深圳中考数学分析

合集下载

深圳中考数学解析

深圳中考数学解析

深圳中考数学解析
深圳中考数学解析是指对深圳地区中考(初中毕业生升入高中的考试)中的数学科目进行分析和解答。

以下是对深圳中考数学解析的几个方面的介绍:
1. 考试内容:深圳中考数学考试的内容包括数与式、代数式的计算与应用、平面图形的认识和计算、常用几何图形和几何关系、函数初步、数的统计和概率等方面的知识。

2. 题型分析:数学考试的题型包括选择题、填空题、计算题、应用题等。

每种题型都有不同的要求和解题方法,解析会对每种题型进行详细的讲解和答题技巧的提供。

3. 难点解析:在深圳中考数学中,有些题目被认为是较为难的题目,需要学生具备一定的解题技巧和思维能力。

解析会对这些难点进行分析,提供解题思路和方法,帮助学生更好地应对考试。

4. 解题技巧:在解析中,还会介绍一些常用的解题技巧和方法,如代入法、套路法、拆分法等,帮助学生快速解题并提高解题准确率。

5. 习题精讲:解析还会选取一些典型的题目进行精讲,解答学生可能遇到的疑惑和困难,让学生对知识点有更加深入的理解。

通过深圳中考数学解析的学习,学生可以提高数学思维能力和
解题技巧,增加对数学知识的掌握和应用能力,从而在中考中取得更好的成绩。

2024年广东省深圳市中考数学试题(解析版)

2024年广东省深圳市中考数学试题(解析版)

2024年深圳市初中学业水平测试数学学科试卷说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡定的位置上,并将条形码粘贴好.2.全卷共6页.考试时间90分钟,满分100分.3.作答选择题1-8,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题9—20,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分选择题一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.下列用七巧板拼成的图案中,为中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d【答案】A【解析】【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A.3.下列运算正确的是()A.()523m m -=- B.23m n m m n ⋅=C.33mn m n -= D.()2211m m -=-【答案】B 【解析】【分析】本题考查了合并同类项,积的乘方,单项式乘以单项式,完全平方公式.根据单项式乘以单项式,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A、()2365m m m -=≠-,故该选项不符合题意;B、23m n m m n ⋅=,故该选项符合题意;C、33mn m n -≠,故该选项不符合题意;D、()2221211m m m m -=-+≠-,故该选项不符合题意;故选:B.4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A.12B.112C.16 D.14【答案】D 【解析】【分析】本题考查了概率公式.根据概率公式直接得出答案.【详解】解:二十四个节气中选一个节气,抽到的节气在夏季的有六个,则抽到的节气在夏季的概率为61244=,故选:D.5.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A.40︒B.50︒C.60︒D.70︒【答案】B 【解析】【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B.6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A.①②B.①③C.②③D.只有①【答案】B【解析】【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF -=- ME NF∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B.7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A.()7791x y x y +=⎧⎨-=⎩ B.()7791x y x y +=⎧⎨+=⎩C.()7791x y x y-=⎧⎨-=⎩ D.()7791x y x y+=⎧⎨+=⎩【答案】A 【解析】【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:A.8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A.22.7mB.22.4mC.21.2mD.23.0m【答案】A 【解析】【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AMAEM AEM EM∠= ,,以及Rt tan AN ACN ACN CN∠= ,运用线段和差关系,即()450.33MN AN AM x x =-=-+=,再求出15.9m x =,即可作答.【详解】解:如图:延长DC 交EM 于一点G ,∵90MEF EFB CDF ∠=∠=∠=︒∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=︒∴四边形EFBM 是矩形同理得四边形CDBN 是矩形依题意,得 1.8m 1.5m EF MB CD ===,,4553AEM ACN ∠=︒∠=︒,∴()1.8 1.5m 0.3m CG =-=,5m FD EG ==∴0.3mCG MN ==∴设m GM x =,则()5mEM x =+在Rt tan AMAEM AEM EM∠= ,,∴1EM AM⨯=即()5mAM x =+在Rt tan AN ACN ACN CN∠= ,,∴4tan 533CN x AN ︒==即4m 3AN x =∴()450.33MN AN AM x x =-=-+=∴15.9mx =∴()15.9520.9m AM =+=∴()20.9 1.822.7m AB AM EF AM MB =+=+=+=故选:A第二部分非选择题二、填空题(本大题共5小题,每小题3分,共15分)9.已知一元二次方程230x x m -+=的一个根为1,则m =______.【答案】2【解析】【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m -+=的一个根为1,1x ∴=满足一元二次方程230x x m -+=,130m ∴-+=,解得,2m =.故答案为:2.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是________.(写出一个答案即可)【答案】2(答案不唯一)【解析】【分析】本题考查了算术平方根的应用,无理数的估算.利用算术平方根的性质求得10AB CD ==,1GH GJ ==,再根据无理数的估算结合GH DE CD <<,即可求解.【详解】解:∵10ABCD S =正方形,∴10AB CD ==,∵1GHIJ S =正方形,∴1GH GJ ==,∵3104<<,即34CD <<,∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,2BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为________.【答案】4π【解析】【分析】本题考查了扇形的面积公式,解直角三角形.利用解直角三角形求得45BOE ∠=︒,45COF ∠=︒,得到90EOF ∠=︒,再利用扇形的面积公式即可求解.【详解】解:∵2BC AB =,4AB =,∴BC =,∵O 为BC 中点,∴12OB OC BC ===,∵4OE =,在Rt OBE 中,cos 42OB BOE OE ∠===,∴45BOE ∠=︒,同理45COF ∠=︒,∴180454590EOF ∠=︒-︒-︒=︒,∴扇形EOF 的面积为29044360ππ⋅=,故答案为:4π.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0ky k x=≠上,则k =________.【答案】8【解析】【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点232A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,∴52AB OA ==,AB CO ∥,∴点()42B ,,∵点B 落在反比例函数()0ky k x=≠上,∴428k =⨯=,故答案为:8.13.如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=________.【答案】2021【解析】【分析】本题考查了解直角三角形、勾股定理,平行线分线段成比例,先设13AB BC x ==,根据5tan 12B ∠=,AH CB ⊥,得出512AH x BH x ==,,再分别用勾股定理4126AD x AC x ==,,故441cos 41DH ADC AD ∠==,再运用解直角三角形得出204141DM x =,214141AM x =,代入CE MD AC AM=,化简即可作答.【详解】解:如图,过点A 作AH CB ⊥垂足为H,∵85BD DC =,AB BC =,设13AB BC x ==,∴85BD x DC x ==,,∵5tan 12B ∠=,AH CB ⊥,∴512AH BH =,∵13AB BC x ==,∴2222169AH BH AB x +==,解得512AH x BH x ==,,∴1284DH x x x =-=,54HC x x x =-=,∴AD ==,AC ==,∴cos 41DH ADC AD ∠==,过点C 作CM AD ⊥垂足为M,∴cos 41DM CD ADC x =⋅∠=,41AM AD DM x =-=,∵DE AD ⊥,CM AD ⊥,∴MC DE ∥,∴2041204121214141x CE DM AC AM ===,故答案为:2021.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.计算:()1012cos 45 3.1414π-⎛⎫-⋅︒+-++ ⎪⎝⎭.【答案】4【解析】【分析】本题考查特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂.先将各项化简,再算乘法,最后从左往右计算即可得【详解】解:()1012cos 45 3.1414π-⎛⎫-⋅︒+-+-+ ⎪⎝⎭221142=-⨯+++114=++4=.15.先化简,再求值:2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中1a =+【答案】11a -,22【解析】【分析】此题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序和运算法则是解题关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭=()2112111a a a a a -+⎛⎫-÷ ⎪+++⎝⎭=()21111a a a a -+⋅+-=11a -,当1a =+2==.16.据了解,“i 深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i 深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A ,B 两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A :28,30,40,45,48,48,48,48,48,50,50学校B :(1)学校平均数众数中位数方差A ①________4883.299B 48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A ,理由见解析【解析】【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【小问1详解】解:①()1283040454848484848505048.310++++++++++=;②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=;填表如下:学校平均数众数中位数方差A48.34883.299B 48.42547.5354.04【小问2详解】小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?【答案】任务1:()0.80.2L n m =+;任务2:一次性最多可以运输18台购物车;任务3:共有3种方案【解析】【分析】本题考查了列代数式表达式,一元一次不等式的应用,正确掌握相关性质内容是解题的关键.任务1:根据一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m ,且采购了n 辆购物车,L 是车身总长,即可作答.任务2:结合“已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车”,得出2.60.80.2n ≥+,再解不等式,即可作答.任务3:根据“该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次”,列式()24185100x x +-≥,再解不等式,即可作答.【详解】解:任务1:∵一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m∴()0.80.2L n m=+任务2:依题意,∵已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,令2.60.80.2n ≥+,解得:9n ≤∴一次性最多可以运输18台购物车任务3:设x 次扶手电梯,则()5x -次直梯由题意∵该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次可列方程为:()24185100x x +-≥,解得:53x ≥方案一:直梯3次,扶梯2次;方案二:直梯2次,扶梯3次:方案三:直梯1次,扶梯4次答:共有三种方案18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若6AB =5BE =,求O 的半径.【答案】(1)见解析(2)35【解析】【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【小问1详解】证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,∴四边形BHDE 为矩形,∴DE BE ⊥;【小问2详解】由(1)知四边形BHDE 为矩形,BH AD ⊥,AH DH =,∴5AH DH BE ===,∴BH ==设O 的半径为r ,则:,OA OB r OH BH OB r ===-=,在Rt AOH △中,由勾股定理,得:()()2225r r=+,解得:r =;即:O 的半径为.19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.【答案】(1)图见解析,214y x =;(2)方案一:①1,2m n ⎛⎫⎪⎝⎭;②24n m ;方案二:①1,2h m k n ⎛⎫++ ⎪⎝⎭;②24n m ;(3)a 的值为12或12-.【解析】【分析】(1)描点,连线,再利用待定系数法求解即可;(2)根据图形写出点B '或点B 的坐标,再代入求解即可;(3)先求得()28A h k --+,,()28B h n -++,,1C 的顶点坐标为()P h k -,,再求得1C 顶点距线段AB 的距离为()88k k +-=,得到2C 的顶点距线段AB 的距离为1082-=,得到2C 的顶点坐标为()10Q h k -+,或()6Q h k -+,,再分类求解即可.【小问1详解】解:描点,连线,函数图象如图所示,观察图象知,函数为二次函数,设抛物线的解析式为2y ax bx c =++,由题意得04211644c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得1400a b c ⎧=⎪⎪=⎨⎪=⎪⎩,∴y 与x 的关系式为214y x =;【小问2详解】解:方案一:①∵AB m =,CD n =,∴12D B m ''=,此时点B '的坐标为1,2m n ⎛⎫⎪⎝⎭;故答案为:1,2m n ⎛⎫ ⎪⎝⎭;②由题意得212m a n ⎛⎫= ⎪⎝⎭,解得24n a m =,故答案为:24n m ;方案二:①∵C 点坐标为(),h k ,AB m =,CD n =,∴12DB m =,此时点B 的坐标为1,2h m k n ⎛⎫++ ⎪⎝⎭;故答案为:1,2h m k n ⎛⎫++ ⎪⎝⎭;②由题意得212k n a h m h k ⎛⎫+=+-+ ⎪⎝⎭,解得24n a m =,故答案为:24n m ;【小问3详解】解:根据题意1C 和2C 的对称轴为x h =-,则()28A h k --+,,()28B h n -++,,1C 的顶点坐标为()P h k -,,∴1C 顶点距线段AB 的距离为()88k k +-=,∴2C 的顶点距线段AB 的距离为1082-=,∴2C 的顶点坐标为()10Q h k -+,或()6Q h k -+,,当2C 的顶点坐标为()10Q h k -+,时,()2210y a x h k =+++,将()28A h k --+,代入得4108a k k ++=+,解得12a =-;当2C 的顶点坐标为()6Q h k -+,时,()226y a x h k =+++,将()28A h k --+,代入得468a k k ++=+,解得12a =;综上,a 的值为12或12-.【点睛】本题主要考查二次函数的综合应用,抛物线的平移等,理解题意,综合运用这些知识点是解题关键.20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,5AF =,2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE ,请直接写出PE 的值.【答案】(1)117(2)2AF CD =,理由见解析(3)①见解析;②3414PE =或3412.【解析】【分析】(1)根据题意可推出AEF CEB △∽△,得到AF AE BC CE =,从而推出AE ,再根据勾股定理可求得BE ,再求得AB ;(2)根据题意可推出AED FEB ∽ ,得到2AE AD DE EF BF EB===,设BE a =,则2DE a =,3AB CD a ==,再利用勾股定理得到AE ,从而推出EF 、AF ,即可求得答案;(3)①分情况讨论,第一种情况,作BC 的平行线AD ,使AD BC =,连接CD ,延长BE 交AD 于点F ;第二种情况,作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AFAB =,连接DF ;第三种情况,作AD BC ∥,交BE 的延长线于点D ,连接CD ,作BC 的垂直平分线;在DA 延长线上取点F ,使AF AD =,连接BF ;②根据①中的三种情况讨论:第一种情况,根据题意可证得PAC △是等腰三角形,作PH AC ⊥,则AH HC =,可推出CPH CB E '∽△△,从而推出PH CH B E CE=',计算可得PH ,最后利用勾股定理即可求得PE ;第二种情况,延长CA 、DF 交于点G ,同理可得PGC 是等腰三角形,连接PA ,可由GAF CAB ∽,结合三线合一推出PA AC ⊥,从而推出CPA CB E ' ∽,同第一种情况即可求得PE ;第三种情况无交点,不符合题意.【小问1详解】解:AD BC ,F 为AD 的中点,AD BC =,AF =,2CE =,AEF CEB ∴ ∽,2BC AD AF ===AF AEBC CE ∴=2AE =,解得1AE =,22222216BE BC CE ∴=-=-=,AB ∴=;【小问2详解】解:AF =,理由如下:根据题意,在垂中四边形ABCD 中,AF BD ⊥,且F 为BC 的中点,∴2AD BC BF ==,90AEB ∠=︒;又 AD BC ∥,AED FEB ∴ ∽,∴2AE AD DE EF BF EB===;设BE a =,则2DE a =,AB BD =,∴23AB BD BE ED a a a ==+=+=,∴AE ===,EF =,∴AF AE EF =+=+=,AB CD = ,∴323AF AF CD AB a ===AF ∴=;【小问3详解】解:①第一种情况:作BC 的平行线AD ,使AD BC =,连接CD ,则四边形ABCD 为平行四边形;延长BE 交AD 于点F ,BC AD ,AEF CEB ∴ ∽,AF AE BC CE∴=,AD BC = ,2CE AE =,12AF AE BC CE ∴==,即1122AF BC AD ==,∴F 为AD 的中点;故如图1所示,四边形ABCD 即为所求的垂中平行四边形:第二种情况:作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AF AB =,连接DF ,故A 为BF 的中点;同理可证明:12AB CD =,则2BF AB AF AB CD =+==,则四边形BCDF 是平行四边形;故如图2所示,四边形BCDF 即为所求的垂中平行四边形:第三种情况:作AD BC ∥,交BE 的延长线于点D ,连接CD ,作BC 的垂直平分线;在DA 延长线上取点F ,使AF AD =,连接BF ,则A 为DF 的中点,同理可证明12AD BC =,从而DF BC =,故四边形BCDF 是平行四边形;故如图3所示,四边形BCDF 即为所求的垂中平行四边形:②若按照图1作图,由题意可知,ACB ACP ∠=∠,四边形ABCD 是平行四边形,ACB PAC ∴∠=∠,PAC PCA ∴∠=∠,PAC ∴△是等腰三角形;过P 作PH AC ⊥于H ,则AH HC =,5BE =,212CE AE ==,5B E BE '∴==,6AE =,111()(612)9222AH HC AC AE CE ∴===+=+=,963EH AH AE ∴=-=-=;PH AC ⊥ ,BE AC ⊥,CPH CB E '∴∽△△,PH CH B E CE ∴=',即9515124CH B E PH CE '⋅⨯===∴4PE ===若按照图2作图,延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥ ,GAF CAB ∴ ∽,1AF AG AB AC∴==,AG AC ∴=,PA AC ∴⊥;同理,CPA CB E '∽△△,6AE = ,12EC =,5B E BE '==,B E CE PA AC '∴=,即51815122B E AC PA CE '⋅⨯===,3412PE ∴==,若按照图3作图,则:没有交点,不存在PE (不符合题意)故答案为:3414PE 或3412.【点睛】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的辅助线是解题的关键.。

深圳2012-2014年中考数学试题考点与难度比较分析

深圳2012-2014年中考数学试题考点与难度比较分析

深圳2012-2014年中考数学试题考点与难度比较分析:华富中学李冬青1、考点及难度对照表:2、共性分析:(1)实数有关概念(相反数、倒数、绝对值等)仍然以送分为主;(2)中心对称和轴对称仍然给出图形;(3)因式分解仍是简单地提一个数(或字母)因式,再用一次公式;(4)实数计算仍然以简单的二次根式化简、特殊三角函数值、0指数、负整指数、实数的绝对值(只一项)等为考点。

计算简单不易错,以送分为原则;(5)统计综合中,频率、频数、样本容量知二求一仍是必考点;(6)18题计算仍是以分式化简求值为主,2013年之所以考解不等式组,是因为应用题考的是平行投影和相似三角形的应用,没有考不等式的方案设计,作为补尝,18题考不等式组,而在选择题第8题和第6题分别设计了一道列分式方程的应用和分式值为0的计算;(7)几何证明与计算以及综合题中,等腰三角形的性质、相似三角形、勾股定理、全等三角形的构造等,仍是解决问题的重要工具。

(8)综合性问题中,从以往动点问题为主,发展到近三年的直线平移、平面图形平移、抛物线平移,均体现出对试题新颖性的追求。

3、2014年试题特点分析:(1)同类考点的题,难度比前两年稍大(表中填充绿色底色的部分),总体计算量和分析量偏大,个别题目(如12题)解题方法机巧而单一,如果用另一种方法,则会陷入计算难以进行下去的困难,此题放在第12题的位置,会使一些有能力挑战难题的学生因为在此题上耗费过多时间,最终因时间不够,反而考不过基础较好,但能力不是太强,对此题直接选择放弃的学生。

(2)出题者几何意识较强,如有意识地考查了角平分线的性质定理、线段的垂直平分线的性质定理,而前两年的题中则没有这种追求。

(3)许多题是在以往中考题命题意图的基础之上加大难度而构造的,如15题求反比例函数k值的,是将一道取中点的题变化而成的;16题探索图形规律是在去年16题命题基础上,增加难度形成的;第22题,最后一问求使线段差最大的点的题,是用2010年22题第(2)问求使线段和最大的点变化而来的;23题抛物线平移,是在4月份松坪中学的模拟题第23题的基础上增加难度形成的,但取材非公共资源,有失公平,这一点命题人员似乎没有意识到。

深圳市近5年中考数学考点分析(2018-2022)

深圳市近5年中考数学考点分析(2018-2022)

二元一次方程组应用
函数图像判断
第10题 圆的切线、圆周角、三角形全等
正方形中多结论问题
第11题
因式分解
因式分解
第12题
数据统计
已知方程的根求参数
第13题
一元二次方程
尺规作图与垂直平分线
第14题
反比例函数、数形结合
反比例函数与旋转综合
第15题
三角形综合
对称变换中的求值问题
第16题
指数幂、二次根式、三角函数的 运算法则
题号 第1题 第2题 第3题 第4题 第5题 第6题 第7题
2022(改革第2年) 倒数 三视图 众数
科学计数法 幂的运算 解不等式 相交线与平行线
第8题 圆周角及简单几何图形的判定
2021(改革第1年) 正方体展开图 相反数 解不等式 整式的运算 中位数 实数计算
二元一次方程组应用
三角函数的应用
第9题
第22题
几何研究题(折叠问题与正方形、 几何研究题(四边形几何探究、相似、
矩形及菱形、分类讨论思想)
三角形函数)
第23题


2020 相反数 中心对称与轴对称图形 科学计数法 三视图 平均数与中位数 整式运算 相交线与平行线
尺规作图与角平分线
2019 绝对值 轴对称图形 科学计数法 正方体展开图 众数与中位数 整式运算 相交线与平行线
2018 相反数 科学计数法 三视图 中心对称图形 众数与极差 整式运算 一次函数图像平移
平行线的判定
二元一次方程组应用
圆的切线与求值
二次函数图像与参数符号判断 反比例函数与三角形综合 因式分解 概率 正方形中求值(k型全等)
三角形中求值(角平分线、勾股 定理、相似) 实数计算 分式化简求数应用题(分式方程,利用不 等式求最值)

罗湖中考数学试卷真题分析

罗湖中考数学试卷真题分析

罗湖中考数学试卷真题分析中考数学试卷是评判学生数学水平的重要依据,对于罗湖地区的中学生来说,罗湖中考数学试卷更是至关重要。

本文将对罗湖中考数学试卷的真题进行分析,以帮助学生更好地备考和提高数学成绩。

一、选择题部分分析选择题是罗湖中考数学试卷的主要部分,占据总分的一大比例。

分析选择题可以帮助我们掌握试题的出题思路和考察重点。

例如,第一题是一道解方程题,学生需要根据题目中的条件设立方程并求解。

同时,这道题也考察了学生对线性方程的理解和运用能力。

在备考中,应注重这方面的知识点,并进行大量的题目练习,提升解方程的能力。

第二题是一道几何题,要求学生根据图形计算面积。

在解答过程中,应注意几何知识的运用和计算方法的灵活性。

几何知识的掌握是中考数学试卷中必不可少的一项,因此在备考中要重点复习并进行多次练习,熟悉常见几何形状的性质和计算方法。

第三题是一道数列题,要求学生找出规律并计算。

数列是中考数学试卷中常见的考点之一,需要学生熟悉数列的性质和常见的数列类型。

在备考中,应多学习数列的概念和性质,同时进行大量的题目练习,提高解决数列题目的能力。

通过以上的例子,我们可以看出,罗湖中考数学试卷在选择题部分注重对基础知识的考查和运用能力的检验。

因此,在备考中,学生应牢固掌握数学的基础知识,同时加强对各类题型的练习,培养解题的思维能力和应变能力。

二、计算题部分分析计算题是罗湖中考数学试卷中另一个重要的部分,占据总分的一部分。

分析计算题可以帮助我们了解试题的难度和考察的重点。

例如,第四题是一道应用题,要求学生根据给定的条件进行计算和推理。

在解答过程中,学生需要灵活运用所学的知识,进行数据计算和思维推理。

这类题目在中考数学试卷中常见,对学生的应用能力和解决实际问题的能力有一定的要求。

在备考中,应多看一些应用题的解题思路,多进行实际问题的联系和分析。

第五题是一道函数题,要求学生根据给定的函数图像计算相应的值。

解析函数图像和计算函数值是中考数学试卷中经常出现的题型,学生应熟练掌握函数的概念和性质,同时进行大量的计算练习,提高函数题的解答能力。

深圳市中考数学试卷分析报告

深圳市中考数学试卷分析报告

深圳中考数学试卷分析报告一.整体分析通过对近三年的深圳中考数学试卷的分析,试卷整体的设计思路体现了“注重双基、体现新意、适度区分”的思想。

具有以下几个特点:第一,注重双基和教学重点的考查。

试题考查重要的数学概念、性质和方法,包括重视双基和教材内容考查。

第二,体现新意。

客观性试题设计在不影响学生思维的前提下加强解释性。

综合性问题控制条件,降低试题的复杂性,却依然存在较多的思维入口,利于学生发挥真实水平。

第三,适度区分。

基础题、中档题、较难题的分值配比为8:1:1,中档题和较难题分散在不同试题中,既有利于适度区分,又有利于合理考查学生解决问题过程的认知水平差异。

二.板块分析图(1.1)从图(1.1)可以清晰的看出以下几点:1.几何与代数的考点最多分别为18个和13个,占所有考点的69%,所以这两个板块的知识是深圳中考的重点,很多考题集中在这两块出题目。

2.综合题型是考试中的难点也是考生成绩的区分点,考点很集中,主要是二次函数、圆、一次函数与几何的综合运用,重要把握这几大知识点就会抓住中考的精髓所在。

图(1.2)3 从图(1.2)我们可以在总的分值占比上代数知识的考点占了深圳近三年中考分值的1/3以上,是重要的考点,几何的知识板块占比也相当多,所以把握好这两个板块就抓住了深圳中考。

对于函数与几何的综合部分是重点也是难点更是必考点,所以务必当作重中之重来把握。

三. 年级分析图(1.3)图(1.4)从图(1.3)(1.4)我们可以看出各年级在中考的考试中占比有所侧重与不同,可以很清晰的看出来八年级的考点在所有考点占了近一半,所以八年级的学习很关键,它的知识点很多,考生务必重点把握八年级的学习,当然七年级与九年级的知识点同样重要,也要高度重视起来,才能在中考中立于不败之地。

四.知识点分析图(1.5)从图(1.5)我们可以看出以下几点:1.从分值占比这一块我们可以看出二次函数综合运用、圆的综合运用、解一元一次不等式(组)、分式化简、实数运算、图形对称、等腰梯形的性质、因式分解这几个知识点出现的分值都在10分以上,是考试的重难点,考生在务必熟练这些知识的同时,也要掌握其它考点。

深圳近五年中考数学分析+难度分析

深圳近五年中考数学分析+难度分析

中 中 中 难
,科学计数法,轴对称和中心对称,命题的真假判断属于每年都考的内容。接下来概率和数据统计 上面。整体上来看,12个选择题简单的考察基本概念的有8个左右,最后两题需要思考,比较复杂
中 易 中 反比例函数中K值的几 何意义,相似三角形的 判定与性质 因式分解 概率的求解 寻找图形变化的规律 中 中 易 因式分解 数据分析(平均数的 计算) 角平分线,平行四边 形的性质以及等腰三 角形的判定 反比例函数中k值得求 解 易 易 中
易 易 易 易 易 中 中 中 中 中 概率的求解(树状图法与列 表法表示概率) 直角三角形的边角关系(解 直角三角形 坡度坡角问题) 命题的真假判断(二次函数 图像与系数之间的关系) 等腰梯形的性质和特殊角的 三角函数 简单组合体的三视图 数据的分析(极差,算术平 均数,中位数,众数) 一次函数坐标上的点的特性 二次函数根的个数判别式 全等三角形的判定



空题中就会涉及。前面两题比较简单,一般填空题的难点在反比例函数的综合应用中存在,还有一
实数和特殊三角函数的 综合运算 分式方程有意义的条件 和解法 扇形统计图图,和直方 统计图表示的意义 直角三角形的边角关系 (解直角三角形,仰角 和高度问题) 应用题(一元一次方程 在实际当中的应用) 实数和特殊三角函数 的综合运算 解一元一次不等式组 易 频数的直方分布图, 用样本估计总体,频 数和频率 直角三角形的边角关 系(解直角三角形, 俯角仰角问题) 应用题(二元一次方 程组和一元一次不等 式的综合应用) 易
难易程度
易 易
2013
绝对值的定义 整式的运算(同底数幂的运 算) 科学记数法表示较大的数
难易程度
易 易
2014
相反数的定义 轴对称图形,中心对称图形 科学计数法表示较大的数

深圳中考数学试卷分析

深圳中考数学试卷分析

深圳中考数学试卷分析2020/4/1201O N E总体结构分析选择题36%填空题12%解答题52%试卷题型分布一、选择题(建议15min 内完成) 1-12题,每题3分,共36分二、填空题(建议10min 完成) 13-16题,每题3分,共12分三、解答题17题计算(5分) (必须做对) 18题计算(6分) (必须做对) 19题数据统计(7分) (必须做对) 20-23题综合应用(共4题,共34分)02O N E卷面结构分析04综合应用题03计算题02填空题01选择题CONTENTS目录题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值选择题1相反数倒数绝对值相反数相反数有理数(正数)绝对值相反数绝对值32三视图科学计数法同底数幂的运算图形对称性科学计数法正方体展开图三视图科学计数法轴对称33科学计数法轴对称和中心对称科学计数法科学计数法同底数幂的运算整式运算科学计数法三视图科学计数法34同底数幂的运算同底数幂的运算轴对称和中心对称三视图轴对称和中心对称轴对称图形轴对称、中心对称中心对称正方体展开图35中位数方差中位数数据的代表三视图科学计数法平行线的判定众数、极差中位数、众数36打折销售三角形内角和与外交定理分式值为零一次函数的解析式数据的代表(中位数、众数)平行线的性质与角度的计算解一元一次不等式组整式运算整式运算37相似三角形概率关于原点对称一元二次方程的判别式一元一次不等式概率计算一元一次方程的应用一次函数平移平行线的性质与角度的计算38概率方程的解、平方根、三角形全等的判定列分式方程全等三角形二次函数图像与系数的关系平行四边形、全等三角形的判定平方根、中位数、众数尺规作图(中垂线)相交线与平行线尺规作图、线段的垂直平分线39整式的运算圆直角三角形、四边形周长概率的统计圆周角定理分式方程应用题命题与定理二元一次方程组函数图像,符号判断310二次函数的性质、反比例函数的性质各象限点的坐标特点命题判断对错解直角三角形的实际问题一元一次方程的应用定义新运算(求导)数据分析(中位数)圆的切线性质命题311切线、垂径定理、二元一次方程组相似三角形一次函数与二次函数图像二次函数图象与系数的关系复杂作图正方形与扇形面积计算三角函数的应用(测高)二次函数图象定义新运算312等边三角形的性质、相似三角形等边三角形的性质、角交定理平行、全等、三角函数梯形、三角形全等、解直角三角形翻折变换(折叠问题)、全等三角形的判定与性质、正方形的性质、相似三角形的判定与四边形、全等三角形、相似三角形几何综合反比例函数四边形多结论题3题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值填空题13分解因式分解因式分解因式分解因式分解因式(提公因式法与公式法的综合应用)因式分解因式分解因式分解因式分解314垂径定理二次函数概率折叠之雷劈模型勾股定理、角平分线列表法与树状图法平均数概率计算概率计算概率315探究规律反比例函数利润率双曲线、相似三角形找规律尺规作图、角平分线与平行四边形定义新运算三角形面积、全等正方形折叠316一次函数、勾股定理、三角形的内心正方形找规律找规律反比例函数系数K 的几何意义、相似三角形的判定与性质平行四边形与反比例函数相似三角形三角形(角平分线性质、相似三角形、解直角三角形)反比例综合3题型题号2011年2012年2013年2014年2015年2016年2017年2018年2019年分值解答题17负指数、三角函数、0次幂、绝对值负指数、三角函数、0次幂、绝对值负指数幂、三角函数、0次幂、绝对值无理数化简、三角函数、0次幂、负指数幂实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值实数计算实数的运算实数计算实数计算518解分式方程分式化简求值解不等式组分式化简求值解分式方程一元一次不等式组分式的简单求值分式的化简求值分式化简求值619频数分布直方图、扇形统计图频数分布直方图频数分布直方图、扇形统计图频数分布直方图条形统计图;用样本估计总体;扇形统计图数据统计数据统计数据统计数据统计720圆的性质、勾股定理、圆与三角形面积计算矩形折叠等腰梯形平行四边形的判定解直角三角形的应用-仰角俯角问题三角函数的应用一元二次方程的实际应用菱形的证明和计算三角函数的应用821矩形的性质、折叠、勾股定理、相似方案选择、最值问题圆、相似、勾股定理、垂径定理分式方程、不等式方案设计一元一次方程的应用一次方程与一次不等式的应用反比例函数与一次函数的综合分式与不等式应用题一元二次方程、一次函数应用题822二元一次方程、二次函数的最值问题、方案选择二次函数的几何运用抛物线的解析式、圆、相似、垂径定理、相交弦定理勾股定理、切线、一次函数表达式、线段差的最值问题切线的性质以及相似三角形的判定与性质、等腰直角三角形的性质圆与相似三角形的综合圆的综合(勾股定理、圆周角定理、相似三角形)圆与三角函数、相似综合、截长补短一次函数、二次函数综合、线段、最值、动点面积比例问题9 23抛物线的解析式、对称轴和坐标轴上存在点使四边形的周长最小问题、相似三角形、二次函数图像上点坐标圆、一次函数直线、反比例函数、二次函数求最值、K的几何意义、平移一次函数交点、二次函数解析式、函数图像的平移、及产生的动点构成的直角三角形存在性问题二次函数的综合应用,涉及待定系数法、角平分线的性质、三角函数、三角形面积一次函数解析式、角平分线性质、等腰三角形与二次函数动点存在性问题二次函数的综合(二次函数解析式、面积问题、旋转)二次函数与面积、构造角度、折叠、三垂直相似圆、切线证明、相似三角形、三角函数、二次函数最值问题9方程(组):考察解法及在应用题中的作 用,二次方程还涉及根的判断不等式:主要考查解法及性质u 数与式(20分)-基础(必须掌握)抓定义和原理实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总的来看,填空题较选择题难度上 有一定提升,建议10分钟完成。
3.计算题 该部分有2道题目, 17、18题,总共分数 在11分左右。
有理数混合计算
特殊角度的三角函数值、特殊次方的值、特殊根 式的值、特殊数值的绝对值、
分式的化简计算 分式方程 不等式组
化简以后给定特殊数字代入、自主选择特殊数字 代入。分式方程曾根。不等式组的特殊范围等
5.图形的证明 20题为图形证明题,共计7-8分。该部分主要考查直线、 角度、三角形、四边形、圆等简单几何图形的性质和 应用
线段的相等、全等三角形证明、平行四边形证明、 菱形证明、圆的直径证明、线段长度的计算、线段 数量关系推导、不规则图形(阴影部分)面积计算
这一部分考查内容较多,且近五年中考都不相同。考 查有一定的深度,对学生的有一定的能力要求。需要学生 对简单图形的相关知识内容全部熟练掌握,并具有一定的 应用能力。同时,也应该看到,尽管考查内容较多,但该 题难度整体属于中等偏下。属于不可丢分的内容。建议时 间控制在10分钟之内
整数解,要注意条件要求。其余三年都是化简不等式,并代入数字计算、主要考查了因式分解的相关内 容,尽管分式形式复杂,但化简却较为简单。建议5分钟左右完成。
4.数据分析 19题为数据分析题,分值7分、内容较为简 单,但是考查了一定的实际问题转化能力。
样本、频率、中位数、扇形图、直方图
本部分主要考查数据统计分析的相关内容,且考查重点以理解应用为主。 考查对数据统计分析中相关概念的掌握,包括容样本容量、频率、概率、中 位数等内容。同时出现的直方图和扇形图,还要求一定的图表分析能力。
有理数相关知识 函数图形性质 简单几何图形的性质
数据分析 一元一次方程应用
总体来看,选择题难 度不大,以基本知识 为的掌握为主,平时 加强训练,足可以应 对。
建议:十五分钟内完 成该部分内容,最后 一题可根据实际情况, 适时放弃
2.填空题 总共4道题,12分。近五年 内容包括
因式分解 图形规律
几何图形的性质与应用
因此作为学校,在教授学生知识的同时还要教会学生独立思考、 教会他们面对陌生题目时候解决问题的能力。从学校中看到自己的 能力,从学习中得到乐趣。
6.一元一次方程的应用 21题一般为一元一次方程的应用,(2013年没有考 查)。一般是8-9分。
一元一次方程的实际应用
四种基本类型的一元一次方程应用题
不等式的实际应用 函数的实际应用
不等式在实际中的应用,需注意取值 实际情况
一般是根据二次函数的定义域,求最值 问题,但需注意定义域要复合实际情况。
抛物线解析式的确定 图形的证明 特殊点的确立
特殊线段的长度 动点的函数关系
抛物线确定的基本方法
基本图形证明。包括三角形、 四边形、圆都有出现
一般的都是满足某些特殊形 式的动点
跟简单图形证明紧密联系
随着点的变化,线段长度, 图形面积等的变化趋势
这部分内容涉及较多,且都具有一定的深度和难度。需要在
对基础知识熟练掌握的基础上具有一定的分析能力,解决问题 能力。要平时加强训练,拓展视野。建议时间在20分钟左右
Hale Waihona Puke 该部分内容主要考查了一元一次方程的实际应用,不等式实际应用和二次函
数最值等内容。出题形式比较灵活,考查学生理解能力。内容比较接近实际生 活。建议时间在8分钟左右。
7.综合分析应用 这一部分主要集中在最后两道的题目,分值共计18左
右。考查知识面比较全面,具有一定的深度和难度。 全面考察了学生解决问题的能力。
总结
中考是一种选拨性考试,因此考试整体具有一定的难度,可以拉 开不同层次的学生距离。从近五年的数学中考试卷可以看出,试卷 整体难度属于中等偏上,具有一定的选拨性。主要注重基础知识掌 握的考查以及对知识灵活运用的能力,使得单纯的恶补式学习不再 具有优势。更多的是要求学生在掌握基础知识的前提下,多独立思 考、学会运用已知的数学工具解决未知的内容,培养思维活跃和创 新应用能力,体现出了“指挥棒”的作用。
17题近五年考查的都是有理数的运算,主要涉及到角度、根式、绝对值、特殊次方。总体难度较低, 考查学生对有理数掌握的基本情况和基本的计算能力建议3分钟完成。
18题近五年来主要考查了三个不同的形式。其中解分式方程和解不等式组各一次,分式的化简计算三
次。分式方程考查较为简单,简单通分即可,但要注意曾根的情况。不等式组也较为简单,但结果需取
深圳中考数学试卷分析
2012-2015
总体结构分析
中考数学试卷总分100分,时间90分钟。包括选择题、填 空题、计算、综合应用等题型。整体难度中等偏上,考查内 容广泛,基本覆盖中学三个年级的内容。考查形式灵活,着 重考查学生对基本知识的掌握和灵活运用的能力
卷面结构分析
1.选择题。共计12道题目,36分钟。 整体来看选择题难道不大,主要以考查基本知识的掌握为主。
卷面内容分析
一.代数基础知识分值高且容易掌握。 1.重点掌握高频考点:分式化简、实数运算、解一元一次不等式、因式分解。 2.特点:难度小,计算性较强 3.建议:加强计算的练习 二.几何基础知识分值高且题型简单。 1.重点掌握高频考点:等腰梯形的性质、图形的规律、平行四边形的判定、全等 三角形的判定。 2. 特点:难度小,知识点多,题型广 3. 建议:加强概念记忆,增加题型练习 三.函数与几何综合题型是重难点。 1.重要掌握的综合题型:一次函数与圆、二次函数与几何、反比例函数与几何 2.特点:题目综合性强,难度较大,知识点集中 3.建议:深入概念的理解,加强题型的练习,针对性训练
简单函数曲线的应用
数据分析
填空题目数量较少,只有4道题目, 12分。考查内容比较固定,其中近五 年第一道填空题都是因式分解,但内 容较为简单。图形规律也出现了5次, 大部分都是作为最后一道题目,有一 定的难度,主要考查学生的空间想象 能力,以及规律的把握。几何图形的 性质与应用也出现了4次,主要考查相 关图形的性质应用,较选择题有一定 的深度。函数主要考查了一次函数以 及反比例函数的图形等内容,也出现 了二次函数的最值题目,内容较为简 单。而数据分析只出现了一次,考查 概率问题,内容考查对概率基本知识 的掌握,比较的简单。
相关文档
最新文档