江西省横峰中学高中数学 第三章 第一课 椭圆及其标准方程教学案 新人教A版选修21
高中数学新人教版A版精品教案《椭圆及其标准方程》1

《椭圆及其标准方程》教学设计一、教材分析1《椭圆及其标准方程》是《普通高中课程标准实验教科书·数学选修2-1》(人教A版)第二章《圆锥曲线》第二节的内容,分三课时完成第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路。
本节是第一课时2本节内容是在学习了曲线和方程之后,对这一知识的应用。
是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础因此这节课有承前启后的作用,是本章和本节的重点内容之一。
二、学情分析1我所授课的班级是普通中学的特长班。
特长生是一个特殊群体,基础差,学习自信心不足,学生解决问题的能力较弱,但思维比较活跃,这是这个群体显著的特点。
2本节内容是在选修2-1中,学生已经在必修内容中学习了直线和圆的方程,并且在选修2-1的第二章学习了曲线和方程,学生已初步掌握了求轨迹问题根本方法,但掌握度不够。
3学生计算能力较弱,因此在方程的推导中会遇到障碍。
在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要。
4经过近一学年的引导、鼓励,学生学习数学的积极性较高。
三、教学目标1、知识目标(1)理解椭圆的定义,明确焦点、焦距的概念。
(2)掌握椭圆标准方程的推导及标准方程。
(3)通过对椭圆方程的求解熟练求曲线方程的基本方法。
2、能力目标通过两种不同形式标准方程的对比,培养学生分析、归纳的能力。
3、情感目标营造亲切、和谐的氛围,以“趣”激学。
引导学生用运动变化的观点发现问题、探索问题、解决问题,培养学生的创新意识,体会数学的简捷美、和谐美。
培养合作学习的意识,体会成功带来的喜悦。
【教案】3.1.1椭圆及其标准方程 教学设计高中数学人教版(2019)选择性必修一

3.1.1椭圆及其标准方程一、内容和内容解析1.内容在学习直线和圆的方程的基础上,抽象椭圆的几何特征,然后建立它的标准方程,再利用方程研究它的几何性质,并利用它们解决简单的实际问题.2.内容解析教材关于圆锥曲线部分安排了三节内容.这三节分别对应着相应的三种圆锥曲线椭圆、双曲线、抛物线.这三种曲线的研究背景、研究问题、研究方法具有高度的相似性.在椭圆的概念部分,在问题“椭圆具有怎样的几何特性?”的引领下进行画图操作,从中发现椭圆的几何特征,进而获得椭圆的概念.椭圆的标准方程部分,先根据椭圆的几何特性建立坐标系,然后通过代数运算得到椭圆的标准方程.上述过程体现了研究圆锥曲线的一般思路和方法,包括如何发现曲线的几何特征、如何建立适当的坐标系、如何简化与优化方程、如何运用方程进行研究等.二、目标和目标解析1.目标(1)了解圆锥曲线的实际背景,及圆锥曲线在刻画现实世界和解决实际问题中的应用. (2)经历从具体情境中抽象出椭圆的过程.(3)掌握椭圆定义以及椭圆标准方程.2.目标解析达成上述目标的标志是:(1)能通过观察平面截圆锥认识到如何得到不同的圆锥曲线.(2)能通过实例知道圆锥曲线在生产生活中有广泛的应用.(3)能通过椭圆的绘制过程,认识椭圆的几何特征,给出椭圆定义.(4)通过能通过求曲线方程的方法,得到椭圆的标准方程.(5)在求解椭圆标准方程的过程中,体会建立曲线方程的方法,发展直观想象、数学运算素养.三、教学问题诊断分析学生对坐标法已有初步的认识,通过直线和圆的方程的学习,对用坐标法研究曲线的基本思路与方法已有了解,但还不善于自觉运用坐标法,在学习中会遇到如下难点.第一,如何抽象出椭圆的几何特征.在绘制过程中,笔尖将细绳分为两段,它们都不是定长,但是总长度一定.第二,如何建立适当的坐标系.建立坐标系的标准是所得方程简单.第三,推导过程中,遇到根式的化简,如何进行两次平方得到最后结果,需要学生有较强的运算能力以及对运算结果的预测能力.四、教学过程设计(一)背景讲解师生活动:教师讲解圆锥曲线的产生以及应用领域.设计意图:让学生了解圆锥曲线的由来以及在实际生活中的应用,激发学生们的学习欲望. (二)新课导入问题1:与一定点的距离等于定长的点的集合是什么?师生活动:教师进行讲解.设计意图:回顾圆的定义引出椭圆定义.问题2:那么与两定点的距离之和为一定长的点的集合又是什么图形呢?师生活动:教师进行讲解,引出小实验.设计意图:利用类比的方法,让学生体会椭圆与圆在定义上的区别与联系.小实验:1.在一张白纸上用两个钉子固定两个点F1,F2取一条定长为l的细绳,使它的两端固定.2.在F1,F2上,用笔绷住细绳使它慢慢移动.师生活动:教师进行讲解并进行动画演示.设计意图:让学生从直观的动画演示,理解椭圆的形成过程.(三)新课讲解师生活动:教师讲解椭圆定义,并给出焦点、焦距、半焦距的定义.问题:PF1与PF2的距离之和与定点F1与F2之间的距离之间不同的大小关系,对应的动点轨迹是什么?设计意图:让学生对椭圆有准确的理解,体会分类讨论的数学思想.问题:求曲线方程的基本步骤是什么?追问:建立平面直角坐标系遵循的原则是什么?师生活动:教师讲解.设计意图:为推导椭圆标准方程做前期准备.师生活动:利用椭圆定义以及求曲线方程的方法推导椭圆标准方程.设计意图:让学生巩固求曲线方程的操作步骤,感受椭圆标准方程的推导过程.师生活动:方程的曲线和曲线的方程的检验.设计意图:经过检验的过程,让学生体会曲线的方程和方程的曲线.问题:焦点在y轴上的椭圆标准方程是什么呢?师生活动:教师讲解.设计意图:让学生体会,不同的坐标系下椭圆的不同的标准方程.问题:你能小结出椭圆标准方程的特点吗?师生活动:教师讲解.设计意图:加深学生对椭圆标准方程的记忆.(四)应用巩固例1.已知椭圆的两个焦点分别是(-2,0),(2,0),并且经过点⎪⎭⎫ ⎝⎛-2325,, 求它的标准方程.师生活动:教师讲解.设计意图:体会求椭圆标准方程的一般解法.例2 如图,在圆x 2+y 2=4上取任意一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?为什么?师生活动:教师讲解.设计意图:让学生体会椭圆与圆的联系与区别.例3 如图设A ,B 两点的坐标分别为(-5,0),直线AM ,BM 相交于点M ,且他们的斜率之积是94-,求点M 的轨迹方程. 师生活动:教师讲解.设计意图:让学生巩固曲线方程的一般步骤.(五)回顾反思本节课从思想方法以及知识点两方面进行小结.1.本节课需要掌握一种方法(待定系数法)和 两种思想(数形结合、分类讨论)2.椭圆的定义以及椭圆的标准方程.3.教师带领学生完成知识体系表.五、布置作业1.教材P109 练习 2(3). 3 .4.2.教材P115 习题3.1 1.2.4.六、目标检测设计1.如果椭圆13610022=+y x 上一点P 与焦点F 1的距离为6,那么点P 与另一个焦点F 2的距离为多少?师生活动:教师讲解.设计意图:巩固椭圆定义.2. 求适合下列条件的椭圆的标准方程.(1)a =4,b =1,焦点在x 轴上;(2)a =4,c =15,焦点在y 轴上. 师生活动:教师讲解.设计意图:让学生体会椭圆标准方程的一般求法.。
高中数学新人教版A版精品教案《椭圆及其标准方程》

引导复习圆的概念,说明椭圆是圆的自然推广。启发用类比方法研究椭圆
复习确定一个圆的条件及件制作相关课件
环节三
运用几何画板等信息技术,演示动画:
椭圆的形成过程圆——分心——椭圆;
启发学生给出椭圆概念定义与图形
学生观看的同时,记录运行过程中动点的约束条件从代数视角表述椭圆概念。
自我反思
信息技术使用起到什么作用,是否达到预计实践能学习、思考交流有收获,整节课教学效果良好
有什么不足或遗憾
加强信息技术理论与实践的学习力争熟练运用信息技术为教学服务
如果再上一次,你将进行哪些改进?
加强用几何画板的软件制作课件的技术与实践活动,使所制作的课件更为美观、合理、科学且易操作
信息化背景下数学课堂教学设计
学科
数学
年级
高二
课程名称
椭圆
节选片段名称
椭圆及其标准方程
全课教学目标
掌握椭圆的概念、标准方程、椭圆的简单几何性质和椭圆的简单应用;
渗透解析几何思想、合理运算、逻辑推理等数学核心素养;
体验常用数学思想方法数形结合、函数方程、转化化归和分类讨论在解决数学问题中的应用。
节选部分目标
环节三、动画展示圆到椭圆形成过程,揭示椭圆概念的本质,为椭圆概念的本质袋鼠描述提供可行条件;
环节四、利用白板、和几何画板软件,演示师生共同推导椭圆标准方程,通过旋转变换,揭示两类标准方程之间的关系,加强了对标准方程的理解和记忆。
课堂评价:
教学重点突出、教学难点处理恰当,促进学生理解与记忆方法有效,学生学习数学的兴趣高涨,信息化技术的运用起到了良好的作用:内容有趣想学习、动手实践能学习、思考交流有收获,整节课教学效果良好
掌握椭圆的定义;
2019人教A版数学新教材选择性必修第一册第三章的第一节 椭圆及其标准方程

《椭圆及其标准方程》教学设计【设计理念】以单元整体性作为新的设计理念,把三种圆锥曲线在第一节课全部展示,在教学过程中重点强调了坐标法对于研究圆锥曲线的重要作用。
充分利用各种学习资源(包括文字教材、音像资料、多媒体课件、软件工具以及从Internet上获取的各种教学信息等等),通过“情境创设”、“协作学习”、“小组研讨”,逐步体会椭圆及其标准方程的获得过程,培养学生的数学审美素养、数学运算素养和数形结合素养。
介绍坐标法和机械数学的发展历程和世界及中国的著名数学家吴文俊的“吴方法”,激励同学们学习的斗志,学习榜样的力量,了解数学历史和文化。
高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,让学生体会蕴涵在其中的思想方法。
在“椭圆及其标准方程”的引入与推导中,遵循学生的认识规律,通过动手实践、观察思考、合作交流、应用反思等过程,让学生逐步将认识由感性上升到理性,把学生学习知识当作认识事物的过程来进行教学,努力揭示知识的发生、发展过程。
【教材分析】解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系。
平面解析几何问题,就是借助建立适当的坐标系,科学合理地把几何问题代数化,运用代数的方法来研究几何问题。
《椭圆及其标准方程》2019人教A版新教材选择性必修第一册第三章的第一节,是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例,从知识上说,本节课是对坐标法研究几何问题的又一次实际运用,同时也是进一步研究椭圆几何性质的基础;从方法上说,它为进一步研究双曲线、抛物线提供了基本模式和理论基础,因此本节课起到了承上启下的重要作用.【学情分析】知识层面:在选择性必修第一册第二章里学生已经学习了直线和圆的方程,并初步熟悉了求曲线方程的一般方法和步骤,具备主动探究椭圆知识的基础;根据日常生活中的经验,学生对椭圆有了一定的认识,但仍没有上升到成为“概念”的水平,将感性认识理性化将会是对他们的一个挑战;在初中阶段没有涉及过含两个字母、两个根式的方程化简问题;学习层面:椭圆与圆相似,在生活中常见,相比函数等抽象概念,学生更易理解,因此在学习中学生更易接受,学习兴趣也更加浓厚。
2025版新教材高中数学第3章椭圆及其标准方程课件新人教A版选择性必修第一册

关键能力•攻重难
题型一
题型探究 求椭圆的标准方程
1.根据下列条件,求椭圆的标准方程: (1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y轴上,且经过两个点(0,2)和(1,0); (3)经过点 P13,13,Q0,-12.
[分析] (1)设出焦点在x轴上的椭圆的标准方程,再根据条件求出 a,b的值,即可求得方程;(2)设出焦点在y轴上的椭圆的标准方程,再 根据条件求出a,b的值,即可求得方程;(3)焦点位置不确定,可以分两 种情况分别求解,也可直接设所求椭圆方程为mx2+ny2=1(m>0,n>0, m≠n).
所以所求椭圆的标准方程为y12+x12=1. 45
方法二:设椭圆的方程为 mx2+ny2=1(m>0,n>0,m≠n).
则19m+19n=1, 14n=1,
解得nm==45.,
所以所求椭圆的方程为 5x2+4y2=1,
故椭圆的标准方程为y12+x12=1. 45
[规律方法] 1.定义法求椭圆方程 利用定义,直接求出a,c,再求出b后根据焦点的位置写出椭圆的方 程. 2.待定系数法求椭圆标准方程的步骤 (1)作判断:依据条件判断椭圆的焦点在x轴上还是在y轴上,还是在 两个坐标轴上都有可能.
ay22+bx22=1(a>b>0). 因为 c2=16,且 c2=a2-b2,故 a2-b2=16.① 又点( 3,- 5)在椭圆上,所以-a252+ b322=1,
即a52+b32=1.② 由①②得 b2=4,a2=20, 所以所求椭圆的标准方程为2y02 +x42=1.
题型二
椭圆中的焦点三角形问题
2.借助轨迹方程的学习,培养逻辑推理及直观想象素养.
3.1.1椭圆及其标准方程说课稿

尊敬的各位老师,大家好:今天我说课的课题是《椭圆及其标准方程》。
对于本节课,我将以教什么,怎么教,为什么这样教为思路,从教材分析、学情分析、教学目标及核心素养、教学重难点、教法学法、教学过程和板书设计七个方面展开我的说课。
本节课是人教A版高中《数学》(选择性必修一)第三章第一节“椭圆及其标准方程”第一课时内容。
本节内容是在学生学习了直线与圆后,“坐标法”研究“曲线方程”的又一实例,是解析几何初步知识的深化和延续;从知识的前后联系来看,椭圆的学习是坐标法的进一步深入,同时它也是学习椭圆几何性质的基础;从方法上说,它为后续研究双曲线、抛物线提供基本模式和理论基础,是进一步学习圆锥曲线的重要模型.因此本节课有承前启后的作用。
从教材编排上讲,三种圆锥曲线独编一章,更突出了椭圆的重要地位。
将曲线及其方程结合起来,体现数形结合的思想方法。
学生已经学习了直线与圆的方程,对用坐标法研究几何问题已经有了初步认识。
对探究点的轨迹问题也有一定的基础知识和学习能力,这有利于学生实现从“旧知”向“新知”的迁移。
由于椭圆的几何特征比圆复杂,学生对于从哪个角度入手抽象椭圆的几何特征有一定的困难。
另外,在方程推导过程中,对于含两个根号的方程的化简,学生之前接触较少,完成起来有些困难,需要教师作适当的引导与小组合作讨论。
故本节课难度设置不应过高,设计问题时应多作铺垫,扫清学习障碍,保护学生学习积极性、主动性。
[确定依据] 根据以上对教材的分析和学情的把握,我确定了以下目标:1. 理解椭圆的定义,掌握椭圆的标准方程及推导,会利用待定系数法求椭圆的标准方程。
2. 通过动手画图的实践操作,感知、观察动点形成轨迹的过程,经历从具体情境中抽象出椭圆的过程,掌握椭圆的定义,提升学生的直观想象、数学抽象的核心素养。
3.通过建立适当的坐标系,列出方程并化简变形,体会含有两个根式方程的化简过程,同时得到椭圆的标准方程,用以解决简单问题,培养数学建模、数学运算的核心素养。
人教A版数学高中选择性必修一《3.1.1椭圆及其标准方程》教学设计(1)

椭圆及其标准方程一、教材分析本节课选自《2019人教A版高中数学选择性必修第一册》第三章《圆锥曲线的方程》,本节课主要学习椭圆及其标准方程从知识上讲,椭圆的标准方程是解析法的进一步运用,同时它也是进一步研究椭圆几何性质的基础;从方法上讲,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础;从教材编排上讲,现行教材中把三种圆锥曲线独编一章,更突出了椭圆的重要地位.因此本节课有承前启后的作用,是本章和本节的重点内容.是几何的研究实现了代数化。
数与形的有机结合,在本章中得到了充分体现。
二、教学目标与核心素养三、教学重、难点重点:椭圆的定义及椭圆的标准方程难点:运用标准方程解决相关问题【思考】(1)让绳长等于两点F(2)让绳长等于两点F【方案一】如果椭圆的焦点为F1和F2,焦距为2c,而且椭圆上的动点P满足,|PF1|+|PF2|=2a其中a>c>0. 以F1F2所在直线为x轴,线段的垂直平分线为y轴,建立平面直角坐标系,如图所示:此时,椭圆的焦点分别为F1(−c,0)和F2(c,0)椭圆的标准方程√(x+c)2+y2+√(x−c)2+y2=2a. ①为了化简方程①,我们将其左边一个根式移到右边,得得√(x+c)2+y2=2a−√(x−c)2+y2.②对方程②两边平方,得(x+c)2+y2=4a2−4a√(x−c)2+y2+(x−c)2+y2整理,得a2−cx=a√(x−c)2+y2③对方程③两边平方,得a4−2a2cx+c2x2=a2x2−2a2cx+a2c2+a2y2整理得(a2−c2)x2+a2y2=a2(a2−c2)④将方程④两边同除以a2(a2−c2),得x2 a2+y2a2−c2=1⑤由椭圆的定义可知2a>2c>0 ,即a>c>0,所以a2−c2>0.观察图,你能从中找出表示a,c,√a2−c2的线段吗?由图可知,|PF1|=|PF2|=a,|OF1|=|OF2|=c,|PO|=√a2−c2令b=|PO|=√a2−c2,那么方程⑤就是;x 2a2+y2b2=1(a>b>0) ⑥,称焦点在x轴上的椭圆方程.轴上六、课后思考。
《椭圆及其标准方程》教案

《椭圆及其标准方程》教案一、教学目标1、知识与技能目标理解椭圆的定义。
掌握椭圆的标准方程及其推导过程。
能根据给定条件,求出椭圆的标准方程。
2、过程与方法目标通过动手操作,经历椭圆的形成过程,培养学生的观察、分析和归纳能力。
通过椭圆标准方程的推导,培养学生的逻辑推理和数学运算能力。
3、情感态度与价值观目标让学生感受数学的对称美、简洁美,激发学生学习数学的兴趣。
通过小组合作探究,培养学生的合作精神和创新意识。
二、教学重难点1、教学重点椭圆的定义和标准方程。
2、教学难点椭圆标准方程的推导。
三、教学方法讲授法、直观演示法、探究法四、教学过程1、导入新课展示生活中常见的椭圆形状的物体,如椭圆形的镜子、椭圆形的跑道等,让学生观察并思考这些物体的形状特点。
提问:如何精确地描述椭圆的形状?从而引出本节课的主题——椭圆及其标准方程。
2、椭圆的定义准备一根绳子,将两端固定在黑板上,用粉笔将绳子拉紧并移动粉笔,画出一个椭圆。
引导学生观察并思考:在这个过程中,粉笔运动的轨迹有什么特点?给出椭圆的定义:平面内到两个定点\(F_1\)、\(F_2\)的距离之和等于常数(大于\(|F_1F_2|\))的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距,记为\(2c\)。
3、椭圆标准方程的推导以经过椭圆两焦点\(F_1\)、\(F_2\)的直线为\(x\)轴,线段\(F_1F_2\)的垂直平分线为\(y\)轴,建立直角坐标系。
设椭圆的焦距为\(2c(c > 0)\),椭圆上任意一点\(M\)的坐标为\((x,y)\),焦点\(F_1\)、\(F_2\)的坐标分别为\((c,0)\)、\((c,0)\)。
根据椭圆的定义,\(|MF_1| +|MF_2| = 2a\)(\(2a >2c\))。
由两点间的距离公式可得:\\begin{align}\sqrt{(x + c)^2 + y^2} +\sqrt{(x c)^2 + y^2} &= 2a\\\sqrt{(x + c)^2 + y^2} &= 2a \sqrt{(x c)^2 + y^2}\\(x + c)^2 + y^2 &= 4a^2 4a\sqrt{(x c)^2 + y^2} +(x c)^2 + y^2\\x^2 + 2cx + c^2 + y^2 &= 4a^2 4a\sqrt{(x c)^2 + y^2} + x^2 2cx + c^2 + y^2\\4cx 4a^2 + 4a\sqrt{(x c)^2 + y^2} &= 0\\a\sqrt{(x c)^2 + y^2} &= a^2 cx\\a^2((x c)^2 + y^2) &=(a^2 cx)^2\\a^2(x^2 2cx + c^2 + y^2) &= a^4 2a^2cx + c^2x^2\\(a^2 c^2)x^2 + a^2y^2 &= a^2(a^2 c^2)\end{align}\令\(b^2 = a^2 c^2\)(\(b > 0\)),则可得椭圆的标准方程为:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b> 0\))。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆ 知识与技能目标
理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.
◆ 过程与方法目标
(1)预习与引入过程 当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子.当学生把上述两个问题回答清楚后,要引导学生一起探究P 41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长,两端各结一个套),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?〖板书〗2.1.1椭圆及其标准方程.
(2)新课讲授过程
(i )由上述探究过程容易得到椭圆的定义.
〖板书〗把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}
12|2M MF MF a +=.
(ii )椭圆标准方程的推导过程
提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系.
无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理.
设参量b 的意义:第一、便于写出椭圆的标准方程;第二、,,a b c 的关系有明显的几何意义. 类比:写出焦点在y 轴上,中心在原点的椭圆的标准方程()22
2210y x a b a b
+=>>. (iii )例题讲解与引申
例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-
⎪⎝⎭
,求它的标准方程.
分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解. 另解:设椭圆的标准方程为()22
2210x y a b a b
+=>>,因点
53,22⎛⎫- ⎪⎝⎭在椭圆上,则22222591104464a a b b a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩
. 例2 如图,在圆22
4x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?
分析:点P 在圆224x y +=上运动,由点P 移动引起点M 的运动,则称点M 是点P 的伴随点,因点M 为线段PD 的中点,则点M 的坐标可由点P 来表示,从而能求点M 的轨迹方程.
引申:设定点()6,2A ,P 是椭圆22
1259
x y +=上动点,求线段AP 中点M 的轨迹方程.
解法剖析:①(代入法求伴随轨迹)设(),M x y ,()11,P x y ;②(点与伴随点的关
系)∵M 为线段AP 的中点,∴11
2622x x y y =-⎧⎨=-⎩;③(代入已知轨迹求出伴随轨迹),∵22111259x y +=,∴点M 的轨迹方程为()()223112594
x y --+=;④伴随轨迹表示的范围. 例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49
-,求点M 的轨迹方程. 分析:若设点(),M x y ,则直线AM ,BM 的斜率就可以用含,x y
的式子表示,由于直线AM ,BM 的斜率之积是49
-
,因此,可以求出,x y 之间的关系式,即得到点M 的轨迹方程.。