图所示:∴符合条件的点P 共有4个;故选择:C.【点睛】本题考查了等腰三角形的判定来解决实际问题,其关键是根据等腰三角形的判定定理解答.15.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤【答案】D【解析】【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ; ②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】①∵AD 为△ABC 的高线,∴CBE +∠ABE +∠BAD =90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,∴∠CBE +∠BAD =45°,∴∠DAE =∠CBE ,故①正确;在△DAE 和△CBE 中,AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△BCE (SAS );②∵△ADE ≌△BCE ,∴∠EDA =∠ECB ,∵∠ADE +∠EDC =90°,∴∠EDC +∠ECB =90°,∴∠DEC =90°,∴CE ⊥DE ;故②正确;③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,∴∠BDE =∠AFE ,∵∠BED +∠BEF =∠AEF +∠BEF =90°,∴∠BED =∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF ≌△BED (AAS ),∴BD =AF故③正确;∵△AEF ≌△BED∴DE=EF, 又DE ⊥CF ,∴△DEF 为等腰直角三角形,故④错误;④∵AD =BC ,BD =AF ,∴CD =DF ,∵AD ⊥BC ,∴△FDC 是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.16.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.42C.23D.43【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是224223-=.-=22AC E C故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.17.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )A .132︒B .130︒C .112︒D .110︒【答案】C【解析】【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.【详解】如图,连接OB 、OC ,∵56BAC ︒∠=,AO 为BAC ∠的平分线∴11562822BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =, ∴()()11180180566222ABC BAC ︒︒︒︒∠=-∠=-= ∵DO 是AB 的垂直平分线,∴OA OB =.∴28ABO BAO ︒∠=∠=,∴622834OBC ABC ABO ︒︒︒∠=∠-∠=-=∵DO 是AB 的垂直平分线,AO 为BAC ∠的平分线∴点О是ABC △的外心,∴OB OC =,∴34OCB OBC ︒∠=∠=,∵将C ∠沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合∴OE CE =,∴34COE OCB ︒∠=∠=,在OCE △中,1801803434112OEC COE OCB ︒︒︒︒︒∠=-∠-∠=--=【点睛】本题主要考查了线段垂直平分线上的点到线段两端点距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,做辅助线构造出等腰三角形是解决本题的关键.18.如图,等腰三角形ABC 的底边BC 长为4,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,若△CDM 周长的最小值为8,则△ABC 的面积为( )A .12B .16C .24D .32 【答案】A【解析】【分析】 连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM+MD 的最小值,再根据三角形的周长求出AD 的长,由此即可得出结论.【详解】连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM+MD 的最小值,∵△CDM 周长的最小值为8,∴AD=8-12BC=8-2=6∴S△ABC=12BC•AD=12×4×6=12,故选A.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.19.如图,平面直角坐标系中,已知A(2,2)、B(4,0),若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】由点A、B的坐标可得到2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴2,如图,①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(4,0),∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.故选D.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.20.等腰三角形中有一个角是40°,则另外两个角的度数是()A.70°,70°B.40°,100°C.70°,40°D.70°,70°或40°,100°【答案】D【解析】分析:由等腰三角形的一个角是40度,可以分为若40°的角是顶角与若40°的角是底角去分析求解,小心别漏解.详解:若40°的角是顶角,则底角为:(180°﹣40°)=70°,∴此时另外两个角的度数是70°,70°;若40°的角是底角,则另一底角为40°,∴顶角为:180°﹣40°﹣40°=100°,∴此时另外两个角的度数是100°,40°.∴另外两个角的度数是:70°、70°或40°、100°.故选:D.点睛:此题考查了等腰三角形的性质.解题的关键是注意分类讨论思想的应用,注意别漏解.。
上海培明中学数学分式填空选择(篇)(Word版 含解析)

直接解分式方程,进而利用分式方程的解是正数得出 的取值范围,进而结合分式方程有意义的条件分析得出答案.
【详解】
去分母得: ,
解得: ,
,
解得: ,
当 时, 不合题意,
故 且 .
故答案为: 且 .
【点睛】
此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.
8.若 =3,则 的值为_____.
试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出 的值.
若
求:A、B的值:
求: 的值.
【答案】
【解析】
【分析】
(1)根据题目的叙述的方法即可求解;
(2)①把等号右边的式子通分相加,然后根据对应项的系数相等即可求解;
②根据 把所求的每个分式化成两个分式的差的形式,然后求解.
考查的是分式的化简求值、完全平方公式,掌握分式的分母有理化的一般步骤是解题的关键.
3.已知 ,且 ,则 ______.
【答案】27
【解析】
【分析】
先根据a2-a-1=0,得出a2,a3,a4的值,然后将等式化简求解.
【详解】
解:由题意可得a2−a−1=0
∴a2=a+1
∴a4=(a2)2=(a+1)2=a2+2a+1=a+1+2a+1=3a+2,a3=a⋅a2=a(a+1)=a2+a=a+1+a=2a+1,
上海培明中学数学分式填空选择(篇)(Word版 含解析)
一、八年级数学分式填空题(难)
1.下列结论:①不论 为何值时 都有意义;② 时,分式 的值为0;③若 的值为负,则 的取值范围是 ;④若 有意义,则x的取值范围是x≠﹣2且x≠0.其中正确的是________
上海三门中学八年级数学上册第十五章《分式》测试(答案解析)

一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4C .x ≠0D .x >-4且x ≠0 2.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-13.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠4.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( )A .9-B .8-C .7-D .6- 5.关于代数式221a a+的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a +的值就越大 6.计算()3222()m m m -÷⋅的结果是( ) A .2m - B .22m C .28m - D .8m - 7.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a a b b ++=-- 8.已知2340x x --=,则代数式24x x x --的值是( ) A .3B .2C .13D .12 9.若方程21224k x x -=--有增根,则k =( )A .4-B .14-C .4D .1410.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<- C .x 2> D .x 2< 11.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④12.11121n n n x x x x+-+-+等于( ) A .11n x + B .11n x - C .21x D .113.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1B .1C .-3D .3 14.若分式2132x x x --+的值为0,则x 的值为( ) A .1-B .0C .1D .±1 15.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2- 二、填空题16.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.17.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 18.计算:22x x xy x y x -⋅=-____________________.19.计算:111x x ---的结果是________. 20.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.21.如果分式126x x --的值为零,那么x =________ . 22.已知114y x -=,则分式2322x xy y x xy y +---的值为______. 23.方程11212x x =+-的解是x =_____. 24.已知1112a b -=,则ab a b-的值是________. 25.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.26.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题27.先化简,再求值:(x ﹣1﹣21x x +)÷221x x x ++,其中x =3. 28.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?29.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a 元进行促销,结果第二批紫水豆干的销售利润为1520元,求a 的值.(利润=售价-进价) 30.(1)不改变分式的值,把下列分子和分母的最高次的系数都化为正数2342n n -=-+________. (2)不改变分式的值,把下列分子和分母的中各项系数都化为整数0.20.50.3x y x y-=-_______. (3)若分式231x x +-的值是整数,求整数x 的值. (4)已知12x x +=,求2421x x x ++的值.。
上海三门中学八年级数学上册第五单元《分式》测试题(包含答案解析)

一、选择题1.化简221x x x ++÷(1-11x +)的结果是( )A .11x + B .11x - C .x+1 D .x-12.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m =B .2m =-C .5m =D .5m =-3.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x -= C .6000600052x x -=+ D .6000600052x x-=+ 4.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12-5.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -6.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b=D .232131a ab b ++=-- 7.分式242x x -+的值为0,则x 的值为( )A .2-B .2-或2C .2D .1或28.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+9.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-10.下列计算正确的是( ) A .1112a a a += B .2211()()a b b a +--=0C .m n a -﹣m na+=0 D .11a b b a+--=0 11.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 12.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<<B .b a c d <<<C .b a d c <<<D .a b d c <<<二、填空题13.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 14.计算:112a a-=________. 15.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.16.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________.17.已知215a a+=,那么2421a a a =++________.18.已知关于x 的分式方程211a x +=+的解是负数,则a 的取值范围_____________. 19.计算:()222333a b a b --⋅=_______________.20.方程2111x x x =--的解是___________. 三、解答题21.解分式方程: (1)13x -+2=43x x --;(2)()3211x x x x +---= 0 22.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a = 23.先化简,再求值:2222224414y x x xy y x x x y ⎛⎫+-++-÷ ⎪-⎝⎭,其中x ,y 满足()2230x y ++-=.24.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元. (1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a元进行促销,结果第二批紫水豆干的销售利润为1520元,求a 的值.(利润=售价-进价)25.鄂州市2020年被评为“全国文明城市”.创文期间,甲、乙两个工程队共同参与某段道路改造工程.如果甲工程队单独施工,恰好如期完成;如果甲、乙两工程队先共同施工10天,剩下的任务由乙工程队单独施工,也恰好能如期完成;如果乙工程队单独施工,就要超过15天才能完成.(1)求甲、乙两工程队单独完成此项工程各需多少天?(2)若甲工程队单独施工a 天,再由甲、乙两工程队合作______天(用含有a 的代数式表示)可完成此项工程.(3)现在要求甲、乙两个工程队都必须参加这项工程.如果甲工程队每天的施工费用为2万元,乙工程队每天的施工费用为1.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,能使施工费用不超过61.5万元? 26.解方程:312(2)x x x x -=--【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A. 【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键.2.D解析:D 【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解. 【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5,故选D . 【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.A解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.4.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.5.C解析:C 【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可. 【详解】 解:()3222()m m m -÷⋅=()468mm -÷ =()468m m -÷=28m -, 故选:C . 【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.6.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.C解析:C 【分析】分式的值为零时,分子等于零,分母不等于零. 【详解】 解:依题意,得 x 2-4=0,且x+2≠0, 所以x 2=4,且x≠-2, 解得,x=2. 故选:C . 【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.D解析:D 【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程. 【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D . 【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.9.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a=,解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.10.D解析:D 【分析】直接根据分母不变,分子相加运算出结果即可. 【详解】 解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误;C 、原式=m n m n a ---=﹣2na,故错误;D 、原式=11a b a b---=0,故正确. 故选D . 【点睛】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单.11.D解析:D 【分析】根据分式的基本性质进行判断即可得到结论. 【详解】解:A 、33x y 是最简分式,所以33x xy y ≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D .【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.12.D解析:D 【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案. 【详解】解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭,∵10011999-<-<<, ∴a b d c <<<,故选D . 【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.二、填空题13.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值. 【详解】解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12,去分母得7-2x=m 将x=12代入得m=6 即当m=6时,原分式方程会出现增根. 故答案为6. 【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14.【分析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减—异分母分式的减法关键是掌握分式加减的计算法则解析:12a.【分析】根据异分母分式加减法法则计算即可.【详解】原式211 222a a a =-=.故答案为:12a.【点睛】本题考查了分式的加减—异分母分式的减法,关键是掌握分式加减的计算法则.15.【分析】设该轮船在静水中的速度为x千米/时则一艘轮船从A地顺流航行至B地已知水流速度为4千米/时所花时间为;从B地逆流返回A地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静解析:36369 44x x+= +-【分析】设该轮船在静水中的速度为x千米/时,则一艘轮船从A地顺流航行至B地,已知水流速度为4千米/时,所花时间为364x+;从B地逆流返回A地,水流速度为4千米/时,所花时间为364x-根据题意列方程3636944x x+=+-即可.【详解】解:设该轮船在静水中的速度为x千米时,根据题意列方程得:36369 44x x+= +-【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可.16.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键解析:11 a-【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可. 【详解】解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭=2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.17.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案. 【详解】 ∵215a a+=,∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键.18.且【分析】先解分式方程得到x=a+1根据方程的解是负数列不等式a+1<0且a+20求解即可得到答案【详解】解:a+2=x+1x=a+1∵方程的解是负数x≠-1∴a+1<0且a+20解得a<-1且a-解析:1a <-且2a ≠-【分析】先解分式方程得到x=a+1,根据方程的解是负数,列不等式a+1<0,且a+2≠0,求解即可得到答案.【详解】 解:211a x +=+ a+2=x+1x=a+1, ∵方程的解是负数,x≠-1∴a+1<0,且a+2≠0,解得a<-1,且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查解分式方程,根据分式方程的解的情况求参数的取值范围,解题中考虑分式的分母不等于0的情况.19.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.20.【分析】根据分式方程的性质求解即可得到答案【详解】∵∴∴∵时即分母为0故舍去∴故答案为:【点睛】本题考查了分式方程一元二次方程的知识;解题的关键是熟练掌握分式方程的性质从而完成求解解析:1x =-【分析】根据分式方程的性质求解,即可得到答案.【详解】∵2111x x x =-- ∴21x =∴1x =±∵1x =时,10x -=,即分母为0,故舍去∴1x =-故答案为:1x =-.【点睛】本题考查了分式方程、一元二次方程的知识;解题的关键是熟练掌握分式方程的性质,从而完成求解.三、解答题21.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.22.1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯ ⎪+⎝⎭=(1)(1)(1)a a a a a+-⨯+1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键.23.2x y x+,-2 【分析】 先算括号里的加减法运算,再把除法化为乘法,约分化简,最后代入求值,即可求解.【详解】原式=2222(2)(2)(2)x x y x x y x x y x y +---÷-+ =222x y x y x x y --÷+ =222x y x y x x y -+⋅- =2x y x+, ∵()2230x y ++-=,∴()22030x y +=-=,, ∴x=-2,y=3,∴原式=2x y x +=22322-+⨯-=-. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,通分和约分,是解题的关键. 24.(1)第一批紫水豆干每千克进价是25元;(2)a 的值是50.【分析】(1)设第一批紫水豆干每千克进价是x 元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x 元, 根据题意,得:2500440023x x ⨯=-, 解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a %元, 第二次紫水豆干第二阶段销售利润为每千克325a -元, 由题意得:322%20080%200(180%)152025a a ⨯⨯⨯-⨯-=, 解得:a =50,即a 的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25.(1)甲工程队单独施工需30天完成,乙工程队单独施工需45天完成;(2)3185a -;(3)15天 【分析】 (1)根据“甲乙两工程队合干10天的工程量+乙工程队单独做的工作量=总工作量1”列方程求解即可;(2)算出剩下的工作量除以甲乙的工作效率之和即可;(3)根据关系式:甲需要的工作费+乙需要的工作费≤61.5列出不等式求解即可.【详解】(1)设甲工程队单独施工需x 天完成,则乙工程队需(15)x +天完成,依题意得:10115x x x +=+ 去分母得:221015015x x x x ++=+∴30x =经检验,30x =是原方程的解.∴1545x +=答:甲工程队单独施工需30天完成,乙工程队单独施工需45天完成.(2)11(1)()303045a -÷+ =3185a - 故答案为:3185a - (3)设甲工程队先单独施工m 天,依题意得:32 3.51861.55m m ⎛⎫+-≤ ⎪⎝⎭ 解不等式得:15m ≥∴甲工程队至少要先单独施工15天.【点睛】本题主要考查了分式方程的应用:工程问题,找到合适的等量关系是解决问题的关键,注意应用前面得到的结论求解.26.32 x=【分析】按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x-,得()223x x x--=.解得32x=,检验:当32x=时,()20x x-≠.∴原分式方程的解为32x=.【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.1n 0.4(50 n) 10
ns 31
,
解得 31≤n≤33 1 , 3
∵n 为整数, ∴n 取 31,32,33, ∴商场有 3 种购进方案:①购买甲种空调 31 台,购买乙种空调 19 台;②购买甲种空调 32 台,购买乙种空调 18 台;③购买甲种空调 33 台,购买乙种空调 17 台; (3)①购买甲种空调 31 台,购买乙种空调 19 台, (31﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(19﹣1)×(4300﹣4000)+(4300×0.8 ﹣4000)﹣2520 =3000﹣120+5400﹣560﹣2520 =7720﹣2520 =5200(元), 不符合题意,舍去; ②购买甲种空调 32 台,购买乙种空调 18 台, (32﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(18﹣1)×(4300﹣4000)+(4300×0.8 ﹣4000)﹣2520 =3100﹣120+5100﹣560﹣2520 =7520﹣2520 =5000(元), 符合题意; ③购买甲种空调 33 台,购买乙种空调 17 台, (33﹣1)×(1100﹣1000)+(1100×0.8﹣1000)+(17﹣1)×(4300﹣4000)+(4300×0.8 ﹣4000)﹣2520 =3200﹣120+4800﹣560﹣2520 =7320﹣2520 =4800(元),
ab
2a 2b 7ab
【答案】1
【解析】
∵ 1 1 =4, ab
∴ ba 4, ab
∴ a+b=4ab,
∴
a-3ab b
(a b) 3ab
=
= 4ab 3ab = ab =1
2a 2b-7ab 2(a b) 7ab 8ab 7ab ab
故答案为:1.
9.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.
27 3 27 2x 9 7 x 解得: x 27 经检验, x 27 是原方程的解且符合题意. 所以小王用自驾车上班平均每小时行驶 27km ; (2)由(1)知:小王乘坐公交车上班平均每小时行驶 2x 9 227 9 63 ( km ); 设小王步行的速度为每小时 ykm ,根据题意得:
不符合题意,舍去. 综上所述,购买甲种空调 32 台,购买乙种空调 18 台. 【点睛】 此题考查了分式方程的应用,以及一元一次不等式组的应用,弄清题中的等量关系是解本 题的关键.
13.阅读后解决问题: 在“15.3 分式方程”一课的学习中,老师提出这样的一个问题:如果关于 x 的分式方程
a 3 1的解为正数,那么 a 的取值范围是什么? x 1 1 x
2
m 3 + m2 9 ÷ m 3
=
m m
3
m
6
3
m
3·m2
3
=m 3 m3 m3
=1, 故答案为:1. 【点睛】 本题考查了分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关 键.
4.当 x=1 时,分式 x b 无意义;当 x=2 时,分式 2x b 的值为 0,则 a+b=_____.
10 万元,且购进甲种空调至少 31 台,求出 n 的范围,即可确定出购买方案; (3)找到(2)中 3 种购进方案符合条件的即为所求. 【详解】 解:(1)设甲种空调每台进价是 x 万元,则乙种空调每台进价是(x+0.3)万元,依题意 有
20 = 40 ×2, x x 0.3
解得 x=0.1, x+0.3=0.1+0.3=0.4. 答:甲种空调每台进价是 0.1 万元,乙种空调每台进价是 0.4 万元; (2)设购买甲种空调 n 台,则购买乙种空调(50﹣n)台,依题意有
点 27km ,他乘坐公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程的 2 倍 还多 9km .他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的 3 .
7
(1)小王用自驾车上班平均每小时行驶多少千米?
(2)上周五,小王上班时先步行了 6km ,然后乘公交车前往,共用 4 小时到达.求他步行 3
6 27 6 4 y 63 3
解得: y 6. 经检验: y 6 是原方程的解且符合题意 所以小王步行的速度为每小时 6km .
【点睛】 本题考查了分式方程的应用,解答的关键在于弄清题意、找到等量关系、列出分式方程并 解答.
12.某商场购进甲、乙两种空调共 50 台.已知购进一台甲种空调比购进一台乙种空调进价 少 0.3 万元;用 20 万元购进甲种空调数量是用 40 万元购进乙种空调数量的 2 倍.请解答 下列问题: (1)求甲、乙两种空调每台进价各是多少万元? (2)若商场预计投入资金不少于 10 万元,且购进甲种空调至少 31 台,商场有哪几种购 进方案? (3)在(2)条件下,若甲种空调每台售价 1100 元,乙种空调每台售价 4300 元,甲、乙 空调各有一台样机按八折出售,其余全部标价售出,商场从销售这 50 台空调获利中拿出 2520 元作为员工福利,其余利润恰好又可以购进以上空调共 2 台.请直接写出该商场购进 这 50 台空调各几台. 【答案】(1)0.1,0.4;(2)商场有 3 种购进方案:①购买甲种空调 31 台,购买乙种空 调 19 台;②购买甲种空调 32 台,购买乙种空调 18 台;③购买甲种空调 33 台,购买乙种 空调 17 台;(3)购买甲种空调 32 台,购买乙种空调 18 台 【解析】 【分析】 (1)可设甲种空调每台进价是 x 万元,则乙种空调每台进价是(x+0.3)万元,根据等量 关系用 20 万元购进甲种空调数量=用 40 万元购进乙种空调数量×2,列出方程求解即可; (2)设购买甲种空调 n 台,则购买乙种空调(50﹣n)台,根据商场预计投入资金不少于
所以
4 2
b a
0 0
,
解得: b 4 ,
所以 a b 1 4 3,
故答案为:3.
【点睛】
本题主要考查分式无意义和分式值为 0 的条件,解决本题的关键是要熟练掌握分式无意义和
分式值为 0 的条件.
5.若分式
的值为零,则 x 的值为________.
【答案】1
【解析】
试题分析:根据题意,得|x|-1=0,且 x-1≠0,解得 x=-1.
上海三门中学数学分式填空选择(培优篇)(Word 版 含解析)
一、八年级数学分式填空题(难)
1.已知关于
x
的分式方程
x
a
1
-
2a x x2
1 x
=0
无解,则
a
的值为____________.
【答案】-1 或 0 或 1 2
【解析】
若关于
x
的分式方程
x
a 1
-
2a x x2
1 x
=0
无解,则最简公分母为零或所化成的整式方程无
x
B
2
A
Bx2A x 1 x 2
B
,再根据已知等式得出
A、B
的方
程组,解之可得.
【详解】
A x 1
x
B 2
Ax 2 x 1 x 2
x
B x 1 1 x 2
A
Bx2A x 1x 2
B
,
∵
x
3x
1
4
x
2
=
A x 1
+
x
B
2
,
A B 3 ∴ 2A B 4 ,
解得:
A B
1 2
的速度.
【答案】(1)小王用自驾车上班平均每小时行驶 27km ;(2)小王步行的速度为每小时 6km .
【解析】 【分析】
(1))设小王用自驾车上班平均每小时行驶 xkm ,则他乘坐公交车上班平均每小时行驶
2x 9 km .再利用乘公交车的方式平均每小时行驶的路程比他自用驾 SS 式平均每小时行
解.
解:去分母方程两边同乘 x(x 1) 得,
ax (2a x 1) 0
ax 2a x 1 0 (a 1)x 2a 1 0
(a 1)x 2a 1
当 a 1 0 即 a 1时,整式方程无解,即分式方程无解;
当 a 1 0 时,有 x 0 或 x 1 时,分式方程无解,此时 a 1 或 a 0 2
驶的路程的 2 倍还多 9 千米和乘公交车所用时间是自驾车方式所用时间的 3 ,列方程求解 7
即可;
(2)设小王步行的速度为每小时 ykm ,然后根据“步行时间+乘公交时间=小时”列方程
解答即可. 【详解】
解(1)设小王用自驾车上班平均每小时行驶 xkm ,则他乘坐公交车上班平均每小时行驶
2x 9km .根据题意得:
考点:分式的值为零的条件.
6.已知关于 x 的方程 3x n 2 的解是负数,则 n 的取值范围为 . 2x 1
【答案】n<2 且 n 3 2
【解析】
【分析】
【详解】
分析:解方程 3x n 2 得:x=n﹣2, 2x 1
∵ 关于 x 的方程 3x n 2 的解是负数,∴ n﹣2<0,解得:n<2. 2x 1
故答案为-1 或 0 或 1 2
点睛:本题主要考查分式方程无解问题.本题的易错点在于只考虑到了最简公分母为零的情 况,而忽略了化为整式方程后,整式方程无解这一情况,从而导致答案不全.
2.已知
(x
3x 4 1)(x
2)
=
x
A 1
+
x
B
2
,则实数
A=_____.
【答案】1
【解析】
【分析】先计算出
A x 1