线性系统理论-郑大钟(第二版)课件概论

合集下载

线性系统理论全PPT课件

线性系统理论全PPT课件
17550机电系统状态空间描述的列写示例dtdi上式可表为形如ducxbuax27650连续时间线性系统的状态空间描述动态系统的结构动力学部件输出部件连续时间线性系统的状态空间描述线性时不变系统ducxbuax37750连续时间线性系统的方块图47850人口分布问题状态空间描述的列写示例假设某个国家城市人口为102的乡村人口迁移去城市整个国家的人口的自然增长率为1设k为离散时间变量城市人口迁移乡村而一个单位负控制措施会导致5x1010051005亦可表为57950离散时间线性系统的状态空间描述状态空间描述形式离散时间线性时不变系统671050离散系统状态空间描述的特点
若f(x,u,t),g(x,u,t)的全部组成元为x、u的 线性函数,该系统称为线性系统
A(t ) X B(t )u X 对于线性系统 Y C (t ) X D(t )u
1/ቤተ መጻሕፍቲ ባይዱ,12/50
若f(x,u,t),g(x,u,t)的全部或至少一个 组成元素为x、u的非线性函数,该系 统称为非线性系统 。 非线性系统可以用泰勒展 开方法化为线性系统。
线性系统理论
电子信息学院
1
1、线性系统理论的研究对象 • 系统是系统理论研究的对象; • 系统是由相互关联和相互作用的若干组 成部分按一定规律组合而成的具有特定 功能的整体; • 系统模型,是对系统或其简化形式的一 种描述;
2
• 动态系统---动力学系统 • 动力学系统--可用一组微分方程或差分方程 来描述; • 系统的线性性和非线性性; • 当数学方程具有线性属性时,相应的系统
5
• 建立数学模型 • 数学模型的基本要素是变量、参量、常数 和它们之间的关系 • 变量:状态变量、输入变量、输出变量、
扰动变量

线性系统理论-1a

线性系统理论-1a

线性系统理论第一章概论读书即未成名究竟人品高雅修德不期获报自然梦稳心安切实功夫须从难处做去真正学问都自苦中得来本课程的目的:•学习线性系统的描述方法及运动特性;•研究线性系统能控性和能观性;•研究线性系统标准形;•分析系统的稳定性;•研究与设计线性系统的反馈控制器;•了解线性系统理论研究的前沿教学要求及目的•掌握线性系统的分析与控制系统设计方法。

•了解关于线性系统理论的当前科研前沿领域。

•灵活利用所学知识,完成控制系统分析与设计。

课程主要内容•线性系统的数学描述•线性系统运动分析•离散时间系统•线性系统稳定性分析•线性系统的能控性与能观测性•线性时变系统•极点配置•状态观测器与分离原理课程教材及主要参考书1)肖建,张友刚. 线性系统. 西南交通大学出版社,20112)郑大钟.线性系统理论(第2版).清华大学出版社,20023)段广仁.线性系统理论.哈尔滨工业大学出版社,1996§1.1概论线性系统理论的研究对象系统是由相互关联和相互作用的若干部分按一定规律组合而成的具有特定功能的整体。

动态系统(动力学系统),可用一组微分方程或差分方程描述。

线性系统:满足叠加原理的动态系统)()()(22112211u L c u L c u c u c L +=+⎩⎨⎧齐次性可加性•系统的研究方法——经验法——理论法:依据数学理论建模(对真实系统的抽象)建立数学描述分析设计•本课程的研究范围——对象:线性动态系统,数学模型已知——工具:数学•课程的主要任务•研究线性系统状态的运动规律和改变这种运动规律的可能性与方法,建立和揭示系统结构、参数、行为和性能间的确定的和定量的关系。

•系统分析——系统运动规律•综合问题——改变运动规律的可能性和方法历史回顾五十年代前,古典控制理论:频域法。

传递函数处理SISO系统。

五十年代中期,多变量控制理论兴起:原因:①计算机的出现②控制系统的要求,空间技术的发展状态空间方法五十年代末期,Kalman提出状态空间理论,用LQG技术设计,得出最优状态反馈定律。

线性系统理论-郑大钟(第二版)PPT课件

线性系统理论-郑大钟(第二版)PPT课件

0
0
0
1
0
a0 a1 a2 an1 1
xn1 xn
y (b0 bna0 ), (b1 bna1), , (bn1 bnan1) x bnu
确定性系统和不确定性系统
称一个系统为确定性系统,当且仅当不论是系统的特性和参数还是系统的 输入和扰动,都是随时间按确定的规律而变化的.
称一个动态系统为不确定性系统,或者系统的特性和参数中包含某种不确 定性,或者作用于系统的输入和扰动是随机变量
2.4 由系统输入输出描述导出状态空间描述
由输入输出描述导出状态空间描述
状态空间描述形式
离散时间线性时不变系统 x(k 1) Gx(k ) Hu(k ) y(k) Cx(k) Du(k)
n n阵G : 系统矩阵 n p阵H : 输入矩阵 q n阵C : 输出矩阵 q p阵D : 传输矩阵
离散时间线性时变系统 x(k 1) G(k) x(k) H (k)u(k) y(k) C(k) x(k) D(k)u(k)
选择状态变量
uR2
R2 R1 R2
R1R2 R1 R2
uc
iL
R2 R1 R2
e
2.2 线性系统的状态空间描述
uc
iL
(R1
1
R2 R1
)C
L(R1 R2 )
(
R1
R1 R2 R1R2
)C
uc
iL
(R1
1
R2 R2
)C
e
L(R1 R2 )
多变量频域方法
一是频域方法
二是多项式矩阵方法
第一部分: 线性系统时间域理论
线性系统时间域理论是以时间域数学模型为系统描述,直接在时间域内分析 和综合线性系统的运动和特性的一种理论和方法

线性系统理论(郑大钟第二版)第4章

线性系统理论(郑大钟第二版)第4章
第三章 线性系统的稳定性及李雅普诺夫 分析方法
§1 稳定性基本概念
一、外部稳定性与内部稳定性 1.外部稳定性 考虑一个线性因果系统,在零初始条件下,如果对应于任意有界输 入的输出均为有界,则称该系统是外部稳定的。
u(t ) k1
y(t ) k2
系统的外部稳定性也称有界输入-有界输出(BIBO)稳定性。 对于线性定常连续系统,外部稳定的充要条件是系统传递函数 的全部极点具有负实部。
n
it
i 1
i i
2.非线性系统情况 对于非本质性的非线性系统,可以在一定条件下用它的近似 线性化模型来研究它在平衡点的稳定性。
非线性自治系统: x f ( x)
f ( x )为n维非线性向量函数,并对各状态变量连续可微。
xe 0
是系统的一个平衡点。
将f ( x )在平衡点xe 邻域展成泰勒级数: f ( x ) f ( xe )
(t t0 )
则称平衡状态 xe 是稳定的。 可以将下式看成为状态空间中以 xe 为球心,以 为半径的一个超 球体,球域记为 S ( ) ;把上式视为以 xe为球心,以 为半径的一个 超球体,球域记为 S ( ) 。球域 S ( )依赖于给定的实数 和初始时间t 0 。
平衡状态 xe 是稳定的几何解释: 从球域 S ( )内任一点出发的运动 x(t; x0 , t0 )对所有的 t t0 都不超越球域 S ( ) 。 x2 一个二维状态空间中零平衡 S ( ) xe 0 是稳定的几何解释 状态 如右图 。 S ( ) 如果 与 t 0 无关,称为是 一致稳定,定常系统是一致 稳定的。 上述稳定保证了系统受扰运动的有 界性,通常将它称为李雅普诺夫意义 下的稳定,以区别于工程意义的稳定 (还应该具有对于平衡状态的渐进性)。

线性系统理论

线性系统理论

n
de s t IA BK f* s s si (5-4) i 1
§3 状态重构问题
3—1状态观测器的基本思想:
1) 状态观测器的基本思想
状态重构的可能性
x 所谓状态重构(估计)问题,
~x
即能否用系统的可量测参量(输
x 出和输入)来重新构造一个状态 , 使之在一定的指标下和
系统的真实状态等价.当线性定常系统的状态完全能观测时,
xABKxBu
yCDKxDu K
(5-3)
A-BK
所谓极点配置法, 就是通过状态反馈阵的选取,使以上闭环系统 的极点, 即特征值恰好处于所希望的一组极点的位置上.
§2 SISO状态反馈系统的极点配置
该定理即: SISO系统可通过状态反馈任意配置极点 的充要条件为该受控系统是状态完全能控的.
注1
注2
当原 n维系统的 n个状态中有l个可直接量测或通过输出的线性变
换可得到, 则只需为剩下的nl 个状态设计 nl 维的状态观测器,
这样的状态观测器称为降阶观测器.
返回
§6 降维观测器的设计
6—1 分离出n-l个需要估计的状态变量设计观测器
x AxBv
y C x
CRln
若 ran(kC)l ,即有 l个状态可量测或通过线性变换得到. 则可
第五章 状态反馈和极点配置
第 15组 胡勇 富剑华 檀立欣 宁晨旭 李龙
秋记与你分享
静思笃行 持中秉正
第五章 状态反馈与状态观测器
主要内容:
§1
状态反馈与输出 反馈义
§2
SISO态反馈系统 的极点配置法
§3
状态重构问题
§4
状态观测器的极 点配置
§5

线性系统理论课件1

线性系统理论课件1

单变量定常系统
x(t ) Ax(t ) bu(t ), x(t 0 ) x0 , y (t ) cx(t ), t 0.
常用三元组{A,b,c}表示.
上面定常系统的拉氏变换为:
X ( s) ( sI A) 1 x(0 ) ( sI A) 1 bU ( s),
集合的积: 设A1 ,A2 ,…,
有D中唯一一个元素d与之对应, 则称ƒ是集合
A1A2…An 到 集 合 D 的 一 个 映 射 ; d 称 为 (a1,a2,…,an)在映射ƒ之下的像, (a1,a2,…,an) 称
为d在映射ƒ之下的原像.
ƒ : A1A2…AnD
or
ƒ : (a1,a2,…,an) d
线性控制系统教程
张志方 孙常胜 编著 科学出版社
预备知识
-函数 把具有下列性质的量称为-函数,记为(t)
t 0,
t 0,


(1)


t dt 1.

-函数的导数
t
d t t t lim 0 dt
设u(t)为定义在实轴R上的连续函数,则
将f(t)的定义域扩充成在t=0的任一邻域内也有定义, 并把积分 F ( s) f t e st dt 0 称为L -变换

L [ (t )] L [
(k )


0
t e st dt 1
0
(t )]

( k ) t e st dt

t
f ( , x)d
t0

t
t0
f ( , x)d x0 (t 0 )

线性系统zy

线性系统zy


——状态空间描述

——矩阵分式描述

——系统矩阵描述
线性系统理论研究对象是 (线性的)模型系统,不是 物理系统。
模型
分析
综合(即设计)
模型部分
不同表达领域模型间的转换
• 如何由物理系统得到状态空间表达(传递函数) • 由输入/输出描述得到状态空间表达(SISO)
– 能控规范形描述 – 能观测规范形描述 – 对角形(单极点)
0 (t)

d dt
M
0 (t)
M
2 (t)

A(t)M
1 (t)

d dt
M
1 (t)

则系统在时刻t0∈J完全能控的一
个充分条件为,存在一个有限时
刻t1∈J,t1>t0,,使
r M a 0 ( t 1 ) M n 1 ( , t 1 ) k , M ,n 1 ( t 1 ) n
离散系统:各变量在离散时刻取值,状态空间反映离散时刻的变量组间的
因果关系和变换关系。用k=0,1,2…表示离散时刻。
状态空间描述形式:
X(k1)G(x k)H(u k) Y(k)C(xk)D(u k)
G : 系统矩阵 C : 输出矩阵
H : 输入矩阵
´
D : 传输矩阵
1.3 控制理论分析
表示为:
s
y(t)=L-1[G(s)?U(s)]
m
= L- 1[1?
KÕ(s- zk)
k=1
]
照 s
r
q
(s- pi)? (s2 2djwnjs+wnj2)
i=1
j=1
å Õ =L -1[a s+i= r1s+ bipi+j= q1s2+2 cd js jw + njd s+ j w nj2]

线性系统理论PPT-郑大钟(第二版)

线性系统理论PPT-郑大钟(第二版)

系统具有如下3个基本特征:
(1)整体性
1.结构上的整体性 2.系统行为和功能由整体 所决定
(2)抽象性
作为系统控制理论的研 究对象,系统常常抽去 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
(3)相对性
在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
u1 u2

up
x1 x2
动力学部件

xn
输出部件
y1 y2

yq
连续时间线性系统的状态空间描述
线性时不变系统
x Ax Bu

y

Cx

Du
线性时变系统
x A(t)x B(t)u

y

C (t ) x

D(t
)u
连续时间线性系统的方块图
x A(t)x B(t)u
对于单输入,单输出线性时不变系统,其微分方程描述
y (n) an1 y (n1) a1 y (1) a0 y bmu (m) bm1u (m1) b1u (1) b0u

H (k )
单位延迟
C(k)
y(k)
u(k)


G(k)
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
设系统的状态空间描述为 x f ( x,u, t) y g( x,u, t)
向量函数
f1(x,u,t)
g1(x,u,t)
f
(
x,u,
t
)


f
2
(
x,u,
e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态系统: 所谓动态系统,就是运动状态按确定规律或确定统计规律随时间演化 的一类系统——动力学系统。
动态系统是系统控制理论所研究的主体,其行为有各类变量间的关系来表征。
1.输入变量组
u
系统变量可区分为三类形式 2.内部状态变量组
3.输出变量组
y x
系统动态过程的数学描述 1.白箱描述:内部描述(状态方程和输出方程) 2.黑箱描述: 外部描述(输入, 输出变量组的关系)
所组成的一个列向量
x1 (t)
x(t)
x2 (t)
xn
(t
)
状态空间: 状态空间定义为状态向量的一个集合,状态空间的维数等同于状态 的维数
几点解释 (1)状态变量组对系统行为的完全表征性
只要给定初始时刻 t0 的任意初始状态变量组 x1(t0 ), x2 t0 ,, xn (t0 )
和t≥t0 各时刻的任意输入变量组 u1 (t), u2 t ,, u p (t)
2.2 线性系统的状态空间描述
描述系统输入、输出和状态变量之间关系的方程组称为系统的状态空间描述
(动态方程或运动方程),包括状态方程(描述输入和状态变量之间的关系)和 输出方程(描述输出和输入、状态变量之间的关系)。
动态系统的分类
从机制的角度 1.连续变量动态系统CVDS 从特性的角度 1.线性系统
2.离散事件动态系统DEDS
2.非线性系统
从作用时间 1.连续时间系统 连续系统按其参数 1.集中参数系统: 属有穷维系统 类型的角度 2.离散时间系统 的空间分布类型 2.分布参数系统: 属于无穷维系统
本书中仅限于研究线性系统和集中参数系统
主要内容: 数学模型 → 分析理论 → 综合理论 发展过程: 经典线性系统理论→现代线性系统理论 主要学派: 状态空间法
几何理论 把对线性系统的研究转化为状态空间中的相应几何问题, 并采用几何语言来对系统进行描述,分析和综合
代数理论 把系统各组变量间的关系看作为是某些代数结构之间的 映射关系,从而可以实现对线性系统描述和分析的完全的 形式化和抽象化,使之转化为纯粹的一些抽象代数问题
线性系统
线性系统理论的研究对象为线性系统,其模型方程具有线性属性即满足叠加原理。
若表征系统的数学描述为L 系统模型
L (c1u1 c2u 2 ) c1L (u1) c2L (u 2 )
系统模型是对系统或其部分属性的一个简化描述
①系统模型的作用:仿真、预测预报、综合和设计控制器 ②模型类型的多样性:用数学模型描述、用文字、图表、数据或计算机程序表示 ③数学模型的基本性:着重研究可用数学模型描述的一类系统 ④建立数学模型的途径:解析、辨识 ⑤系统建模的准则:折衷
能控或不能观测的部分。
内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性。
状态和状态空间的定义
u1
yq
状态变量组: 一个动力学系统的状态变量组定义为 u2 能完全表征其时间域行为的一个最小
x1, x2,, xn
y2
内部变量组
up
yq
状态: 一个动力学系统的状态定义为由其状态变量组 x1(t), x2 t,, xn (t)
线性系统理论研究对象是 (线性的)模型系统,不是 物理系统。Leabharlann 1.2 线性系统理论的基本概貌
线性系统理论是一门以研究线性系统的分析与综合的理论和方法为基本任 务的学科。
线性系统理论着重研究线性系统状态的运动规律和改变这种规律的可能性 和方法,以建立和揭示系统结构、参数、行为和性能间确定的和定量的关系。
大系统理论 (广度) 智能控制理论 (深度)
线性系统理论是系统控制理论的一个最为基础和最为成熟的分支。它以 线性代数和微分方程为主要数学工具,以状态空间法为基础分析和设计控制 系统。
第一章 绪论
1.1系统控制理论的研究对象
系统是系统控制理论的研究对象 系统:是由相互关联和相互制约的若干“部分”所组成的具有特定功能的一个“整体
多变量频域方法
一是频域方法
二是多项式矩阵方法
第一部分: 线性系统时间域理论
线性系统时间域理论是以时间域数学模型为系统描述,直接在时间域内分析 和综合线性系统的运动和特性的一种理论和方法
第二章 线性系统的状态空间描述
2.1 状态和状态空间
系统动态过程的两类数学描述
u1
y1
u2
x1, x2,, xn
那么系统的任何一个内部变量在t≥t0各时刻的运动行为也就随之而完全确定
(2).状态变量组最小性的物理特征 (3). 状态变量组最小性的数学特征 (4). 状态变量组的不唯一性 (5).系统任意两个状态变量组之间的关系 (6)有穷维系统和无穷维系统 (7)状态空间的属性
状态空间为建立在实数域R上的一个向量空间R n
线性系统理论
郑大钟 清华大学出版社
第一章 绪 论
第一部分 线性系统的时间域理论
第二部分 线性系统的复频率域理论
第二章 线性系统的状态空间描述 第三章 线性系统的运动分析 第四章 线性系统的能控性和能观测性 第五章 系统运动的稳定性 第六章 线性反馈系统的时间域综合
第一章 绪论
控制理论发展概况: 第一阶段 20世纪40—60年代 经典控制理论 第二阶段 20世纪60—70年代 现代控制理论 第三阶段 20世纪70—
y2
up
yq
(1) 系统的外部描述
u1
y1
外部描述常被称作为输出—输入描述
u2
x1, x2 ,, xn
y2
例如.对SISO线性定常系统:时间域的外部描述: u p
yq
y(n) an1 y(n1) a1 y(1) a0 y bn1u(n1) b1u (1) b0u
复频率域描述即传递函数描述
g(s)
y(s) u(s)
sn
bn1sn1 b1s b0 an1sn1 a1s a0
(2)系统的内部描述
状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征—— 状态方程和输出方程。
(3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不
系统具有如下3个基本特征:
(1)整体性
1.结构上的整体性 2.系统行为和功能由整体 所决定
(2)抽象性
作为系统控制理论的研 究对象,系统常常抽去 了具体系统的物理,自 然和社会含义,而把它 抽象为一个一般意义下 的系统而加以研究。
(3)相对性
在系统的定义 中, 所谓“系统” 和“部分”这 种称谓具有相 对属性。
相关文档
最新文档