系统辨识课件-经典的辨识方法
《系统辨识》Ppt01-2016-09-24

2004.10– 2006.03–2006.05 2006.12–2007.02 2008.05–2008.12 2009.01–2009.10
江南大学“太湖学者”特聘教授、 硕士生导师、 博士生导师 香港科技大学研究员, 中国香港 加拿大渥太华 卡尔顿大学 (Carleton University)研究员 加拿大渥太华 卡尔顿大学(Carleton University)访问教授 加拿大多伦多 瑞尔森大学 (Ryerson University)研究员 数学建模; 系统辨识; 参数估计; 过程控制
令矩阵范数 X
t
2
:= tr[XX T]. 定义二次损失函数
J (θ ) :=
j =1
[y (j ) − ϕT(j )θ ]2 = (Yt − Htθ )T(Yt − Htθ ) = Yt − Htθ 2,
T = −2Ht (Yt − Htθ ) T ˆ (t) = H TYt. Ht)θ = 0. =⇒ (Ht t
Ht−1 T = Ht Ht−1 + ϕ(t)ϕT(t) T − 1 ϕ (t) (5)
= P −1(t − 1) + ϕ(t)ϕT(t), ˆ (t) = (H THt)−1H TYt = P (t)H TYt = P (t)[H T Yt−1 + ϕ(t)y (t)] θ t t t t−1
T = P (t)[P −1(t − 1)P (t − 1)Ht −1 Yt−1 + ϕ(t)y (t)]
系统:
y (t) + a1y (t − 1) + a2y (t − 2) + · · · + any (t − n) = b1u(t − 1) + b2u(t − 2) + · · · + bnu(t − n) + v (t). (2)
系统辨识经典辨识方法

经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
《系统辨识》课件

可采用结构:
y(t)
G(s) K
y( )
Ts1
待估参数为:K,T
稳态增益: K y()
U0
将试验曲线标么化,即
y(t), y(t)
y()
t
y()1
26
第二章 过渡响应法和频率响应法
则标么化后响应:
y(t)
t
1e T
要确定 T ,只要一对观测数据:y*(t1),t1
G(s)T2s2K 2T s1es
先观察试验所得响应曲线的形状特征,据此判断,从模型类中确 定一种结构。然后进行参数估计,最后验证数据拟合程度,反复 多次,直至误差e(t)最小(验证数据拟合可只取若干点)。
25
第二章 过渡响应法和频率响应法
1)若阶跃响应曲线特征为: y (0 )my a (t)x ]0 [
理论建模的难点在于对有关学科知识及实际经验的掌 握,故不属于课程的讨论范围。
➢ 由于许多系统的机理和所处的环境越来越复杂,因 此,理论建模法的运用亦越来越困难,其局限性越 来越大, 需要建立新的建模方法。
➢ 在理论建模方法难以进行或难以达到要求的情况下,
系统辨识建模方法就幸运而生。
8
2、辨识建模法:
建立数学模型来预报。
4
第一章 概 述
2. 用于分析实际系统 工程上在分析一个新系统时,通常先进行数学仿真, 仿真的前提必须有数学模型。
3. 为了设计控制系统 目前,对被控系统的控制器的设计方法的选取,以及如 何进行具体的控制结构和参数的设计都广泛依赖于对 被控系统的理解及所建立的被控系统数学模型。
对于线性系统,脉冲响应,阶跃响应和方波响应之间
是可以相互转换的。
系统辨识课件5

T
cˆn
YN y(n 1) y(n N)T
eN e(n 1) e(n N)T
y(n) y(1) u(n 1) u(1) e(n) e(1)
ΦN
y(n 1)
y(2) u(n 2) u(2)
e(n 1)
e(2)
y(n N 1) y(N) u(N) u(N) e(n N 1) e(N)
N
(3)计算梯度矩阵及海赛矩阵
J nN e(k ) e(k )
θ k n1
θ
T
e(k ) θ
e(k )
a1
e(k ) an
e(k) b0
e(k ) bn
e(k) c1
e(k )
cn
2 J
θ 2
nN e(k) k n1 θ
e(k) θ
T
nN k n1
e(k
)
2e(k θ 2
lnL 0 θ
(4.2)
由(4.1)或(4.2)解出的θ即为极大似然估计 θˆ ML
4.2 差分方程的极大似然辨识
1.白噪声情况
系统差分方程:
a(z-1) y(k ) b(z-1)u(k ) ξ(k )
式中,ξ(k)为高斯白噪声序列且与u(k)无关。 上式写成向量形式为:
YN Φ N θ ξ
系统估计残差为:
eN YN ΦNθˆ
eN e(n 1) e(n 2) e(n N)T
由于ξ(k)为高斯白噪声,故而e(k)也为高斯白噪声。
设e(k) 方差为 2。
因为高斯分布概率密度函数:
p (e(k) θˆ)
1
e2 (k)
exp[
]
(2πσ 2 )1/ 2
《系统辨识》课件

脉冲响应法
总结词
脉冲响应法是一种通过输入和输出数据 估计系统脉冲响应的非参数方法。
VS
详细描述
脉冲响应法利用系统对单位脉冲函数的响 应来估计系统的动态特性。通过观察系统 对脉冲输入的输出,可以提取出系统的传 递函数。这种方法同样适用于线性时不变 系统,且不需要知道系统的具体数学模型 。
随机输入响应法
。
线性系统模型具有叠加性和齐次性,即 多个输入产生的输出等于各自输入产生 的输出的叠加,且相同输入产生的输出
与输入的倍数关系保持不变。
线性系统模型可以通过频域法和时域法 进行辨识,频域法主要通过频率响应函 数进行辨识,时域法则通过输入和输出
数据直接计算系统参数。
非线性系统模型
非线性系统模型具有非叠加性和非齐次性,即多个输 入产生的输出不等于各自输入产生的输出的叠加,且 相同输入产生的输出与输入的倍数关系不保持不变。
递归最小二乘法
递归最小二乘法是一种在线参数估计方法,通过递归地更新参数估计值来处理动态系统。在系统辨识中,递归最小二乘法常 用于实时估计系统的参数。
递归最小二乘法的优点是能够实时处理动态数据,且对数据量较大的情况有较好的性能表现。但其对初始参数估计值敏感, 且容易陷入局部最优解。
广义最小二乘法
广义最小二乘法是一种改进的最小二乘法,通过考虑误差的 方差和协方差来估计参数。在系统辨识中,广义最小二乘法 常用于处理相关性和异方差性问题。
系统辨识
目录
• 系统辨识简介 • 系统模型 • 参数估计方法 • 非参数估计方法 • 系统辨识的局限性与挑战 • 系统辨识的应用案例
01
系统辨识简介
定义与概念
定义
系统辨识是根据系统的输入和输出数 据来估计系统动态特性的过程。
系统辨识课件方崇智

e
ˆ (假设的数学关系) f
系统的 实际输 出
(1)数学模型
• 数学模型和真实系统的区别
不可测干扰 可测 输入
u, d , f z
可测 输出
可测 输入
e
综合误差
ˆ (假设的数学关系) f
ˆ , e拟合u, z关系 u, z f
可测 输出
(1)数学模型
• 数学模型的两类形式及其用途
可测 输入
第6章 模型阶次辨识 内 容:Hankel矩阵法、F-Test定阶法。
第7章 系统辨识在实际中注意的问题
参考书:
1.方崇智、萧德云编著,《过程辨识》,清华大学出版社,北京 2.李言俊,张科编著,《系统辨识理论及应用》,国防工业出版社,北京 3.蔡季冰编著,《系统辨识》,北京理工大学出版社,北京
预修课程:自动控制原理,概率统计与随机过程
e
综合误差
可测 输出 •系统分析 •系统设计
ˆ (假设的数学关系) f
ˆ f
•预测(预测控制) •性能监测与故障诊断 •仿真
ˆ z
•在线估计和软测量 •模型评价与系统辨识
(1)数学模型
• 数学模型的近似性和外特性等价
u u
d f
e ˆ f u
z
近似性
ˆ f
ˆ z
d
u u
从黑箱角度出 发,外特性等价 (统计意义)
(1)设计辨识实验,获取实验数据
数据集是辨识的三要素之一
min J fˆ , K ( z (1)
z ( L), u(1)
u( L), )
数据集性质→影响辨识结果,u →数据集,因 此要设计辨识实验(重点设计u)
(1)设计辨识实验,获取实验数据
系统辨识的经典方法

⎧T
⎨⎩τ
= 2(t2 − t1) = 2t1 − t2
对于以上结果,也可在
⎧⎪⎨tt34
≤τ,
= 0.8T
+τ
,
⎪⎩t5 = 2T +τ ,
y(t3 ) = 0 y(t4 ) = 0.55 y(t5 ) = 0.87
这几点上对实际曲线的拟合精度进行检验。
系统辨识的经典方法
频率响应法
频率响应法-1
; 阶跃响应法辨识原理
¾ 在系统上施加一个阶跃扰动信号,并测定出对象的响应随时间 而变化的曲线,然后根据该响应曲线,通过图解法而不是通过 寻求其解析公式的方法来求出系统的传递函数,这就是阶跃响 应法系统辨识。
¾ 如果系统不含积分环节,则在阶跃输入下,系统的输出将渐进 于一新的稳定状态,称系统具有自平衡特性,或自衡对象。
+ b1s + a1s
+ +
b0 a0
,
n>m
¾ 对应的频率特性可写成:
G(
jω)
=
bm ( an (
jω)m +" + b2 ( jω)2 + b1( jω)n +" + a2 ( jω)2 + a1(
jω) + b0 jω) + a0
=
(b0 − b2ω 2 (a0 − a2ω 2
+ b4ω 4 + a4ω 4
系统辨识的经典方法
肖志云
内蒙古工业大学信息工程学院自动化系
系统辨识的经典方法
1
引言
2
阶跃响应法
3
频率响应法
4
相关分析法
系统辨识课件-经典的辨识方法

ˆ (t ) Ru (t )dt Ruz ( ) g
0
此为辨识过程脉冲响应的理论依据
2 Ru ( ) u ( ) 白噪声输入时 ˆ 1 g ( ) Ruz ( ) 2 u
4.5.2 用M序列作输入信号的离散算法
第4章 经典的辨识方法
4.1 引言 ● 辨识方法的分类 ▲ 经典的辨识方法 (Classical Identification) :首先获得系统的非参数模型(频 率响应,脉冲响应,阶跃响应),通过特定方法,将非参数模型转化成参数 模型 (传递函数)。 ① 阶跃响应辨识方法 (Step Response Identification) ② 脉冲响应辨识方法 (Impulse Response Identification) ③ 频率响应辨识方法 (Frequency Response Identification) ④ 相关分析辨识方法 (Correlation Analysis Identification) ⑤ 谱分析辨识方法 (Spectral Analysis Identification) ▲ 现代的辨识方法 (Modern Identification):假定一种模型结构,通过模型与过 程之间的误差准则来确定模型的结构参数)。 ① 最小二乘类辨识方法 (Least Square Identification) ② 梯度校正辨识方法 (Gradient Correction Identification) ③概率逼近辨识方法(Probability Approximation Identification) 经典的辨识方法 1)首先得到系统的非参数模型; 2)由非参数模型转换成参数模型。
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ai
0
i 2 (t ) i 1 (t ) j [1 h (t )] Байду номын сангаасt Ai j 1 [1 h (t )] dt (i 1,2,, n m) 0 (i 1)! j! j 0
b1 An b A 2 n 1 bm An m1
bm s m bm1 s m1 b1 s b0 G( s) an s n an1 s n1 a1 1
K 0 lim h(t ) lim G ( s ) b0
t s 0
(n m)
h1 (t )
t
[K
0
t
0
h( )]d
w0 G( s) 2 , (0 1) 2 s 2w0 s w0
2
(3)Hankel矩阵法 ● 考虑 n 阶的脉冲传递函数
b1 z 1 b2 z 2 bn z n G( z ) 1 a1 z 1 a2 z 2 an z n
0 1 An 2
0 0 A1
b1 0 A1 b2 0 A2 bm 1 An 0
● 传递函数阶次的确定: 判别各阶面积是否大于零
● Laplace极限定理求过程的传递函数 设:
An 1 An An m 2
An m1 An m 2 An
1
An 1 A n2 An m
a1 1 a A 2 1 an An 1
● 当阶次比较底,或m=0时适用
4.3 脉冲响应法 4.3.1过程脉冲响应的辨识(确定性情形) ● 通过输入矩形脉冲获得
● 由阶跃响应的差分获得
1 g (k ) [h(k ) h(k 1)] T0
4.3.2 由脉冲响应求过程的传递函数 (1)一阶过程
G(s)
K Ts 1
(2)二阶过程
K 1 lim h1 (t )
hr (t ) [ K r 1 hr 1 ( )]d
0
t
(r 2,3,, n m)
K r lim h r (t )
t
K 0 b0 K K a b 1 0 1 1 K 2 K 1 a1 K 0 a 2 b1 r 0,1,2,, n m r r 1 K ( 1 ) b K a K a ( 1 ) K 0 ar r r 1 1 r 2 2 r
输出: h (t ) h(t ) / h()
● 传递函数为:
bm s m bm 1s m 1 b1s 1 G( s) K (n m) an s n an 1s n 1 a1s 1
● 算法: K h() / U0
A1 {1 h (t )}dt
1
● Hankel矩阵的定义
g (k 1) g (k ) g (k 1) g (k 2) H (l , k ) g (k l 1) g (k l ) g (k l 1) g (k l ) g (k 2l 2)
第4章 经典的辨识方法
4.1 引言 ● 辨识方法的分类 ▲ 经典的辨识方法 (Classical Identification) :首先获得系统的非参数模型(频 率响应,脉冲响应,阶跃响应),通过特定方法,将非参数模型转化成参数 模型 (传递函数)。 ① 阶跃响应辨识方法 (Step Response Identification) ② 脉冲响应辨识方法 (Impulse Response Identification) ③ 频率响应辨识方法 (Frequency Response Identification) ④ 相关分析辨识方法 (Correlation Analysis Identification) ⑤ 谱分析辨识方法 (Spectral Analysis Identification) ▲ 现代的辨识方法 (Modern Identification):假定一种模型结构,通过模型与过 程之间的误差准则来确定模型的结构参数)。 ① 最小二乘类辨识方法 (Least Square Identification) ② 梯度校正辨识方法 (Gradient Correction Identification) ③概率逼近辨识方法(Probability Approximation Identification) 经典的辨识方法 1)首先得到系统的非参数模型; 2)由非参数模型转换成参数模型。
● 确定参数的方程:
g (1) g (2) g ( n) g ( n) a n g (n 1) a g (n 2) g (3) g (n 1) n 1 g (n 1) g (2n 1) a1 g ( 2n) g (2)
4.2 阶跃响应法 4.2.1 阶跃响应的辨识 通过手动操作,使过程工作在所需测试的负荷下,稳定运行一段时间 ,快速改变过程的输入量,并用记录仪或数据采集系统同时记录过程输入 和输出的变化曲线。
4.2.2 阶跃响应求过程的传递函数 ● 归一化: u (t ) u(t ) / U0 U 0 为输入信号幅度 输入: