第十三章梯度校正参数辩识方法

合集下载

参数辨识算法

参数辨识算法

参数辨识算法
参数辨识算法是一种用于确定未知系统参数的算法,其主要应用于控制系统、信号处理、通讯系统等领域。

该算法通过输入输出数据的分析,推导出系统的参数,以便更好地理解和控制系统行为。

常见的参数辨识算法包括极大似然估计法、最小二乘法、系统辨识工具箱等。

极大似然估计法是一种基于统计学的参数辨识算法,其原理是通过观察到的数据,计算一组最有可能的参数值,使得该参数下的系统输出数据和观察到的数据尽可能接近。

最小二乘法是另一种常用的参数辨识算法,其原理是通过最小化模型输出与实际输出之间的误差,推导出最优参数值。

系统辨识工具箱是一种集成各种参数辨识方法的软件工具,可快速方便地进行系统辨识。

参数辨识算法在控制系统中的应用非常广泛,例如,用于飞机、汽车、机器人等机械系统的运动控制,以及用于噪声控制、降噪处理等领域。

在通讯系统中,参数辨识算法可用于信道估计、信号跟踪、调制识别等方面。

总之,参数辨识算法在现代科技中扮演着重要的角色,它对于提高系统控制和信号处理的精度和可靠性具有重要意义。

- 1 -。

基于梯度校正法的非对称液压缸建模与参数辨识

基于梯度校正法的非对称液压缸建模与参数辨识

在导弹起 竖液压 系统 中,液压缸的行程较长 ,为
节约空间都是采用非对称液压缸 ,并且这种液压缸 的 加工 、密封都 比较简单 ,制造成本 也较低 ,更适合一 些结构尺 寸要求严格 的导弹武器地面发射设备。但非 对称液压缸两腔的有效 工作 面积不等 ,因而正反 向运
得到模 型的结构 。对 于阀控非对称液压缸系统 ,可以 利用液压系统 的相关 理论 和公式推导得到 系统 的数学
Ab s t r a c t : Ai mi n g a t n o n — s y mme t r i c a l h y d r a u l i c s e l - v o — s y s t e m o f t h e mi s s i l e l a u n c h i n g s y s t e m, t h e ma t h e ma t i c mo d e l w a s b u i l t b y t h e o r e t i c a l a n a l y s i s .T h e p r o p o r t i o n a l h y d r a u l i c c i r c u i t wa s r e a l i z e d b a s e d O 1 3 . t h e F E S TO h y d r a u l i c p l a f t o r m t o s i mu l a t e t h e l a u n c h i n g h y d r a u l i c s y s t e m. T h e r e c u r s i v e g r a d i e n t c o r r e c t i o n me t h o d wa s a d o p t e d t o i d e n t i f y t h e p a r a me t e r s f r o m t h e e x p e i r me n t a l d a t a .T h e t h i r d o r d e r t r a n s f e r f u n c t i o n b e t we e n t h e d i s p l a c e me n t o f h y d r a u l i c c y l i n d e r a n d t h e i n p u t s i g n a l wa s a l s o g o t t e n .T h e e x p e i r me n t a l r e — s u i t s v a l i d a t e t h e c o re c t n e s s a n d t h e f e a s i b i l i t y o f t h i s me t h o d . Ke y wo r d s :N o n — s y mme t r i c a l h y d r a u l i c c y l i n d e r ; Mo d e l i n g ;P a r a me t e r s i d e n t i f i c a t i o n; Re c u r s i v e g r a d i e n t c o r r e c t i o n

参数辨识方法

参数辨识方法

参数辨识方法指通过实验数据或观测结果,推断或估计系统或模型的参数值的一类方法。

这些方法通常用于建立数学模型、探索系统行为、优化控制策略等领域。

以下是几种常见的参数辨识方法:
1. 最小二乘法(Least Squares Method):最小二乘法是一种常见的参数辨识方法,通过最小化实际观测值与模型预测值之间的差异来估计参数。

它适用于线性和非线性模型,并可考虑测量误差。

2. 极大似然估计(Maximum Likelihood Estimation):极大似然估计是一种统计方法,用于通过最大化观测数据的似然函数来估计参数。

它适用于概率模型和随机过程的参数辨识。

3. 遗传算法(Genetic Algorithms):遗传算法是一种优化算法,可以用于参数辨识问题。

它模拟生物进化过程中的选择、交叉和变异等操作,通过迭代搜索来找到最优参数组合。

4. 粒子群优化算法(Particle Swarm Optimization):粒子群优化算法是一种启发式优化算法,模拟鸟群或鱼群的行为,通过协作和信息共享来寻找最优参数组合。

5. 系统辨识理论(System Identification Theory):系统辨识理论提供了一系列数学和统计方法,用于从实验数据中推断系统的结构和参数。

它涵盖了许多方法,包括参数估计、频域分析、时域分析等。

这些方法的选择取决于具体的应用和问题领域。

不同方法有不同的假设和适用条件,需要根据实际情况选择合适的参数辨识方法来获得准确的参数估计。

参数辨识方法比较

参数辨识方法比较

系统辨识主要有两大部分组成,一个是系统模型的辨识,它主要解决在对某一系统的模型不确定或完全未知的情况下,如何根据该系统对特定输入的响应来得到一个数学模型,并用此模型代替这一真实系统的问题;另一个是参数辨识,它主要解决当系统模型已知的条件下,确定模型中的一些未知参数的问题。

参数辨识方法目前已经被用于飞行器气动参数辨识。

直升机气动参数辨识是飞行器气动参数辨识的一个重要分支。

本文将研究某型直升机纵向模型中的气动参数辨识。

2.2.1系统辨识的基本原理1、系统辨识的定义和基本要素1978年瑞典著名学者L.Ljung给出系统辨识的定义:“辨识有一三个要素即数据、模型类和准则,辨识就是按照一个准则在一组模型类中选择一个与数据拟合得最好的模型。

”该定义强调了系统辨识的三个基本要素,其中数据是指系统的输入输出数据,模型类则定义了模型的基本结构类型,准则即为评价模型与输入输出数据拟合程度的量度标准。

2、系统辨识的等价准则等价准则也称为误差准则,是系统辨识问题中的基本要素之一,是用来衡量模型接近实际程度的标准,通常被定义为辨识模型与实际对象模型的误差的范函。

这里所说的误差可以是输出误差、输入误差或广义误差。

3、辨识的内容和步骤系统辨识的主要内容和包括四个方面:实验设计、模型结构辨识、模型参数辨识和模型验证。

5.2.1递推最小二乘算法递推算法的基本思想可以概括如下:新的估计值乡(k)二老的估计值户(k一l)+修正项(5.1)新的估计值乡(k)是在老的估计值乡(k一1)的基础是修正而成的。

这样可以减少计算量和存储量,并且可以实现在线实时辨识。

递推算法的递推公式可见式(2.15),其流程图见图5一1。

上文分别用引入遗忘因子的递推最小二乘算法、递推极大似然算法和Newton一Raphson迭代算法(也是一种似然算法)对直升机的纵向模型进行了参数辨识。

可以得出如下结论:(l)前两种方法只适用于比较简单的模型的参数辨识,图单输入单输出或多输入单输出模型的参数辨识:而第三种方法可以对比较复杂的模型进行辨识,如多输入多输出模型的参数辨识。

参数辨识的过程

参数辨识的过程

参数辨识的过程一、引言参数辨识是指根据已知的输入输出数据,通过建立数学模型,对系统的未知参数进行估计和辨识的过程。

在科学研究和工程实践中,参数辨识对于系统建模、控制与优化等问题具有重要意义。

本文将介绍参数辨识的基本概念、方法和应用。

二、参数辨识的基本概念1. 参数:在数学模型中,描述系统特性的未知量被称为参数。

参数可以是物理量、几何参数或统计参数等。

2. 辨识:辨识是指根据已知的输入输出数据,对系统的未知参数进行估计和推断的过程。

3. 数学模型:数学模型是对系统行为进行描述的数学表达式,可以是线性或非线性、时变或时不变的。

三、参数辨识的方法1. 参数估计法:参数估计是指通过最小二乘法或极大似然估计等方法,利用已知的输入输出数据,对系统的未知参数进行估计。

2. 信号处理法:信号处理方法通过对输入输出信号进行滤波、频谱分析等处理,提取系统的频率响应特性,进而推断系统的参数。

3. 优化方法:优化方法通过调整系统参数,使得系统输出与实际观测值之间的误差最小化,从而得到最优参数估计。

4. 神经网络方法:神经网络是一种模仿生物神经网络结构和功能的数学模型,可以通过训练神经网络,得到系统的参数估计。

四、参数辨识的应用1. 控制系统设计:参数辨识可以用于建立系统的数学模型,从而设计出有效的控制算法,实现系统的自动控制。

2. 机器学习:在机器学习领域,参数辨识可以用于训练模型,对大数据进行分析和预测。

3. 信号处理:参数辨识可以用于信号处理领域中的滤波、频谱分析等问题。

4. 物理实验:在物理实验中,参数辨识可以用于对物理系统的特性进行分析和实验验证。

五、参数辨识的挑战和发展方向1. 噪声干扰:在实际应用中,系统输入输出数据往往受到噪声的影响,这给参数辨识带来了挑战。

2. 非线性系统:大多数实际系统都是非线性的,参数辨识方法需要考虑非线性系统的特性。

3. 多参数辨识:往往一个系统存在多个参数需要辨识,参数辨识方法需要考虑多参数辨识的问题。

梯度求解方法

梯度求解方法

梯度求解方法梯度求解方法是一种常用的优化算法,用于求解函数的极值点。

在机器学习和深度学习中,梯度求解方法被广泛应用于模型训练和参数优化过程中。

本文将介绍梯度求解方法的原理和常用的算法,以及其在实际应用中的一些注意事项。

一、梯度的概念在数学中,梯度是一个向量,表示函数在某一点上的变化率最大的方向。

对于多元函数而言,梯度是一个向量,其每个分量分别对应函数在每个自变量上的偏导数。

梯度的方向指向函数在某一点上变化最快的方向,而梯度的模表示函数在该点上的变化率。

二、梯度下降法梯度下降法是一种基于梯度的优化算法,用于求解函数的极小值点。

其基本思想是从一个初始点开始,沿着梯度的反方向迭代更新自变量,直到达到收敛条件或迭代次数达到上限。

具体来说,梯度下降法的更新规则如下:1. 初始化自变量的初始值;2. 计算当前点的梯度;3. 根据梯度的反方向更新自变量;4. 重复步骤2和3,直到达到收敛条件或迭代次数达到上限。

在梯度下降法中,学习率是一个重要的超参数,它控制了自变量在每次迭代中的更新幅度。

学习率过大可能导致震荡或发散,学习率过小可能导致收敛速度过慢。

三、常用的梯度下降算法1. 批量梯度下降法(Batch Gradient Descent,BGD):在每次迭代中,BGD使用全部训练样本计算梯度,并更新自变量。

BGD的优点是每次迭代都朝着全局最优解的方向前进,但计算梯度的代价较高。

2. 随机梯度下降法(Stochastic Gradient Descent,SGD):在每次迭代中,SGD使用一个样本计算梯度,并更新自变量。

SGD的优点是计算梯度的代价较低,但由于每次迭代只使用一个样本,更新方向可能不够准确。

3. 小批量梯度下降法(Mini-batch Gradient Descent):在每次迭代中,Mini-batch GD使用一小批样本计算梯度,并更新自变量。

这种方法综合了BGD和SGD的优点,既可以保证较准确的更新方向,又能降低计算梯度的代价。

系统辨识的经典方法

系统辨识的经典方法

⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T

,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法

模型参数辨识方法

模型参数辨识方法

模型参数辨识方法1.最小二乘法(Least Squares Method)最小二乘法是一种常用的参数辨识方法,它通过最小化观测数据与模型预测值之间的平方误差来确定模型的参数值。

最小二乘法可以用于线性和非线性模型。

对于线性模型,最小二乘法可以直接求解闭式解;对于非线性模型,可以使用数值优化算法进行迭代计算。

2.极大似然估计(Maximum Likelihood Estimation)极大似然估计是一种常用的统计推断方法,也可以用于模型参数辨识。

该方法假设观测数据满足一些统计分布,通过最大化观测数据出现的概率来估计参数值。

具体方法是构造似然函数,即给定观测数据下的参数条件下的概率密度函数,并最大化该函数。

3.贝叶斯推断(Bayesian Inference)贝叶斯推断是一种基于贝叶斯定理的统计推断方法,它通过先验分布和观测数据的条件概率来更新参数的后验分布。

贝叶斯推断可以通过采样方法如马尔科夫链蒙特卡洛(MCMC)来计算参数的后验分布,进而得到参数的估计值和置信区间。

4.参数辨识的频域方法频域方法在信号处理和系统辨识中应用广泛。

它基于信号的频谱特性和一些假设,通过谱估计方法如传递函数辨识和系统辨识,来推断模型的参数。

典型的频域方法有最小相位辨识、系统辨识的频域特性估计等。

5.信息矩阵(Information matrix)和似然比检验(Likelihoodratio test)信息矩阵和似然比检验是统计推断中的基本工具,也可以用于模型参数辨识。

信息矩阵衡量了参数估计的方差和协方差,可以通过信息矩阵来进行参数辨识的有效性检验。

似然比检验则是比较两个模型的似然函数值,用于判断哪个模型更好地解释观测数据。

总之,模型参数辨识是通过观测数据,推断出模型的参数值。

常用的方法包括最小二乘法、极大似然估计、贝叶斯推断、频域方法和信息矩阵等。

在实际应用中,选择合适的参数辨识方法需要考虑模型的特点、数据的性质以及求解的复杂度等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lk1
则有
kL 1h(k)h(k)1kL 1h(k)z(k)
这种近似使问题退化成最小二乘问题
24
研究
式的随机逼近法解
设 x是标量, y( x) 是对应的随机变量
Байду номын сангаас
P(y| x) 是 x条件下 y 的概率密度函数
则随机变量 y 关于 x 的条件数学期望为
记作
E {y|x}yd (yp |x)
11
当准则函数 J ( ) 取 式时
gr[aJ(d)|](k)dd1 22(,k)(k)
((k),k)h(k)
[y(k)h(k)(k)h ](k)
12
式可写成
(k 1 ) (k ) R (k )h (k )y ( [k ) h (k ) (k )]
- 确定性问题的梯度校正参数估计递推公
14
随机性问题
15
设过程的输出 y(k )
模型参数 1, 2, , N 的线性组合
y ( k ) h 1 ( k )1 h 2 ( k )2 h N ( k )N
输入输出数据含有测量噪声
z(k)y(k)w(k) xi(k)hi(k)si(k), i1,2,,N
16
其中
可以是梯度校正法,通俗地说最速下降法
沿着
J ( ) 的负梯度方向不断修正 ( k )

直至 J ( ) 达到最小值
10
数学表达式
(k 1 )(k)R (k)gr[J a ()d | ](k)
R(k ) - N 维的对称阵,称作加权阵
gra[dJ()] - 准则函数 J ( ) 关于 的梯度
通过迭代计算
逐步逼近方程
式的解
27
常用的迭代算法
Robbins – Monro 算法 Kiefer – Wolfowitz 算法
28
12.2 极大似然法和预报误差方法
29
引言
极大似然法
一种非常有用的传统估计方法 由 Fisher 发展起来的 基本思想可追溯到高斯(1809 年) 用于动态过程辩识可以获得良好的估计性质
a 1 , a 2 , , a n , b 1 , b 2 , , b n
8
现在的问题
如何利用输入输出数据 h(k ) 和 y(k )
确定参数

k 时刻的估计值
(k )
使准则函数
式中
J()|(k)1 22(,k)|(k)min
(,k) y(k)h(k)
9
解决上述问题的方法
可以准确测量的,则 式过程称作确定性过程
5
确定性过程
0
h(k )
过程

y(k )
h( t)1,h1(t)2,,
h2(t), ,
, N
hN(t)
6
若过程参数的真值记作 0

y(t)h(t)0
在离散时间点可写成
y(k)h(k)0
其中
h ( k ) h 1 ( k )h ,2 ( k ) ,,h N ( k )
主要内容
确定性问题的梯度校正参数辩识方法 随机性问题的梯度校正参数辩识方法 随机逼近法
4
确定性问题的梯度校正参数辩识方法
设过程的输出 y(t)
参数 1, 2, , N 的线性组合
y ( t) h 1 ( t)1 h 2 ( t)2 h N ( t)N
如果输出 y(t) 和输入 h 1(t),h 2(t), , h N (t)是
w(k ) 和 si (k ) 为零均值的不相关随机噪声
E{si(k)si(k)}0s2,i,
ij ij
17

x(k)
x1(k),
x2(k),
,
xN (k)
h(k) h1(k), h2(k), , hN(k)
s(k)
s1(k),
s2(k),
,
sN (k)
1, 2, , N

x(k)h(k)s(k)
J()E{h(k)z[(k)h(k)]}
令其梯度为零
E {h(k)[z(k)h(k)]} ˆ0
22
原则上
由 式可以求得使 J()min的参数估计值
但,因为 e(k ) 的统计性质不知道
因此
式实际上还是无法解的
23
如果
式左边的数学期望用平均值来近似
1L h(k)[z(k)h(k)]0
z(k)
h(k)w(k)
18
现在的问题
利用输入输出数据 x(k ) 和 z (k )
确定参数 在 k 时刻的估计值 ( k )
使准则函数
其中
J()|(k)1 22(,k)|(k)min
(,k)z(k)x(k)
19
随机逼近法
随机逼近法
梯度校正法的一种类型 颇受重视的参数估计方法
第12章 其他辨识方法
1
12.1 梯度校正参数辩识方法
2
引言
最小二乘类参数辩识递推算法
新的参数估计值=老的参数估计值+增益矩阵 新息
梯度校正参数辩识方法(简称梯度校正法)
递推算法同样具有 的结构 基本原理不同于最小二乘类方法 基本做法 – 沿着准则函数的负梯度方向,逐步修正模
型参数估计值,直至准则函数达到最小值。 3
20
随机逼近原理
考虑如下模型的辩识问题
z(k)h(k)e(k)
e(k ) - 均值为零的噪声
模型的参数辩识
通过极小化 e(k ) 的方差来实现
即求参数 的估计值使下列准则函数达到极小值
J() 1E { e 2 (k ) } 1E {z([ k ) h (k )]2 }
2
2
21
准则函数的一阶负梯度

其中权矩阵的选择至关重要
13
随机性问题的梯度校正参数辩识方法
随机性问题的提法
确定性问题的梯度校正法与其他辩识方法相比
最大的优点:计算简单 缺点:如果过程的输入输出含有噪声,这种方法不能用
随机性问题的梯度校正法
特点:计算简单,可用于在线实时辩识 缺陷:事先必须知道噪声的一阶矩和二阶矩统计特性
h(x)E{y| x}
x 它是 的函数,称作回归函数
25
对于给定的
设下列方程,具有唯一的解
h(x)E {y|x}
当 h(x) 函数的形式及条件概率密度函数P(y| x)
都不知道时
求下列方程的解释是困难的
W .P.1
LS
L
0
可以利用随机逼近法求解
26
随机逼近法
利用变量 x1, x2, 及其对应的随机变量 y(x1), y(x2),
7
例如
用差分方程描述的确定性过程
y ( k ) a 1 y ( k 1 ) a n y ( k n )
可以化成
b 1 u (k 1 ) b n u (k n )
h ( k ) y ( k 1 ), , y ( k n ),u ( k 1 ), , u ( k n )
相关文档
最新文档