算法导论第三十章答案教材

合集下载

《算法导论》习题答案12、13、14章

《算法导论》习题答案12、13、14章

第9章 中位数和顺序统计学
9.3-2
大于x的数至少有3n/10-6, n≥140时,易证3n/10-6 ≥n/4 小于x的数同理。
9.3-4
通过比较得到第i小元素,每次保留比较信息。 在比较过程中比这个元素小的元素构成的集合即为i – 1个 小数集合,而比较过程中比这个元素大的元素则构成了n – i 个大元素集合。不需要增加比较次数。
Preprocessing(A,k) for i←0 to k do C[i]←0 for j←1 to length[A] do C[A[j]] ←C[A[j]]+1 for i←1 to k do C[i] ←C[i]+C[i-1] Query(C,k,a,b) if b<a or b<1 or a>k return 0 if a<1 then a=1 if b>k then b=k if a≠1 then return C[b]-C[a-1] else return C[b]
0 +1
k +1
k +1
( k +1) +1
第6章 堆排序
6.4-3 不论递增还是递减,时间均为O(nlgn) 6.4-4 最坏情况下,n-1次调用MAX-HEAPIFY,运 行时间为O(nlgn)
第6章 堆排序
6.5-3
HEAP-MINIMUM(A) if heap-size[A]<1 then error”heap underflow” else return A[1] HEAP-EXTRACT-MIN(A) if heap-size[A]<1 then error”heap underflow” min<-A[1] A[1]<-A[heap-size[A]] heap-size[A]<-heap-size[A]-1 MIN-HEAPIFY(A,1) return min HEAP-DECREASE-KEY(A,i,key) if key>A[i] then error A[i]<-key while i>1 and A[PARENT(i)>A[i] do exchange A[i]<->A[PARENT(i)] i<-PARENT(i) MIN-HEAP-INSERT(A,key) heap-size[A]<-heap-size[A]+1 A[heap-size[A]]<-+∞ HEAP-DECREASE-KEY(A,heap-size[A],key)

算法导论习题答案 (5)

算法导论习题答案 (5)
c(j) = min {c(i − 1) + linecost(i, j)} .
Three-hole punch your paper on submissions. You will often be called upon to “give an algorithm” to solve a certain problem. Your write-up should take the form of a short essay. A topic paragraph should summarize the problem you are solving and what your results are. The body of the essay should provide the following:
(a) Argue that this problem exhibits optimal substructure.
Solution: First, notice that linecost(i, j) is defined to be � if the words i through j do not fit on a line to guarantee that no lines in the optimal solution overflow. (This relies on the assumption that the length of each word is not more than M .) Second, notice that linecost(i, j) is defined to be 0 when j = n, where n is the total number of words; only the actual last line has zero cost, not the recursive last lines of subprob­ lems, which, since they are not the last line overall, have the same cost formula as any other line.

算法分析与设计教程习题解答_秦明

算法分析与设计教程习题解答_秦明

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(--=n n f n② )log *()(n n n f O =6. 解:算法略。

算法导论课程作业答案

算法导论课程作业答案

算法导论课程作业答案Introduction to AlgorithmsMassachusetts Institute of Technology 6.046J/18.410J Singapore-MIT Alliance SMA5503 Professors Erik Demaine,Lee Wee Sun,and Charles E.Leiserson Handout10Diagnostic Test SolutionsProblem1Consider the following pseudocode:R OUTINE(n)1if n=12then return13else return n+R OUTINE(n?1)(a)Give a one-sentence description of what R OUTINE(n)does.(Remember,don’t guess.) Solution:The routine gives the sum from1to n.(b)Give a precondition for the routine to work correctly.Solution:The value n must be greater than0;otherwise,the routine loops forever.(c)Give a one-sentence description of a faster implementation of the same routine. Solution:Return the value n(n+1)/2.Problem2Give a short(1–2-sentence)description of each of the following data structures:(a)FIFO queueSolution:A dynamic set where the element removed is always the one that has been in the set for the longest time.(b)Priority queueSolution:A dynamic set where each element has anassociated priority value.The element removed is the element with the highest(or lowest)priority.(c)Hash tableSolution:A dynamic set where the location of an element is computed using a function of the ele ment’s key.Problem3UsingΘ-notation,describe the worst-case running time of the best algorithm that you know for each of the following:(a)Finding an element in a sorted array.Solution:Θ(log n)(b)Finding an element in a sorted linked-list.Solution:Θ(n)(c)Inserting an element in a sorted array,once the position is found.Solution:Θ(n)(d)Inserting an element in a sorted linked-list,once the position is found.Solution:Θ(1)Problem4Describe an algorithm that locates the?rst occurrence of the largest element in a?nite list of integers,where the integers are not necessarily distinct.What is the worst-case running time of your algorithm?Solution:Idea is as follows:go through list,keeping track of the largest element found so far and its index.Update whenever necessary.Running time isΘ(n).Problem5How does the height h of a balanced binary search tree relate to the number of nodes n in the tree? Solution:h=O(lg n) Problem 6Does an undirected graph with 5vertices,each of degree 3,exist?If so,draw such a graph.If not,explain why no such graph exists.Solution:No such graph exists by the Handshaking Lemma.Every edge adds 2to the sum of the degrees.Consequently,the sum of the degrees must be even.Problem 7It is known that if a solution to Problem A exists,then a solution to Problem B exists also.(a)Professor Goldbach has just produced a 1,000-page proof that Problem A is unsolvable.If his proof turns out to be valid,can we conclude that Problem B is also unsolvable?Answer yes or no (or don’t know).Solution:No(b)Professor Wiles has just produced a 10,000-page proof that Problem B is unsolvable.If the proof turns out to be valid,can we conclude that problem A is unsolvable as well?Answer yes or no (or don’t know).Solution:YesProblem 8Consider the following statement:If 5points are placed anywhere on or inside a unit square,then there must exist two that are no more than √2/2units apart.Here are two attempts to prove this statement.Proof (a):Place 4of the points on the vertices of the square;that way they are maximally sepa-rated from one another.The 5th point must then lie within √2/2units of one of the other points,since the furthest from the corners it can be is the center,which is exactly √2/2units fromeach of the four corners.Proof (b):Partition the square into 4squares,each with a side of 1/2unit.If any two points areon or inside one of these smaller squares,the distance between these two points will be at most √2/2units.Since there are 5points and only 4squares,at least two points must fall on or inside one of the smaller squares,giving a set of points that are no more than √2/2apart.Which of the proofs are correct:(a),(b),both,or neither (or don’t know)?Solution:(b)onlyProblem9Give an inductive proof of the following statement:For every natural number n>3,we have n!>2n.Solution:Base case:True for n=4.Inductive step:Assume n!>2n.Then,multiplying both sides by(n+1),we get(n+1)n!> (n+1)2n>2?2n=2n+1.Problem10We want to line up6out of10children.Which of the following expresses the number of possible line-ups?(Circle the right answer.)(a)10!/6!(b)10!/4!(c) 106(d) 104 ·6!(e)None of the above(f)Don’t knowSolution:(b),(d)are both correctProblem11A deck of52cards is shuf?ed thoroughly.What is the probability that the4aces are all next to each other?(Circle theright answer.)(a)4!49!/52!(b)1/52!(c)4!/52!(d)4!48!/52!(e)None of the above(f)Don’t knowSolution:(a)Problem12The weather forecaster says that the probability of rain on Saturday is25%and that the probability of rain on Sunday is25%.Consider the following statement:The probability of rain during the weekend is50%.Which of the following best describes the validity of this statement?(a)If the two events(rain on Sat/rain on Sun)are independent,then we can add up the twoprobabilities,and the statement is true.Without independence,we can’t tell.(b)True,whether the two events are independent or not.(c)If the events are independent,the statement is false,because the the probability of no rainduring the weekend is9/16.If they are not independent,we can’t tell.(d)False,no matter what.(e)None of the above.(f)Don’t know.Solution:(c)Problem13A player throws darts at a target.On each trial,independentlyof the other trials,he hits the bull’s-eye with probability1/4.How many times should he throw so that his probability is75%of hitting the bull’s-eye at least once?(a)3(b)4(c)5(d)75%can’t be achieved.(e)Don’t know.Solution:(c),assuming that we want the probability to be≥0.75,not necessarily exactly0.75.Problem14Let X be an indicator random variable.Which of the following statements are true?(Circle all that apply.)(a)Pr{X=0}=Pr{X=1}=1/2(b)Pr{X=1}=E[X](c)E[X]=E[X2](d)E[X]=(E[X])2Solution:(b)and(c)only。

计算机算法基础第三版课后习题答案

计算机算法基础第三版课后习题答案

上机实验 书上 121 页 5。

2 5。

3 书上 151 6。

1 6。

3 6。

6 他说搞懂这几题和实验就没问题了4.2 在下列情况下求解递归关系式当① n=2k g(n)= O(1) 和 f(n)= O(n) ; ②n=2k g(n)= 0(1)和 f(n)= 0(1)。

kk-1kk-2k-1k解: T(n)=T(2 k )=2T(2 k-1)+f(2 k )=2(2 T(2 k-2)+f(2 k-1)) +f(2 k )=2 2T(2k-2)+21 f(2 k-1)+ f(2 k )不妨设 g(n)=a ,f(n)=bn ,a ,b 为正常数。

则T(n)=T(2 k )= 2 k a+ 2 k-1*2b+2k-2*22b+…+2°*2k b =2k a+kb2k=an+bnlog 2n= 0(nlog 2n)② 当 g(n)= 0(1)和 f(n)= 0(1)时, 不妨设 g(n)=c ,f(n)=d ,c ,d 为正常数。

则 T(n)=T(2 k )=c2k + 2 k-1d+2k-2d+…+2°d=c2k +d(2k -1) =(c+d)n-d= 0(n) 4.3 根据教材中所给出的二分检索策略,写一个二分检索的递归过程。

Procedure BINSRCH(A,low, high, x, j) integer mid if low < high the n mid J (low high)/2 if x=A(mid) then jJ mid; endifif x>A(mid) then BINSRCH(A, mid+1, high, x, j); endif if x<A(mid) thenBINSRCH(A, low, mid-1, x, j); endif else j J 0; endif end BINSRCH4.5 作一个“三分”检索算法。

藏书阁-《算法导论》常见算法总结

藏书阁-《算法导论》常见算法总结

常见算法总结分治法分治策略的思想:顾名思义,分治是将一个原始问题分解成多个子问题,而子问题的形式和原问题一样,只是规模更小而已,通过子问题的求解,原问题也就自然出来了。

总结一下,大致可以分为这样的三步:分解:将原问题划分成形式相同的子问题,规模可以不等,对半或2/3对1/3的划分。

解决:对于子问题的解决,很明显,采用的是递归求解的方式,如果子问题足够小了,就停止递归,直接求解。

合并:将子问题的解合并成原问题的解。

这里引出了一个如何求解子问题的问题,显然是采用递归调用栈的方式。

因此,递归式与分治法是紧密相连的,使用递归式可以很自然地刻画分治法的运行时间。

所以,如果你要问我分治与递归的关系,我会这样回答:分治依托于递归,分治是一种思想,而递归是一种手段,递归式可以刻画分治算法的时间复杂度。

所以就引入本章的重点:如何解递归式?分治法适用的情况分治法所能解决的问题一般具有以下几个特征:1. 该问题的规模缩小到一定的程度就可以容易地解决2. 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。

3. 利用该问题分解出的子问题的解可以合并为该问题的解;4. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。

——————————————————————————————最大堆最小堆1、堆堆给人的感觉是一个二叉树,但是其本质是一种数组对象,因为对堆进行操作的时候将堆视为一颗完全二叉树,树种每个节点与数组中的存放该节点值的那个元素对应。

《算法导论(第二版)》(中文版)课后答案

《算法导论(第二版)》(中文版)课后答案

17.3-1
11
《算法导论(第二版) 》参考答案
17.3-4
17.4-3 假设第 i 个操作是 TABLE_DELETE, 考虑装载因子 : i =(第 i 次循环之后的表 中的 entry 数)/(第 i 次循环后的表的大小)= numi / sizei
19.1-1. If x is not a root node, then Degree[x]=Degree[sibling[x]]+1 If x is a root node, then Degree[x]<Degree[sibling[x]] 19.1-2
13.1-5 prove:
3
《算法导论(第二版) 》参考答案 13.1-6 2k-1 22k-1 13.2-3 13.3-5
13.4-3
4
《算法导论(第二版) 》参考答案
14.1-4
14.2-2
14.2-3 不可以,性能改变 时间复杂度由 O( lgn ) -> O( nlgn )
14.3-2 Note: 注意 Overlap 的定义稍有不同,需要重新定义。 算法:只要将 P314 页第三行的 改成>就行。 14.3-3 INTERVAL-SEARCH-SUBTREE(x, i) 1 while x ≠ nil[T] and i does not overlap int[x] 2 do if left[x] ≠ nil[T] and max[left[x]] ≥ low[i] 3 then x ← left[x] 4 else x ← right[x] 5 return x INTERVAL-SEARCH-MIN(T, i) 2 y←INTERVAL-SEARCH-SUBTREE(root[T], i) 先找第一个重叠区间 3 z←y 4 while y≠ nil[T] and left[y] ≠ nil[T] 在它的左子树上查找

算法导论参考答案

算法导论参考答案

第二章算法入门由于时间问题有些问题没有写的很仔细,而且估计这里会存在不少不恰当之处。

另,思考题2-3 关于霍纳规则,有些部分没有完成,故没把解答写上去,我对其 c 问题有疑问,请有解答方法者提供个意见。

给出的代码目前也仅仅为解决问题,没有做优化,请见谅,等有时间了我再好好修改。

插入排序算法伪代码INSERTION-SORT(A)1 for j ←2 to length[A]2 do key ←A[j]3 Insert A[j] into the sorted sequence A[1..j-1]4 i ←j-15 while i > 0 and A[i] > key6 do A[i+1]←A[i]7 i ←i − 18 A[i+1]←keyC#对揑入排序算法的实现:public static void InsertionSort<T>(T[] Input) where T:IComparable<T>{T key;int i;for (int j = 1; j < Input.Length; j++){key = Input[j];i = j - 1;for (; i >= 0 && Input[i].CompareTo(key)>0;i-- )Input[i + 1] = Input[i];Input[i+1]=key;}}揑入算法的设计使用的是增量(incremental)方法:在排好子数组A[1..j-1]后,将元素A[ j]揑入,形成排好序的子数组A[1..j]这里需要注意的是由于大部分编程语言的数组都是从0开始算起,这个不伪代码认为的数组的数是第1个有所丌同,一般要注意有几个关键值要比伪代码的小1.如果按照大部分计算机编程语言的思路,修改为:INSERTION-SORT(A)1 for j ← 1 to length[A]2 do key ←A[j]3 i ←j-14 while i ≥ 0 and A[i] > key5 do A[i+1]←A[i]6 i ←i − 17 A[i+1]←key循环丌变式(Loop Invariant)是证明算法正确性的一个重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档