2018-2019学年成都市郫都区八年级(上)期末数学试卷(含解析)

合集下载

人教版2018-2019学年八年级(上册)期末数学试卷 有答案

人教版2018-2019学年八年级(上册)期末数学试卷 有答案

2018-2019学年八年级(上)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣12.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<63.分式可变形为()A. B.﹣C.D.﹣4.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x55.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°6.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+27.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a28.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣29.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组10.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.611.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,2)12.已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程+=2的解是()A.3 B.1 C.5 D.不能确定13.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°14.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题15.计算:(2a2)3•a4=.16.化简:=.17.若m=2n+1,则m2﹣4mn+4n2的值是.18.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为.19.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.三、解答题20.分解因式:(1)x3y﹣4x2y+4xy;(2)a3+2a2﹣3a.21.计算:(1)(x﹣y)2﹣(y+2x)(y﹣2x);(2)(﹣)÷.22.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD 的度数.23.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由.(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)24.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?25.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形上)(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为.提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.26.如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.要使分式有意义,则x的取值应满足()A.x≠2 B.x≠﹣1 C.x=2 D.x=﹣1【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.若三角形的三边长分别为3,4,x﹣1,则x的取值范围是()A.0<x<8 B.2<x<8 C.0<x<6 D.2<x<6【考点】三角形三边关系.【分析】三角形的三边关系是:任意两边之和>第三边,任意两边之差<第三边.已知两边时,第三边的范围是>两边的差,<两边的和.这样就可以确定x的范围,从而确定x的值.【解答】解:依据三角形三边之间的大小关系,列出不等式组,解得2<x<8.故选B.【点评】考查了三角形的三边关系,能够熟练解不等式组.3.分式可变形为()A. B.﹣C.D.﹣【考点】分式的基本性质.【分析】根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣1,得﹣,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x5【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】根据幂的乘方、积的乘方、完全平方公式和同底数幂的乘法计算即可.【解答】解:A、(x3)2=x6,错误;B、(2x)2=4x2,错误;C、(x+1)2=x2+2x+1,错误;D、x3•x2=x5,正确;故选D【点评】此题考查幂的乘方、积的乘方、完全平方公式和同底数幂的乘法,关键是根据法则进行计算.5.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.6.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2【考点】因式分解-提公因式法.【专题】压轴题.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.【点评】先提取公因式,进行因式分解,要注意m﹣1提取公因式后还剩1.7.化简结果正确的是()A.ab B.﹣ab C.a2﹣b2D.b2﹣a2【考点】约分.【专题】计算题.【分析】首先将分式的分子因式分解,进而约分求出即可.【解答】解:==﹣ab.故选:B.【点评】此题主要考查了约分,正确分解因式是解题关键.8.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【考点】平方差公式的几何背景.【专题】几何图形问题.【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解答】解:(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.【点评】本题考查了平方差公式的几何背景,根据拼接前后的图形的面积相等列式是解题的关键.9.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.6【考点】因式分解的应用.【分析】把a2﹣b2+4b变形为(a﹣b)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【解答】解:∵a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b,=2(a﹣b)+4b,=2a﹣2b+4b,=2(a+b),=2×2,=4.故选C.【点评】本题考查了代数式求值的方法,同时还利用了整体思想.11.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,2)【考点】坐标与图形变化-对称.【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.【解答】解:∵点P(﹣1,2),∴点P到直线x=1的距离为1﹣(﹣1)=2,∴点P关于直线x=1的对称点P′到直线x=1的距离为2,∴点P′的横坐标为2+1=3,∴对称点P′的坐标为(3,2).故选C.【点评】本题考查了坐标与图形变化﹣对称,根据轴对称性求出对称点到直线x=1的距离,从而得到横坐标是解题的关键,作出图形更形象直观.12.已知点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,则关于x的分式方程+=2的解是()A.3 B.1 C.5 D.不能确定【考点】解分式方程;关于x轴、y轴对称的点的坐标.【专题】计算题;分式方程及应用.【分析】根据P点在第四象限及a为整数,确定出a的值,代入分式方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于y轴的对称点在第四象限内,且a为整数,∴,即<a<2,∴a=1,代入分式方程得: +=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,故选A【点评】此题考查了解分式方程,以及关于x轴、y轴对称的点的坐标,熟练掌握运算法则是解本题的关键.13.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是()A.75°B.70°C.65°D.60°【考点】全等三角形的判定与性质.【分析】首先证明△DBE≌△ECF,进而得到∠EFC=∠DEB,再根据三角形内角和计算出∠CFE+∠FEC 的度数,进而得到∠DEB+∠FEC的度数,然后可算出∠DEF的度数.【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°,故选:C.【点评】本题考查了全等三角形的性质和判定,以及三角形内角和的定理,关键是掌握三角形内角和是180°.14.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质.【分析】根据已知条件利用HL易证△APR≌△APS,再利用全等三角形的性质可得∠PAR=∠PAS,AR=AS,从而可证(1)、(2)正确;由AQ=PQ,利用等边对等角易得∠1=∠APQ,再利用三角形外角的性质可得∠PQC=2∠1,而(1)中PA是∠BAC的角平分线可得∠BAC=2∠1,等量代换,从而有∠PQC=∠BAC,利用同位角相等两直线平行可得QP∥AR,(3)正确;根据已知条件可知△BRP与△CSP只有一角、一边对应相等,故不能证明两三角形全等,因此(4)不正确.【解答】解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选B.【点评】本题考查了全等三角形的判定和性质;做题时利用了平行线的判定、等边对等角、三角形外角的性质,要熟练掌握这些知识并能灵活应用.二、填空题15.计算:(2a2)3•a4=8a10.【考点】幂的乘方与积的乘方;同底数幂的乘法.【专题】压轴题.【分析】根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;同底数幂相乘,底数不变指数相加,计算即可.【解答】解:(2a2)3•a4,=8a6•a4,=8a10.故答案为:8a10.【点评】本题考查积的乘方的性质,同底数幂的乘法的性质,熟练掌握运算性质是解题的关键.16.化简:=x+2.【考点】分式的加减法.【专题】计算题.【分析】先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.【解答】解: +=﹣==x+2.故答案为:x+2.【点评】本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.17.若m=2n+1,则m2﹣4mn+4n2的值是1.【考点】完全平方公式.【专题】计算题.【分析】所求式子利用完全平方公式变形,将已知等式变形后代入计算即可求出值.【解答】解:∵m=2n+1,即m﹣2n=1,∴原式=(m﹣2n)2=1.故答案为:1【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.18.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为﹣=.【考点】由实际问题抽象出分式方程.【分析】如果设骑自行车的速度为x千米/时,那么乘汽车的速度为2x千米/时,根据“他骑自行车前往体育馆比乘汽车多用10分钟”,得到等量关系为:骑自行车所用的时间﹣乘汽车所用的时间=,据此列出方程即可.【解答】解:设骑自行车的速度为x千米/时,那么乘汽车的速度为2x千米/时,由题意,得﹣=.故答案为﹣=.【点评】本题考查由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到了行程问题中的基本关系式关系:时间=路程÷速度.本题要注意:时间的单位要和所设速度的单位相一致.19.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为①②④①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.【考点】全等三角形的判定与性质.【分析】要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,因为证明三角形全等没有边边角定理.【解答】解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;②若∠OEC=∠OFC,同①可得△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;③若EC=FC条件不够不能得出.错误;④若EF⊥OC,根据SSS定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确.故填①②④.【点评】本题主要考查了三角形全等的判与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题20.分解因式:(1)x3y﹣4x2y+4xy;(2)a3+2a2﹣3a.【考点】提公因式法与公式法的综合运用;因式分解-十字相乘法等.【分析】(1)先提公因式,再根据完全平方公式分解即可;(2)先提公因式,再根据十字相乘法分解即可.【解答】解:(1)x3y﹣4x2y+4xy=xy(x2﹣4x+4)=xy(x﹣2)2;(2)a3+2a2﹣3a=a(a2+2a﹣3)=a(a+3)(a﹣1).【点评】本题考查了分解因式的应用,能熟练地掌握因式分解的方法是解此题的关键.21.计算:(1)(x﹣y)2﹣(y+2x)(y﹣2x);(2)(﹣)÷.【考点】分式的混合运算;完全平方公式;平方差公式.【专题】整式;分式.【分析】(1)原式利用平方差公式及完全平方公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=x2﹣2xy+y2﹣y2+4x2=5x2﹣2xy;(2)原式=[﹣]•=•=﹣•=﹣.【点评】此题考查了分式的混合运算,以及完全平方公式、平方差公式,熟练掌握运算法则是解本题的关键.22.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使CD=CA,连接AD,求∠BAD 的度数.【考点】三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】要求∠BAD的度数,只要求出∠C的度数就行了,根据三角形内角和为180°,求出∠BAD的度数,根据三角形内角和外角关系及等腰三角形性质,易求∠C的度数.【解答】解:∵∠ACB=80°∴∠ACD=180°﹣∠ACB=180°﹣80°=100°又∵CD=CA∴∠CAD=∠D∵∠ACD+∠CAD+∠D=180°∴∠CAD=∠D=40°在△ABC内∴∠BAD=180°﹣∠ABC﹣∠D=180°﹣46°﹣40°=94°.【点评】此题主要考三角形内角与外角的关系及等腰三角形的性质;找出角之间的关系利用内角和求解是正确解答本题的关键.23.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?(1)请你帮他们解答,并说明理由.(2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论.请你帮他画出图形,并写出结论,不要求说明理由.(如图3)【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理SSS证得△ACB≌△ADB;(2)由(1)中的全等三角形(△ACB≌△ADB)的对应角相等证得∠CAE=∠DAE,则由全等三角形的判定定理SAS证得△CAE≌△DAE,则对应边CE=DE;(3)同(2),利用全等三角形的对应边相等证得结论.【解答】解:(1)△ACB≌△ADB,理由如下:如图1,∵在△ACB与△ADB中,,∴△ACB≌△ADB(SSS);(2)如图2,∵由(1)知,△ACB≌△ADB,则∠CAE=∠DAE.∴在△CAE与△DAE中,,∴△CAE≌△DAE(SAS),∴CE=DE;(3)如图3,PC=PD.理由同(2),△APC≌△APD(SAS),则PC=PD.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.24.从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?【考点】分式方程的应用.【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形上)(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.【考点】作图-轴对称变换;轴对称-最短路线问题.【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标.【解答】解:(1)所作图形如图所示:A1(3,1),B1(0,0),C1(1,3);(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,点D坐标为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.26.如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)根据等腰直角三角形的性质求出∠B=∠BAC=45°,再求出∠CAE=45°,从而得到∠B=∠CAE,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应边相等可得CD=CE,全等三角形对应角相等可得∠ACE=∠BCD,再求出∠DCE=90°,从而得解;(2)根据等腰三角形两底角相等求出∠AEF=∠AFE=67.5°,再根据直角三角形两锐角互余求出∠ADE=22.5°,然后求出∠ADC=67.5°,利用三角形的内角和定理求出∠ACD=67.5°,从而得到∠ACD=∠ADC,根据等角对等边即可得到AD=AC.【解答】解:(1)△CDE是等腰直角三角形.理由如下:∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵AE⊥AB,∴∠CAE=90°﹣45°=45°,∴∠B=∠CAE,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴CD=CE,∠ACE=∠BCD,∵∠ACD+∠BCD=∠ACB=90°,∴∠DCE=∠ACD+∠ACE=90°,∴△CDE是等腰直角三角形;(2)存在AD=1.理由如下:∵AE=AF,∠CAE=45°,∴∠AEF=∠AFE=(180°﹣45°)=67.5°,∴∠ADE=90°﹣67.5°=22.5°,∵△CDE是等腰直角三角形,∴∠CDE=45°,∴∠ADC=22.5°+45°=67.5°,在△ACD中,∠ACD=180°﹣45°﹣67.5°=67.5°,∴∠ACD=∠ADC,∴AD=AC=1.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形的性质,熟练掌握三角形全等的判定方法是解题的关键.。

┃精选3套试卷┃2018届成都市八年级上学期数学期末综合测试试题

┃精选3套试卷┃2018届成都市八年级上学期数学期末综合测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在长为10cm ,7cm ,5cm ,3cm 的四根木条,选其中三根组成三角形,则能组成三角形的个数为( ) A .1 B .2C .3D .4【答案】B【分析】根据任意两边之和大于第三边判断能否构成三角形. 【详解】依题意,有以下四种可能:(1)选其中10cm ,7cm ,5cm 三条线段符合三角形的成形条件,能组成三角形 (2)选其中10cm ,7cm ,3cm 三条线段不符合三角形的成形条件,不能组成三角形 (3)选其中10cm ,5cm ,3cm 三条线段不符合三角形的成形条件,不能组成三角形 (4) 选其中7cm ,5cm ,3cm 三条线段符合三角形的成形条件,能组成三角形 综上,能组成三角形的个数为2个 故选:B . 【点睛】本题考查了三角形的三边关系定理,熟记三边关系定理是解题关键.2.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS【答案】D【分析】根据尺规作图得到OD O D ''=,OC O C ''=,CD C D ''=,根据三条边分别对应相等的两个三角形全等与全等三角形的性质进行求解.【详解】由尺规作图知,OD O D ''=,OC O C ''=,CD C D ''=, 由SSS 可判定COD C O D '''≅,则A O B AOB '''∠=∠, 故选D . 【点睛】本题考查基本尺规作图,全等三角形的判定与性质,熟练掌握全等三角形的判定定理:SSS 和全等三角形对应角相等是解题的关键.3.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB =10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米【答案】D【解析】∵5<AB<25,∴A 、B 间的距离不可能是5,故选D.4.如图,在ABC 中,AB AC =,点E 在AC 上,ED BC ⊥于点D ,DE 的延长线交BA 的延长线于点F ,则下列结论中错误的是( )A .AE CE =B .12DEC BAC ∠=∠ C .AF AE=D .1902B BAC ∠+∠=︒ 【答案】A【分析】由题意中点E 的位置即可对A 项进行判断;过点A 作AG ⊥BC 于点G ,如图,由等腰三角形的性质可得∠1=∠2=12BAC ∠,易得ED ∥AG ,然后根据平行线的性质即可判断B 项;根据平行线的性质和等腰三角形的判定即可判断C 项;由直角三角形的性质并结合∠1=12BAC ∠的结论即可判断D 项,进而可得答案. 【详解】解:A 、由于点E 在AC 上,点E 不一定是AC 中点,所以,AE CE 不一定相等,所以本选项结论错误,符合题意;B 、过点A 作AG ⊥BC 于点G ,如图,∵AB=AC ,∴∠1=∠2=12BAC ∠, ∵ED BC ⊥,∴ED ∥AG ,∴122DEC BAC ∠=∠=∠,所以本选项结论正确,不符合题意; C 、∵ED ∥AG ,∴∠1=∠F ,∠2=∠AEF ,∵∠1=∠2,∴∠F=∠AEF ,∴AF AE =,所以本选项结论正确,不符合题意;D 、∵AG ⊥BC ,∴∠1+∠B=90°,即1902B BAC ∠+∠=︒,所以本选项结论正确,不符合题意.故选:A.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.5.下列计算正确的是()A.235+=B.321⨯=D.822-=C.236÷=【答案】D【分析】分别利用二次根式加减乘除运算法则化简求出答案即可+不是同类项,不能合并,故本选项错误;【详解】解:A、23B、23-不是同类项,不能合并,故本选项错误;⨯=,故本选项错误;C、2323D、8242÷==;故本选项正确;故选:D【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.6.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【答案】A【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.7.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE ;④ACDBCDES1S6四边形其中,正确的是()A.只有①②B.只有①②③C.只有③④D.①②③④【答案】A【分析】根据平行四边形的判定定理判断②,根据平行四边形的性质和平行线的性质判断①,根据三角形三边关系判断③,根据等边三角形的性质分别求出△ACD、△ACB、△ABE的面积,计算即可判断④.【详解】∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,AC=12AB,∵△ACD是等边三角形,∴∠ACD=60°,∴∠ACD=∠BAC,∴CD∥AB,∵F为AB的中点,∴BF=12AB,∴BF∥CD,CD=BF,∴四边形BCDF为平行四边形,②正确;∵四边形BCDF为平行四边形,∴DF∥BC,又∠ACB=90°,∴AC⊥DF,①正确;∵DA=CA ,DF=BC ,AB=BE ,BC+AC >AB ∴DA+DF >BE ,③错误; 设AC=x ,则AB=2x ,S △ACD =2222222333143733342ACDACBABEBCDExSx S x S x S x x x ====++四边形,,, ,④错误, 故选:A . 【点睛】此题考查平行四边形的判定和性质、等边三角形的性质,掌握一组对边平行且相等的四边形是平行四边形、等边三角形的有关计算是解题的关键.8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数运算 21=2 22=4 23=8 … 31=3 32=9 33=27 … 新运算log 22=1log 24=2log 28=3…log 33=1log 39=2log 327=3…根据上表规律,某同学写出了三个式子: ①log 216=4,②log 525=5,③log 212=﹣1.其中正确的是 A .①② B .①③C .②③D .①②③【答案】B 【解析】422log 16log 24== ,故①正确;255log 25log 52== ,故②不正确;122log 0.5log 21-==- ,故③正确;故选B.9.下列图形是轴对称图形的为( )A .B .C .D .【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】A 、不是轴对称图形,故本选项不合题意; B 、不是轴对称图形,故本选项不合题意; C 、不是轴对称图形,故本选项不合题意; D 、是轴对称图形,故本选项符合题意. 故选:D .本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A.DC=DE B.∠AED=90°C.∠ADE=∠ADC D.DB=DC【答案】D【分析】证明△ADC≌△ADE,利用全等三角形的性质即可得出答案.【详解】在△ADC和△ADE中,∵AE ACCAD EAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△ADE(SAS),∴DC=DE,∠AED=∠C=90°,∠ADE=∠ADC,故A、B、C选项结论正确,D选项结论错误.故选:D.【点睛】本题考查了全等三角形的判定与性质,注意掌握全等三角形的判定定理及全等三角形的性质,对于选择题来说,可以运用排除法得解.二、填空题11.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.【答案】1【解析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【详解】解:由题意可得:22129+11,则木筷露在杯子外面的部分至少有:20−11=1(cm).故答案为1.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.12.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.【答案】①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=12BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=12BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=12S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=12 BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键. 13.计算:6x 2÷2x= . 【答案】3x .【解析】试题解析:6x 2÷2x=3x . 考点:单项式除以单项式.14.关于一次函数(0)y kx k k =+≠有如下说法:①当0k >时,y 随x 的增大而减小;②当0k >时,函数图象经过一、 二、三象限;③函数图象一定经过点(1, 0);④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为()2)0( y k x k k =-+≠.其中说法正确的序号是__________. 【答案】②【分析】根据一次函数的图象与性质一一判断选择即可. 【详解】解: ①当0k >时,y 随x 的增大而增大,故错误; ②当0k >时,函数图象经过一、 二、三象限,正确;③将点(1, 0)代入解析式可得02k =,不成立,函数图象不经过点(1, 0),故错误;④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为2(0)y kx k k =+-≠,故错误. 故答案为: ②. 【点睛】本题考查了一次函数的图象与性质,熟练掌握该知识点是解答关键. 15.用图象法解二元一次方程组020kx y b x y -+=⎧⎨-+=⎩小英所画图象如图所示,则方程组的解为_________.【答案】13x y =⎧⎨=⎩【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】∵直线y=kx+b 与y=x+2的交点坐标为(1,3),∴二元一次方程组020kx y b x y -+=⎧⎨-+=⎩的解为13x y =⎧⎨=⎩,故答案为13x y =⎧⎨=⎩.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 16.已知:如图,点B E C F 、、、在同一直线上,,,AB DE BE CF AC DF ===,62,40A DEF ∠=︒∠=︒,则F ∠=______.【答案】78【分析】先证明△ABC ≌△DEF, 得到∠A=∠D,由62,40A DEF ∠=︒∠=︒即可求得∠F 的度数. 【详解】解:∵BE=CF , ∴BE+EC=CF+EC ,即BC=EF , 在△ABC 和△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS), ∴∠A=∠D∵62,40A DEF ∠=︒∠=︒, ∴∠F=180°-62°-40°=78°, 故答案为78°. 【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题. 17.分式值2||12a a a -+-为0,则a =____________________. 【答案】-1【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可得出结论. 【详解】解:∵分式2||12a a a -+-的值为0∴21020a a a ⎧-=⎨+-≠⎩解得:a=-1故答案为:-1. 【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0是解决此题的关键. 三、解答题 18.解方程: (1)3731x y x y +=⎧⎨-=-⎩(2)12325x y x y ⎧-=⎪⎨⎪+=-⎩ 【答案】(1)21x y =⎧⎨=⎩;(2)13x y =⎧⎨=-⎩【分析】(1)把①×3+②消去y ,求出x 的值,再把x 的值代入①求出y 的值即可; (2)用②-①消去x ,求出y 的值,,再把y 的值代入②求出x 的值即可. 【详解】(1)3731x y x y +=⎧⎨-=-⎩①②,①×3+②,得 10x=20, ∴x=2,把x=2代入①,得 6+y=7, ∴y=1,∴21x y =⎧⎨=⎩; (2)12325x y x y ⎧-=⎪⎨⎪+=-⎩①②, ②-①,得1273y y +=-, y=-3,把y 的值代入②,得 x-6=-5, x=1,∴13x y =⎧⎨=-⎩. 【点睛】本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.19.分解因式:(1)﹣3a 2+6ab ﹣3b 2;(2)9a 2(x ﹣y)+4b 2(y ﹣x).【答案】(1)﹣3(a ﹣b)2;(2)(x ﹣y)(3a+2b)(3a ﹣2b).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【详解】(1)原式=﹣3(a 2﹣2ab+b 2)=﹣3(a ﹣b)2;(2)原式=(x ﹣y)(3a+2b)(3a ﹣2b).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.先将21112x x x x-⎛⎫-÷ ⎪+⎝⎭ 化简,然后请自选一个你喜欢的x 值代入求值. 【答案】2x +,当10x =时,原式=1【分析】将括号中两项通分并利用同分母分式的减法法则计算,化除法为乘法运算,约分得到最简结果,取一个使分式分母和除式不为0的数,如10x =代入计算即可得到结果. 【详解】21112x x x x-⎛⎫-÷ ⎪+⎝⎭ 1(2)1x x x x x -+=⋅- 2x =+,取10x =,原式=10+2=1.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图所示,△ADF 和△BCE 中,∠A=∠B ,点D ,E ,F ,C 在同一直线上,有如下三个关系式:①AD=BC ;②DE=CF ;③BE ∥AF .请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【答案】如:AD=BC ,BE ∥AF ,则DE=CF ;理由见解析【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【详解】解:如:AD=BC ,BE ∥AF ,则DE=CF ;理由是:∵BE ∥AF ,∴∠AFD=∠BEC ,在△ADF 和△BEC 中,A B AFD BEC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCE(AAS),∴DF=CE ,∴DF ﹣EF=CE ﹣EF ,∴DE=CF .【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.22.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.这次竞赛中甲、乙两组学生成绩统计分析表和成绩分布的折线统计图如图所示组别平均分 中位数 方差 合格率 优秀率 甲组6.8 a 3.76 90% 30% 乙组 b7.5 1.96 80% 20%(1)求出成绩统计分析表中a ,b 的值;(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意甲组同学的说法,认为他们的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【答案】(1)6,7.2;(2)甲组;(3)理由见详解.【分析】中位数是按顺序排列的一组数据中居于中间位置的数,偶数个数量的中位数=中间两个数之和2÷,平均分=所有人分数之和÷总人数,.【详解】(1)甲组:总人数10人,第5人分数=6分,第6人分数=6分,中位数(66)62a +== 乙组:平均分25162738297.210b ⨯+⨯+⨯+⨯+⨯== (2)小英是甲组的.理由是:乙组的平均分=7.2分,高于小英的7分,如果在乙组的话小英应该是排名属中游略下。

成都市八年级(上)期末数学试卷含答案

成都市八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列各数中,属于无理数是()A. B. C. D. 0.22.一次函数y=x-4的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.下列各点中,在直线y=-2x+1上的点是()A. (1,-1)B. (-1,1)C. (2,3)D. (-2,-3)4.如图,在平行四边形ABCD中,下列说法一定正确的是()A. AB=CDB. AC⊥BDC. AB=BCD. AC=BD5.在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A. (-1,2)B. (2,-1)C. (-1,-2)D. (1,-2)6.我区今年6月某一周的最高气温如下(单位C°):32,29,30,32,30,32,31,则最高气温的众数和中位数分别是()A. 30,32B. 32,30C. 32,31D. 32,327.已知2x m+n y2与-3x4y m-n是同类项,则m,n的值分别是()A. B. C. D.8.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=2,若∠C=45°,则BC的长为()A. 6B. 4C. 2+3D. 59.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为()A. 10B. 12C. 16D. 18二、填空题(本大题共9小题,共36.0分)11.甲、乙两名同学投掷实心球,每人投10次,平均成绩为7米,方差分别为S=0.1,S=0.04,成绩比较稳定的是______.12.A(-1,y1),B(3,y2)是直线y=-2x+b上的两点,则y1______y2(填>或<)13.已知a<3,则=______.14.如图,矩形ABCD中,DE⊥AC于E,且∠ADE=70°,则∠BDE的度数为______.15.如果y=+﹣5,那么y的值是____.16.如图,一次函数的图象与两坐标轴分别交于A,B两点,P是线段AB上任意一点(不包括端点)过P分别作两坐标的垂线与两坐标轴围成的矩形的周长______.17.在菱形ABCD中,AB=4,∠ABC=120°,点E是AB的中点,点P是对角线BD上一个动点,则PA+PE的最小值是______.18.如图y=-x+2向上平移m个单位后,与直线y=-2x+6的交点在第一象限,则m的取值范围是______.19.在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=10,点E在AB上,BE=6且∠DCE=45°,则DE 的长为______.三、计算题(本大题共1小题,共10.0分)20.解方程:(1)(2)四、解答题(本大题共8小题,共74.0分)21.(1)-3×+(2)(3+)(3-)-(-1)222.已知:如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.23.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?24.如图,在平面直角坐标系中,直线l1:y=x与直线l2:y=3x-9相交于点A,直线l2交y轴负半轴与点B.(1)求点A坐标;(2)在x轴上取一点C(10,0),求△ABC面积.25.如图1,在Rt△ABC中,∠ACB=90°,D是AB边上任意一点,E是BC边上的中点,过点C作CF∥AB交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)如图2,若D为AB中点,求证:四边形CDBF是菱形;(3)若∠FDB=30°,∠ABC=45°,BE=4,求的△BDE面积.26.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升10微克,接着逐步衰减,8小时时血液中含药量为每毫升6微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示,当成人按规定剂量服药后,(1)求y与x之间的解析式;(2)如果每毫升血液中含药量不低于5微克时,在治疗疾病时是有效的,那么该要的有效时间是多少?27.如图,点B在线段AF上,AB=8,BF=4,分别以AB,BF为边在线段AF的同侧作正方形ABCD和正方形BFGE,连接CF,DE.(1)求证:CF=DE;(2)连接DG,若H是DG的中点,求BH的长;(3)在(2)的条件下延长BH交CD于M,求CM的长.28.如图,直线y=kx+6分别交x轴,y轴于点A,C,直线BC过点C交x轴于B,且OA=OC,∠CBA=45°.(1)求直线BC的解析式;(2)若点G是线段BC上一点,连结AG,将△ABC分成面积相等的两部分,求点G的坐标:(3)已知D为AC的中点,点M是x轴上的一个动点,点N是线段BC上的一个动点,当点D,M,N为顶点的三角形为等腰直角三角形时,直接写出点M的坐标.答案和解析1.【答案】A【解析】解:是无理数,故A正确;是一个分数,是有理数,故B错误;=3是有理数,故C错误;0.2是有限小数,是有理数,故D错误.故选:A.根据无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,可得答案.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】B【解析】解:由题意,得:k>0,b<0,故直线经过第一、三、四象限.即不经过第二象限.故选:B.根据k,b的符号判断一次函数y=x-4的图象所经过的象限.此题考查一次函数的性质,能够根据k,b的符号正确判断直线所经过的象限.3.【答案】A【解析】解:A.把(1,-1)代入y=-2x+1,等式成立,故本选项正确;B.把(-1,1)代入y=-2x+1,等式不成立,故本选项错误;C.把(2,3)代入y=-2x+1,等式不成立,故本选项错误;D.把(-2,-3)代入y=-2x+1,等式不成立,故本选项错误;故选:A.直线上任意一点的坐标都满足函数关系式y=kx+b,把各点代入计算即可判断.本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.4.【答案】A【解析】解:∵四边形ABCD是平行四边形,∴AB=CD;故选:A.由平行四边形的性质容易得出结论.本题考查了平行四边形的性质;熟记平行四边形的对边相等是解决问题的关键.5.【答案】D【解析】解:点M(1,2)关于x轴对称的点的坐标为:(1,-2).故选:D.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.此题主要考查了关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.6.【答案】C【解析】解:∵这组数据中32出现的次数最多,是3次,∴每天的最高气温的众数是32;把3月份某一周的气温由高到低排列是:29、30、30、31、32、32、32,∴每天的最高气温的中位数是31;∴每天的最高气温的众数和中位数分别是32、31.故选:C.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.7.【答案】B【解析】解:∵2x m+n y2与-3x4y m-n是同类项,∴,解得:,故选:B.利用同类项的定义列出方程组,求出方程组的解即可得到m与n的值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.【答案】D【解析】解:过点D作DE⊥BC于E,∵AD∥BC,∠B=90°,∴∠A=∠B=∠DEB=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=3,∠DEC=90°,∵∠C=45°,∴∠EDC=∠C=45°,∴EC=DE=3,∴BC=BE+CE=2+3=5.故选:D.首先过点D作DE⊥BC于E,由AD∥BC,∠B=90°,易证得四边形ABED是矩形,可得BE=AD=2,DE=AB=3,又由∠C=45°,则可求得EC的长,继而求得BC的长.此题考查了直角梯形的性质,矩形的性质,等腰三角形的性质以及直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.9.【答案】A【解析】【分析】本题考查了一次函数与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b 的图象经过一、三、四象限;k<0,b>0⇔y=kx+b的图象经过一、二、四象限;k<0,b<0⇔y=kx+b的图象经过二、三、四象限.【解答】解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴函数y=-bx+k的图象经过第一、二、三象限.故选:A.10.【答案】C【解析】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:C.先证明四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.11.【答案】乙【解析】解:∵平均成绩为7米,方差分别为S=0.1,S=0.04,∴S>S,∴成绩比较稳定的是乙;故答案为:乙.根据方差的定义,方差越小数据越稳定,即可得出答案.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12.【答案】>【解析】解:在一次函数y=-2x+b中,∵k=-2<0,∴y随x的增大而减小,∵-1<3,∴y1>y2,故答案为:>.利用一次函数的增减性判断即可.本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b 中,当k>0时y随x的而增大,当k<0时,y随x的增大而减小.13.【答案】3-a【解析】解:∵a<3,∴=|a-3|=3-a.故答案为:3-a.根据二次根式的性质得出|a-3|,去掉绝对值符号即可.本题考查了二次根式的性质和绝对值,注意:当a≥0时,=a,当a≤0时,=-a.14.【答案】50°【解析】解:∵DE⊥AC,∠ADE=70°,∴∠DAE=20°,∵四边形ABCD是矩形,∴AO=DO,∴∠DAE=∠ADO=20°,∴∠DOC=40°,且DE⊥AC,∴∠BDE=50°,故答案为:50°.由矩形的性质可求∠DAE=∠ADO=20°,可得∠DOC=40°,即可求解.本题考查了矩形的性质,直角三角形的性质,熟练运用矩形的性质是本题的关键.15.【答案】-5【解析】解:依题意得:x-2≥0且4-2x≥0.解得x=2,所以y=-5.故答案是:-5.根据二次根式的被开方数是非负数解答.考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.16.【答案】10【解析】解:∵A(5,0),B(0,5),∴直线AB的解析式为y=-x+5,∵P是线段AB上任意一点(不包括端点),∴设P点坐标为(m,-m+5),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=-m+5,PC=m,∴矩形PDOC的周长为:2(m-m+5)=10,故答案为:10.根据待定系数法求得直线AB的解析式y=-x+5,设P点坐标为(m,-m+5),然后根据周长公式可得出答案.本题主要考查矩形的性质及一次函数图象上点的坐标特征,根据待定系数法求得直线AB的关系是解题的关键.17.【答案】2【解析】解:连接DE,∵在菱形ABCD中,AB=4,∠ABC=120°,点E是AB的中点,∴∠DAB=60°,AE=BE=2,∴△ABD是等边三角形,∴AD=BD,∴DE⊥AB,∵AB∥CD,∴DE⊥CD,连接EC,与BD交于点P,连接AC,此时PA+PE=CP+EP=CE值最小,∵DE=AD=2,∴CE===2,∴PA+PE的最小值是2,故答案为:2.连接DE,根据菱形的性质得到∠DAB=60°,AE=BE=2,推出△ABD是等边三角形,得到AD=BD,推出DE⊥CD,连接EC,与BD交于点P,连接AC,此时PA+PE=CP+EP=CE 值最小,根据勾股定理即可得到结论.本题考查了轴对称-最短路线问题,菱形的性质,轴对称的性质,等边三角形的判定,难度适中,确定点P的位置是解题的关键.18.【答案】1<m<4【解析】【分析】本题考查了两条直线相交问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.正确利用数形结合思想得出m的取值范围是解题关键.解方程组,可得直线y=-x+2+m与直线y=-2x+6的交点坐标为(4-m,2m-2),依据交点在第一象限,即可得出1<m<4.【解答】解:y=-x+2向上平移m个单位后,可得y=-x+2+m,解方程组,可得,∴直线y=-x+2+m与直线y=-2x+6的交点坐标为(4-m,2m-2),∵交点在第一象限,∴,解得1<m<4,故答案为:1<m<4.19.【答案】8.5【解析】解:如图,∵AD∥BC(BC>AD),∠B=90°,∴∠A=90°,过点C作CG⊥AD,交AD的延长线于点G,∵AB=BC=10,∴四边形ABCG是正方形,∴∠BCG=90°,BC=CG,∵∠DCE=45°,∴∠DCG+∠BCE=45°,延长AB到BH使BH=DG,在△CDG与△CHB中,,∴△CDG≌△CHB(SAS),∴CH=CD,∠BCH=∠GCD,∴∠DCE=∠HCE,∵CE=CE,∴△CEH≌△CED(SAS),∴DE=EH=BE+DG,在过点C作CG⊥AD,交AD的延长线于点G,∵DE=DG+BE,设DG=x,则AD=10-x,DE=x+6,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(10-x)2+42=(x+6)2,解得x=2.5.∴DE=2.5+6=8.5.故答案是:8.5.过点C作CG⊥AD,交AD的延长线于点G,推出四边形ABCG是正方形,得到∠BCG=90°,BC=CG延长AB到BH使BH=DG,根据全等三角形的性质得到DE=EH=BE+DG,利用勾股定理求得DE的长.本题考查了正方形的判定和性质,勾股定理、全等三角形的判定和性质,解决问题的关键是在直角三角形中运用勾股定理列方程求解.20.【答案】解:(1),①×3+②得:10x=20,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2),②-①得:y=-7,解得:y=-3,把y=-3代入②得:x=1,则方程组的解为.【解析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.【答案】解:(1)原式=2-+2=2+;(2)原式=9-6-(2-2+1)=3-(3-2)=2;【解析】(1)根据二次根式的运算法则即可求出答案.(2)根据平方差公式以及完全平方公式即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.22.【答案】证明:∵四边形ABCD是平行四边形,∴AD=BCAD∥BC,∵E、F分别是AD、BC的中点,∴,∴DE=BF,DE∥BF,∴四边形BFDE是平行四边形,∴BE=DF.【解析】要证明BE=DF,可以证明它们所在的两个三角形全等,也可以通过证明四边形BEDF是平行四边形,再根据平行四边形的对边相等进行证明.本题考查了平行四边形的判定与性质,通过此题可以发现:证明两条线段相等,除了通过证明全等三角形的方法,也可通过特殊四边形的性质进行证明.23.【答案】解:(1)甲组的平均成绩为=83(分)、乙组的平均成绩为=84(分),所以乙组第一名、甲组第二名;(2)甲组的平均成绩为=83.8(分),乙组的平均成绩为=83.5(分),所以甲组成绩最高.【解析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.24.【答案】解:(1)∵直线l1:y=x与直线l2:y=3x-9相交于点A,解方程组,可得,∴点A坐标为(4,3);(2)∵直线l2:y=3x-9交y轴负半轴于点B,∴B(0,-9),∴△ABC面积=S△AOC+S△BOC-S△AOB=×10×3+×10×9-×9×4=15+45-18=42.【解析】(1)依据直线l1:y=x与直线l2:y=3x-9相交于点A,即可得到点A坐标;(2)依据直线l2:y=3x-9交y轴负半轴于点B,即可得到B(0,-9),再根据△ABC面积=S△AOC+S△BOC-S△AOB进行计算即可.本题考查了两直线相交的问题,待定系数法求直线的解析式,三角形的面积,求出点A、B的坐标是解题的关键.25.【答案】(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA),∴CF=BD,且CF∥AB,∴四边形CDBF是平行四边形.(2)∵D为AB中点,∠ACB=90°,∴AD=CD=BD,且四边形CDBF是平行四边形,∴四边形CDBF是菱形,(3)如图,作EM⊥DB于点M,在Rt△EMB中,EM=BE•sin∠ABC=2,∴BM=2在Rt△EMD中,∵∠EDM=30°,∴DM=ME=2,∴BD=2+2∴△BDE面积=×BD×ME=×2×(2+2)=4+4【解析】(1)欲证明四边形CDBF是平行四边形只要证明CF∥DB,CF=DB即可;(2)由直角三角形的性质可得AD=CD=DB,即可证四边形CDBF是菱形;(3)如图,作EM⊥DB于点M,解直角三角形即可;本题考查菱形的判定和性质,平行四边形的性质、全等三角形的判定和性质、勾股定理、直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.【答案】解:(1)当x≤2时,设y=k1x,把(2,10)代入上式,得k1=5,∴x≤2时,y=5x;当x>2时,设y=k2x+b,把(2,10),(8,6)代入上式,,解得,∴;(2)把y=5代入y=5x,得x1=1;把y=5代入,得x2=,则x2-x1=小时.答:这个有效时间为6小时.【解析】(1)直接根据图象上的点的坐标利用待定系数法解得;(2)根据图象可知每毫升血液中含药量为5微克是在两个函数图象上都有,所以把y=5,分别代入y=5x,,求出x的值即可解决问题.本题主要考查利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.27.【答案】(1)证明:∵四边形ABCD与四边形BFGE都是正方形,∴AD=AB=CD=BC=8,BE=BF=FG=4,∠DCE=∠CBF=90°,∴CE=BC-BE=8-4=4,∴CE=BF,在△DCE和△CBF中,,∴△DCE≌△CBF(SAS),∴CF=DE;(2)解:过点H作HN⊥AB于N,如图1所示:则HN∥AD∥GF,∵H是DG的中点,∴HN是梯形ADGF的中位线,∴NH=(AD+FG)=×(8+4)=6,NF=(AB+BF)=×(8+4)=6,∴BN=NF-BF=6-4=2,∴BH===2;(3)解:过点H作HN⊥AB于N,延长NH交CD于Q,如图2所示:则HQ⊥CD,四边形CBNQ是矩形,∴BN=CQ=2,NQ=BC=8,∴QH=NQ-NH=8-6=2,∵∠HNB=∠HQM=90°,∠BHN=∠MHQ,∴△HNB∽△HQM,∴=,即:=,∴QM=,∴CM=CQ+QM=2+=.【解析】(1)由正方形的性质得出AD=AB=CD=BC=8,BE=BF=FG=4,∠DCE=∠CBF=90°,则CE=BC-BE=4,推出CE=BF,由SAS证得△DCE≌△CBF,即可得出结论;(2)过点H作HN⊥AB于N,则HN∥AD∥GF,由H是DG的中点,则HN是梯形ADGF 的中位线,得出NH=(AD+FG)=6,NF=(AB+BF)=6,求出BN,由勾股定理即可得出结果;(3)过点H作HN⊥AB于N,延长NH交CD于Q,则HQ⊥CD,四边形CBNQ是矩形,得出BN=CQ=2,NQ=BC=8,求得QH=NQ-NH=2,由∠HNB=∠HQM=90°,∠BHN=∠MHQ,证得△HNB∽△HQM,得出=,求得QM=,即可得出结果.本题考查了正方形的性质、梯形中位线的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质、梯形中位线的判定与性质,证明三角形相似是解题的关键.28.【答案】解:(1)直线y=kx+6分别交y轴于点C,则点C(0,6),OA=OC=3,则点A(-3,0),将点A的坐标代入y=kx+6,解得:k=2,故直线AC的表达式为:y=2x+6;∵∠CBA=45°,∴OB=OC=6,故直线BC的表达式为:y=-x+6;(2)AG将△ABC分成面积相等的两部分,则点G是BC的中点,则点G(3,3);(3)点D(-,3),设点M(m,0),点N(n,-n+6),①当顶角∠MDN=90°时,DM=DN,如图1,过点N作NG⊥x轴于点G,过点D作DH⊥x轴于点H、作DK⊥NG于点K,则△DKN≌△DHM(AAS),则DH=DK,HM=KN,即3=n+,m+=6-n-3,解得:n=,m=0;②当∠DNM=90°时,DN=MN,过点N作NG⊥x轴于点G,过点D作DH⊥NG于点H,同理可得:m=3;③当∠DMN=90°时,DM=MN,同理可得:m=;故点M(0,0)或(3,0)或(,0).【解析】(1)∠CBA=45°,则OB=OC=6,即可求解;(2)AG将△ABC分成面积相等的两部分,则点G是BC的中点,即可求解;(3)分∠MDN=90°时,DM=DN,;∠DNM=90°时,DN=MN;∠DMN=90°时,DM=MN,三种情况分别求解即可.本题考查的是一次函数综合运用,涉及到中点的和等腰直角三角形的性质等,其中(3),要注意分类求解,避免遗漏.。

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列长度的四根木棒中,能与长5cm 、11cm 的两根木棒首尾相接,钉成一个三角形的是 A. 5cmB. 6cmC. 11cmD.16cm2.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为 A. ①②③④B. ①③④C. ①②④D.②③④3.在北大、清华、复旦和浙大的校标LOGO 中,是轴对称图形的是A.B.C. D .4.若一个三角形的三个内角的度数之比为1∶2∶3,那么相对应的三个外角的度数之比为 A. 3∶2∶1B. 1∶2∶3C. 3∶4∶5 D .5∶4∶35.下列运算正确的是 A.224a a a+= B.62322a a a-÷=-C.222233ab a b a b ⋅= D.224()a a -=6.已知分式242x x -+的值等于零,那么x 的值是A .2B .-2C .±2D .07.不改变分式的值,把0.0230.35x x -+的分子、分母中含x 项的系数化为整数为A.2335x x -+B.23305x x -++C. 230030500x x -+ D .230030500x x +-+ 8.与单项式23a b -的积是32222629a b a b a b -+的多项式是A.23ab --B.2233ab b -+-C.233b - D .2233ab b -+9.如图,已知AC =BD ,添加下列条件,不能使△ABC ≌△DCB 的是 A. ∠ACB =∠DBCB. AB =DCC.∠ABC =∠DCB D .∠A =∠D =90°10.如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:①∠C =72°;②BD 平分∠ABC ;③BC =AD ;④△BDC 是等腰三角形.其中正确结论的个数是 A.1 B.2C.3 D .4 11.若a -b =2,则a 2-b 2-4b 的值是 A.0 B.2C.4 D .6 12.若22(3)1t t --=,则t 可以取的值有 A. 4个B. 3个C. 2个D .1个第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点A (3,b )与点(a ,-2)关于y 轴对称,则a +b = . 14.因式分解:2228mx my -= . 15.一个多边形的外角和是内角和的27,则这个多边形的边数为 . (第9题图)(第10题图)16.如图,在四边形ABCD 中,∠A =50°,直线l 与边AB 、AD 分别相交于点M 、N , 则∠1+∠2= .17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB =10,AC =8,△ABC 的面积为45,则DE 的长为 .18.如图,已知AB ∥CF ,E 是DF 的中点,若AB =9cm ,CF =6cm ,则BD = cm .19.已知,如图△ABC 为等边三角形,高AH =10cm ,D 为AB 的中点,点P 为AH 上的一个动点,则PD +PB 的最小值为 cm . 20.计算:2222()()x y xy --= (结果不含负指数幂).21.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,则轮船在静水中的速度是 千米/时. 22.观察下列等式:1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52;…请利用你所发现的规律写出第n 个等式: . 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.计算:(1)234(1)(43)(2)2a a a a -++-÷; (2)2.BAC =α,∠B =β(α>β).(第16题图) (第17题图)(第18题图) (第19题图)(1)若α=70°,β=40°,求∠DCE 的度数;(2)用α、β的代数式表示∠DCE = (只写出结果,不用写演推过程); (3)如图②,若将条件中的CE 改为是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α-β=30°,则∠DCE = (只写出结果,不用写演推过程). 26.(1)解方程:21133x xx x =---; (2)列方程解应用题:某超市用2000元购进某种干果销售,由于销售状况良好,超市又拨6000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多200千克.求该种干果的第一次进价是每千克多少元? 27.如图,△ABC 是等边三角形,BD ⊥AC ,AE ⊥BC ,垂足分别为D 、E ,AE 、BD 相交于点O ,连接DE .(1)求证:△CDE 是等边三角形; (2)若AO =12,求OE 的长.28.如图,AB =AC ,AB ⊥AC ,AD =AE ,AE ⊥AD ,B ,C ,E 三点在同一条直线上. (1)求证:DC ⊥BE ;(2)探究∠CAE 与∠CDE 之间有怎样的数量关系?写出结论,并说明理由.(第28题图)(第27题图)2018—2019学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.-5 ; 14.2(2)(2)m x y x y +-; 15.9 ; 16.230°;17.5; 18.3; 19.10; 20. 261x y ;21.21; 22.2(2)1(1)n n n ++=+. 三、解答题:(共74分)23.解:(1)234(1)(43)(2)2a a a a -++-÷=4a 2﹣4a +3a ﹣3﹣4a 2 ………………………………………………4分 =﹣a ﹣3 ………………………………………………5分 (2)(2x ﹣y )2﹣4x (x ﹣y )=4x 2﹣4xy +y 2﹣4x 2+4xy ……………………………………………9分 =y 2 ……………………………………………10分24.(1)解:原式=[9(a +b )+5(a ﹣b )][9(a +b )﹣5(a ﹣b )] ……2分=(14a +4b )(4a +14b ) ………………………………3分 =4(7a +2b )(2a +7b ) ………………………………5分(2)解:÷(﹣x ﹣1)﹣=…………………………7分=………………………………9分=………………………………………………10分= ………………………………………………11分 =………………………………………………12分25. 解:(1)∵∠ACB =180°﹣(∠BAC +∠B )=180°﹣(70°+40°)=70°, ………………2分 又∵CE 是∠ACB 的平分线,∴1352ACE ACB ∠=∠=︒. ………………………………4分∵CD 是高线,∴∠ADC =90°, ………………………………6分 ∴∠ACD =90°﹣∠BAC =20°,……………………………7分 ∴∠DCE =∠ACE ﹣∠ACD=35°﹣20°=15°.………………………………8分(2)2DCE αβ-∠=; …………………………………………10分(3)∠DCE 的度数为75°.………………………………………12分26.(1)解:方程的两边同乘3(x ﹣1),得6x =3x ﹣3﹣x , ………………………2分解得34x =-. ………………………4分检验:把34x =-代入3(x ﹣1)≠0. ………………………5分故原方程的解为34x =-. ………………………6分(2)解:设第一次的进价为x 元,由题意得 200060002200(120%)x x ⨯+=+ ………………………9分 解得 x =5 ……………………11分经检验:x =5是原分式方程的解,且符合题意. …………12分 答:该种干果的第一次进价是每千克5元. ……………………13分27. 解:(1)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠C =60°,BC =AC , CE =BC ,CD =AC ; ………………………………4分∴CD =CE , ……………5分 又∠C =60°,∴△CDE 是等边三角形.……………………………………6分 (2)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠ABC =∠BAC =60°, …………………………………7分12D B C A B D A B C∠=∠=∠, 12B A E B AC ∠=∠, ……………………………………8分 ∴30ABD BAE ∠=∠=︒ ,30DBC ∠=︒, ……………………………………9分 ∴AO =BO , ……………………………………10分 ∵30DBC ∠=︒,AE ⊥BC ,∴BO =2OE , ……………………………………11分 ∴AO =2OE , ……………………………………12分 又AO =12,∴OE =6. ……………………………………13分28. (1)证明:∵AB ⊥AC ,AE ⊥AD ,AB =AC ,∴∠BAC =∠DAE =90°, ……………………………1分∠B =∠ACB =45°, ……………………………2分(第27题图)∴∠BAC +∠CAE =∠DAE +∠CAE ,∴∠BAE =∠CAD , ……………………………3分 在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△ABE (SAS ), ……………………………5分∴∠ACD =∠B =45°, ……………………………6分 ∴∠BCD =∠ACD +∠ACB =90°,……………………7分 ∴DC ⊥BE . ……………………………8分(2)∠CAE =∠CDE . ……………………………10分理由:∵AD =AE ,AE ⊥AD ,∴∠AED =∠ADE =45°,……………………………11分 ∵由(1)知DC ⊥BE ,∴∠CDE +∠AEC +∠AED =90°,∴∠CDE +∠AEC =45°,……………………………12分 又∠CAE +∠AEC =∠ACB =45°,…………………13分 ∴∠CAE =∠CDE . ……………………………14分(第28题图)。

2018-2019学年新人教版八年级上学期期末考试数学试题含答案

2018-2019学年新人教版八年级上学期期末考试数学试题含答案

2018-2019学年新人教版八年级上学期期末考试数学试题一、选择题(每小题4分,共计48分) 1.下列各数中最小的是( )A .π-B .1C .D .02.下列语言叙述是命题的是( ) A .画两条相等的线段 B .等于同一个角的两个角相等吗? C .延长线段AO 到C ,使OC=OAD .两直线平行,内错角相等3.点P(3,-5)关于x 轴对称的点的坐标为( ) A .(3,5)B .(3,-5)C .(-3,5)D .(-3,-5)4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F 出现,按照规定的目标表示方法,目标E ,F 的位置表示为E(3,300°),F(5,210°),按照此方法在表示目标A ,B ,D ,E 的位置时,其中表示不正确的是( ) A .A(4,30°)B .B(2,90°)C.C(6,120°)D.D(3,240°)第4题图 第5题图5.如图,阴影部分是一个长方形,它的面积是( ) A.3cm 2B.4cm 2C.5cm 2D.6cm 26.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A.中位数B.平均数C.方差D.众数7.下列各式计算正确的是( )A.2=-B.2(4=3=-4=8.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C -6°,则∠C 的度数为( )A.90°B.58°C.54°D.32°9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵. 设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A.523220x y x y +=⎧⎨+=⎩B.522320x y x y +=⎧⎨+=⎩C.202352x y x y +=⎧⎨+=⎩D.203252x y x y +=⎧⎨+=⎩10.已知直线2y x =与y x b =-+的交点的坐标为(1,a ),则方程组的解是( )A.12x y =⎧⎨=⎩B.21x y =⎧⎨=⎩C.23x y =⎧⎨=⎩D.13x y =⎧⎨=⎩11.关于一次函数y=-2x+b(b 为常数),下列说法正确的是( ) A. y 随x 的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=-2x+3相交于第四象限内一点12.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之是的函数关系如图,则这次长跑的全程为( )米。

四川省成都市 2019八年级上期末考试数学试题含答案

四川省成都市 2019八年级上期末考试数学试题含答案

上期八年级期末考试题数 学本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题.第Ⅰ卷1至2页, 第Ⅱ卷和B 卷2至6页.考试结束时,监考人将第Ⅰ卷及第Ⅱ卷和B 卷的答题卡收回.A 卷(共100分)第I 卷(选择题,共30分)一、选择题:(本大题共有10个小题,每小题3分,共30分) 1.下列实数是无理数的是( ▲ ) A .﹣1 B .3 C .3.14D .31 2.在平面直角坐标系中,点A (-2,1)在( ▲ )A.第一象限B.第二象限C.第三象限D.第四象限 3. 9的算术平方根是( ▲ )(A )3 (B )3 (C )9 (D )3± 4.以下列各组数据为三角形的三边,能构成直角三角形的是( ▲ ) (A )4cm ,8cm ,7cm (B )2cm ,2cm ,2cm (C )2cm ,2cm ,4cm (D )6cm ,8cm ,10cm 5.在平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标是( ▲ )A.(-2,-3)B.(2,-3)C.(-3,2)D.(2,3) 6.如图,2l l 1∥,∠1=54°,则∠2的度数为( ▲ ) A.36° B.54° C.126° D.144° 7.已知⎩⎨⎧==53y x 的值为的解,则是方程k y kx 52-=+( ▲ )A .3B .4C .5 D.﹣58.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm )185 180 185 180 方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ▲ ) A.丁 B .丙 C .乙 D .甲 9.一次函数y=x 1-的图象不经过( ▲ ) A .第一象限B . 第二象限C . 第三象限D . 第四象限10.如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图象可得二元一次方程组⎩⎨⎧=-+=0y kx bax y 的解是( ▲ )A.⎩⎨⎧-=-=24y xB.⎩⎨⎧-=-=42y x C. ⎩⎨⎧==42y x D. ⎩⎨⎧-==42y x 第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分) 11.若02=-x ,则x = ▲ .12.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为 ▲ . 13.在平面直角坐标系中,已知一次函数y=12+-x 的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1>x 2,则y 1 ▲ y 2(填“>”或“<”).14.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 ▲ .三、解答下列各题(共54分.15题每小题6分,16题6分,17和19题每题9分,18题8分,20题10分)7201)6201(24)1(1.15----+-π)计算:((2)()21631526-⨯-16、(6分)解方程组: ⎩⎨⎧=-=-203752y x y xAB'沿对角形线AC折叠,得到如图所示的图形,已知∠BAO=30°,17.(9分)把长方形CD(1)求∠AOC和∠BAC的度数;3,OD=3,求CD的长(2)若AD=318、(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产甲、乙两种饮料共100瓶,需加入同种添加剂260克,其中甲饮料每瓶需加添加剂2克,乙饮料每瓶需加添加剂3克,饮料加工厂生产了甲、乙两种饮料各多少瓶?19.(9分)2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题: (1)n = ▲ ,小明调查了 ▲ 户居民,并补全图1;(2)每月每户用水量的中位数落在 ▲ 之间,众数落在 ▲ 之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20.(10分)如图,在平面直角坐标系中,一次函数b x y +-=的图象与正比例函数x y k =的图象都经过点B (3,1) (1)求一次函数和正比例函数的表达式;(2)若直线CD 与正比例函数x y k =平行,且过点C (0,-4),与直线AB 相交于点D ,求点D 的坐标.(注:二直线平行,k 相等) (3)连接CB ,求三角形BCD 的面积.B 卷(共50分)一、填空题:(每小题4分,共20分)21.已知:m 、n 为两个连续的整数,且m <13<n ,则mn 的平方根...= ▲ . 22.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,从中任取三根可搭成(首尾连接)直角三角形的概率为 ▲ . 23. 关于x ,y 的二元一次方程组⎩⎨⎧+=--=+my x my x 3531中,与m 方程组的解中的x 或y 相等,则m 的值为 ▲ .24.如图,直线y=x+6与x 轴、y 轴分别交于点A 和点B ,x 轴上有一点C (﹣4,0),点P 为直线一动点,当PC+PO 值最小时点P 的坐标为 ▲ .25.如图,在平面直角坐标系中,函数y=2x 和y =﹣x 的图象分别为直线1l ,2l ,过点(1,0)作x 轴的垂线交1l 于点A 1,过点A 1作y 轴的垂线交2l 于点A 2,过点A 2作x 轴的垂线交1l 于点A 3,过点A 3作y 轴的垂线交2l 于点A 4,…依次进行下去,则点A 2015的坐标为 ▲ .二.(共8分)26.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y (米)与他们出发的时间x (秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计). (1)直接写出点A 坐标,并求出线段OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?三、(共10分)27. 已知C AB ∆中,12,26===BC AC AB .点P 从点B 出发沿线段BA 移动,同时点Q 从点C出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D . (1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,设λ=+CD BE ,λ是否为常数?若是请求出λ的值,若不是请说明理由.(3)如图③,E 为BC 的中点,直线CH 垂直于直线AD ,垂足为点H ,交AE 的延长线于点M ;直线BF 垂直于直线AD ,垂足为F ;找出图中与BD 相等的线段,并证明.四、(共12分)28.如图①,等腰直角三角形ABC 的顶点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限,线段AC 与x 轴交于点D.将线段DC 绕点D 逆时针旋转90°至DE. (1)直接写出点B 、D 、E 的坐标并求出直线DE 的解析式.(2)如图②,点P 以每秒1个单位的速度沿线段AC 从点A 运动到点C 的过程中,过点P 作与x 轴平行的直线PG ,交直线DE 于点G ,求与△DPG 的面积S 与运动时间t 的函数关系式,并求出自变量t 的取值范围.(3)如图③,设点F 为直线DE 上的点,连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FE 以每秒2个单位的速度运动到E 后停止.当点F 的坐标是多少时,是否存在点M 在整个运动过程中用时最少?若存在,请求出点F 的坐标;若不存在,请说明理由.A DCBPQ图②EADCB PQ图①图③图③图②图①四川省成都市 2019八年级上期末考试数学试题含答案金堂县2016-2017学年度八年级上期期末测试数学参考答案及评分意见A 卷(共100分)一、选择题:(本题共10小题,每小题3分,共30分) 题号 1 2 3 4 5 67 8 9 10 答案[来源:学*科*网Z*X*X*K]B B A D AC DDBA二、填空题(本题共4小题,每小题4分,共16分)11.2 ; 12. 8 ; 13.﹤; 14.()5,3 ;三、解答下列各题(本题满分54分. 15题每小题6分,16题6分,17题9分,18题8分, 19题9分, 20题10分)07201)6201(24)1(1.15----+-π)计算:(解:原式=1221--+- ………………………4分(每算对一个运算得1分) =2-………………………6分(2)()21631526-⨯- 解:原式=226315236⨯-⨯-⨯ ………………………3分(每个运算正确得1分) =235623-- ………………………5分=56- ………………………6分16. 解方程组:解:②-①×3得:⎩⎨⎧=-=-20371536y x y x ………………………3分(单独由①×3得1536=-y x 仍得3分) 5=x ………………………4分 把5=x 代入①得:5=y ………………………5分① ②⎩⎨⎧=-=-203752y x y x∴原方程组的解为⎩⎨⎧==55y x …………6分(注:用其它方法计算正确也得全分) 17.(1)解 :∵四边形CD B A '是矩形 ∴AD ∥C B ' ,090='∠B∴∠1=∠3 ……………2分 ∵翻折后∠1=∠2∴∠2=∠3 ……………3分∵翻折后090='∠=∠B B ∠BAO=30°∴0120=∠+∠=∠BAO B AOC ……………4分 ∴∠2=∠3=30°∴0603=∠+∠=∠BAO BAC ……………5分 答:∠AOC 为120°,∠BAC 为60°.(不答不扣分) (2)∵∠2=∠3∴AO=CO ……………6分∵AD=33,OD=3∴AO=CO=32 ……………7分 ∵四边形CD B A '是矩形 ∴∠D 是直角∴在ODC Rt ∆中,()()33322222=-=-=OD OC CD ………9分答:CD 长3。

★试卷3套精选★成都市2019届八年级上学期数学期末统考试题

★试卷3套精选★成都市2019届八年级上学期数学期末统考试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,一根竹竿AB ,斜靠在竖直的墙上,P 是AB 中点,A′B′表示竹竿AB 端沿墙上、下滑动过程中的某个位置,则在竹竿AB 滑动过程中OP ( )A .下滑时,OP 增大B .上升时,OP 减小C .无论怎样滑动,OP 不变D .只要滑动,OP 就变化【答案】C 【分析】根据直角三角形斜边上的中线等于斜边的一半可得OP=12AB . 【详解】解:∵AO ⊥BO ,点P 是AB 的中点,∴OP=12AB , ∴在滑动的过程中OP 的长度不变.故选:C .【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.2.工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB 是一个任意角,在边OA,OB 上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D,E 重合,这时过角尺顶点P 的射线OP 就是∠AOB 的平分线.你认为工人师傅在此过程中用到的三角形全等的判定方法是这种作法的道理是( )A .SASB .ASAC .AASD .SSS【答案】D 【分析】由三边对应相等得△DOF ≌△EOF ,即由SSS 判定两个三角形全等.做题时要根据已知条件结合判定方法逐个验证.【详解】依题意知,在△DOF 与△EOF 中,OD OE DF EF OF OF ⎧⎪⎨⎪⎩===,∴△DOF ≌△EOF (SSS ),∴∠AOF=∠BOF ,即OF 即是∠AOB 的平分线.故选D .【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.3.a ,b 是两个连续整数,若a <b ,则a+b 的值是( )A .7B .9C .21D .25 【答案】A的范围,即可得出a 、b 的值,代入求出即可.【详解】解:∵3<4,∴a =3,b =4,∴a +b =7,故选:A .【点睛】的范围,难度不是很大.4.下列说法正确的是( )A .代数式42x π+是分式B .分式32xy x y-中x ,y 都扩大3倍,分式的值不变 C .分式2211x x +-有意义 D .分式211x x ++是最简分式 【答案】D 【解析】根据分式的定义及性质依次判断即可求解.【详解】A. 代数式42x π+是整式,故错误; B. 分式32xy x y-中x ,y 都扩大3倍后为()33939633232x y xy xy x y x y x y ⋅==⨯---,分式的值扩大3倍,故错误; C. 当x=±1时,分式2211x x +-无意义,故错误; D. 分式211x x ++是最简分式,正确,故选D.【点睛】此题主要考查分式的定义及性质,解题的关键是熟知分式的特点与性质.5.下列因式分解正确的是( )A .256(5)6m m m m -+=-+B .2241(21)m m -=-C .2244(2)m m m +-=+D .241(21)(21)m m m -=+-【答案】D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【详解】A 没有把256m m -+化为因式积的形式,所以A 错误,B 从左往右的变形不是恒等变形,因式分解是恒等变形,所以B 错误,C 变形也不是恒等变形所以错误,D 化为几个因式的积的形式,是因式分解,所以D 正确.故选D .【点睛】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.6.直角三角形两条直角边的长分别为3和4,则斜边长为( )A .4B .5C .6D .10 【答案】B【解析】利用勾股定理即可求出斜边长. 【详解】由勾股定理得:斜边长为:2234+=1.故选B .【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.7.如图,在平面直角坐标系中,点A 坐标为(2,23),作AB ⊥x 轴于点B ,连接AO ,绕原点B 将△AOB 逆时针旋转60°得到△CBD ,则点C 的坐标为( )A .(﹣13B .(﹣23C .3,1)D .32)【答案】A【分析】首先证明∠AOB=60°,∠CBE=30°,求出CE,EB即可解决问题.【详解】解:过点C作CE⊥x轴于点E,∵A(2,23),∴OB=2,AB=23∴Rt△ABO中,tan∠AOB=23=3,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴BC=AB=23,∠CBE=30°,∴CE=12BC=3,BE=3EC=3,∴OE=1,∴点C的坐标为(﹣1,3),故选:A.【点睛】此题主要考查旋转的性质,解题的关键是熟知正切的性质.8.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40°B.50°C.60°D.75°【答案】B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt △ABC 和Rt △ADC 中BC CD AC AC ==⎧⎨⎩, ∴Rt △ABC ≌Rt △ADC (HL )∴∠2=∠ACB=90°-∠1=50°.故选B .点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.9.若m<0,则点(-m ,m-1)在平面直角坐标系中的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】先确定横纵坐标的正负,再根据各象限内点的坐标特征可以判断.【详解】解:∵m<0,∴-m >0,m-1<0,∴点(-m ,m-1)在第四象限,故选:D .【点睛】本题考查了平面直角坐标系各象限点的坐标特征,熟记平面直角坐标系中各象限点的坐标的符号是解题的关键.10.在△ABC 中,若∠B=∠C=2∠A ,则∠A 的度数为( )A .72°B .45°C .36°D .30° 【答案】C【解析】试题分析:根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°. 故选C考点:三角形的内角和二、填空题 11.平面直角坐标系中,点()01A -,与点()33B ,之间的距离是____. 【答案】1【分析】根据点的坐标与勾股定理,即可求解.【详解】根据勾股定理得:5=,故答案是:1.【点睛】本题主要考查平面直角坐标系中两点的距离,掌握勾股定理是解题的关键.12.开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为_________.【答案】62.27510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×11﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.111112275=62.27510-⨯.故答案为:62.27510-⨯.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×11﹣n ,其中1≤|a|<11,n 为由原数左边起第一个不为零的数字前面的1的个数所决定.13.如图,,3,5ABC EBD AB cm BD cm ==≌,则CE 的长度为__________.【答案】2cm【分析】根据全等三角形的对应边都相等,得到BC 、BE 的长,即可求出CE 的长.【详解】解:,3,5ABC EBD AB cm BD cm ∆∆==≌5,3BC BD cm EB AB cm ∴====532CE BC EB cm ∴=-=-=故答案为:2cm .【点睛】本题考查的主要是全等三角形的性质,对应的边都相等,注意到全等三角形的对应顶点写在对应的位置,正确判断对应边即可.14.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为______米.【答案】1.22×10﹣1.【详解】解:0.00000122=1.22×10-1.故答案为1.22×10-1.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.已知:实数m ,n 满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____【答案】1【分析】先计算(1+m) (1+n),再把m+n=4,mn=-2代入即可求值.【详解】解:(1+m) (1+n)=1+m+n+mn当m+n=4,mn=-2时,原式=1+4+(-2)=1.故答案为:1【点睛】本题考查了多项式乘以多项式法则,利用多项式乘以多项式法则计算出(1+m) (1+n)是解题关键.16.如图,平面直角坐标系中有点()()0,1,3,0A B .连接AB ,以A 为圆心,以AB 为半径画弧,交y 轴于点P ,连接BP ,以B 为圆心,以1BP 为半径画弧,交x 轴于点2BP ,连接12PP ,以1P 为圆心,以12PP 为半径画弧,交y 轴于点3P ,按照这样的方式不断在坐标轴上确定点6P 的位置,那么点6P 的坐标是__________.【答案】()6273,0P【分析】利用勾股定理和坐标轴上点的坐标的特征和变化规律,逐步求出1P 至6P 的坐标.【详解】解: ()()0,1,3,0A B ∴1,3OA OB ==,∴()22221132AB AP OA OB ==+=+=, ∴()10,3P , ∴()22221213323BP BP OP OB ==+=+=,∴()233,0P ,∴()22221312123336PP PP OP OP ==+=+=∴()30,9P ,……根据变化规律可得()493,0P ,()50,27P , ∴()6273,0P .【点睛】本题主要考查勾股定理与平面直角坐标系里点的坐标的规律变化,理解题意,找到变化规律是解答关键. 17.估算:37.7≈____.(结果精确到1)【答案】6。

(汇总3份试卷)2019年成都市八年级上学期数学期末教学质量检测试题

(汇总3份试卷)2019年成都市八年级上学期数学期末教学质量检测试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在同一坐标系中,函数y kx =与y x k =-的图象大致是( )A .B .C .D .【答案】B【分析】根据解析式知:第二个函数比例系数为正数,故图象必过一、三象限,而y kx =必过一、三或二、四象限,可排除C 、D 选项,再利用k 进行分析判断.【详解】A 选项:0k <,0k -<.解集没有公共部分,所以不可能,故A 错误;B 选项:0k <,0k ->.解集有公共部分,所以有可能,故B 正确;C 选项:一次函数的图象不对,所以不可能,故C 错误;D 选项:正比例函数的图象不对,所以不可能,故D 错误.故选:B .【点睛】本题考查正比例函数、一次函数的图象性质,比较基础.2.如图,在ABC ∆中,AB AC =,AD AE =,36B DAE ∠=∠=︒,则图中等腰三角形共有( )个A .3B .4C .5D .6【答案】D 【分析】根据等腰三角形的定义即可找到两个等腰三角形,然后利用等边对等角、三角形的内角和、三角形外角的性质求出图中各个角的度数,再根据等角对等边即可找出所有的等腰三角形.【详解】解:∵AB AC =,AD AE =,36B DAE ∠=∠=︒∴△ABC 和△ADE 都是等腰三角形,∠B=∠C=36°,∠ADE=∠AED=()1180722DAE ︒-∠=︒∴∠BAD=∠ADE -∠B=36°,∠CAE=∠AED -∠C=36°∴∠BAD=∠B ,∠CAE=∠C∴DA=DB ,EA=EC∴△DAB 和△EAC 都是等腰三角形∴∠BAE=∠BAD +∠DAE=72°,∠CAD=∠CAE +∠DAE=72°∴∠BAE=∠AED ,∠CAD=∠ADE∴BA=BE ,CA=CD∴△BAE 和△CAD 都是等腰三角形综上所述:共有6个等腰三角形故选D .【点睛】此题考查的是等腰三角形的性质及判定、三角形的内角和定理和三角形外角的性质,掌握等角对等边、等边对等角、三角形的内角和定理和三角形外角的性质是解决此题的关键.3.如图,在等边三角形ABC 中,D 、E 分别为AB 、BC 上的点,且AD BE =,AE 、CD 相交于点F ,AG CD ⊥,垂足为G.则AF FG的值是( ).A .2B .12C 2D 2 【答案】A 【分析】因为AG ⊥CD ,△AGF 为直角三角形,根据三角函数证明∠GAF=30°或∠AFD=60°即可,需要证明△ADF ∽△ABE ,通过证明△ABE ≌△CAD 可以得出.【详解】∵三角形ABC 是等边三角形,∴AB=CA ,∠ABE=∠CAD=60°,在△ABE 和△CAD 中,60AB AC ABE CAD AD BE ⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△CAD (SAS ).∴∠AEB=∠CDA ,又∠EAD 为公共角,∴△ADF ∽△ABE .∴∠AFD=∠B=60°.∵AG 垂直CD ,即∠AGF=90°,∴∠GAF=30°,∴AF=2FG ,即=2AF FG. 故选:A .【点睛】此题主要考查等边三角形的性质、三角形全等的判定与性质及有30°角的直角三角形的性质等知识;难度较大,有利于培养同学们钻研和探索问题的精神,证明线段是2倍关系的问题往往要用到有30°角的直角三角形的性质求解,要熟练掌握.4.如图,∠ABD 、∠ACD 的角平分线交于点P ,若∠A =60°,∠D =20°,则∠P 的度数为( )A .15°B .20°C .25°D .30°【答案】B 【分析】根据三角形的外角性质即可求出答案.【详解】解:延长AC 交BD 于点E ,设∠ABP =α,∵BP 平分∠ABD ,∴∠ABE =2α,∴∠AED =∠ABE+∠A =2α+60°,∴∠ACD =∠AED+∠D =2α+80°,∵CP 平分∠ACD ,∴∠ACP =12∠ACD =α+40°, ∵∠AFP =∠ABP+∠A =α+60°,∠AFP =∠P+∠ACP∴α+60°=∠P+α+40°,∴∠P =20°,故选B .【点睛】此题考查三角形,解题的关键是熟练运用三角形的外角性质,本题属于基础题型.5.某一实验装置的截面图如图所示,上方装置可看做一长方形,其侧面与水平线的夹角为45°,下方是一个直径为70cm,高为100cm的圆柱形容器,若使容器中的液面与上方装置相接触,则容器中液体的高度至少应为()A.30cm B.35cm C.352cm D.65cm【答案】D【分析】由题意可知,进入容器内的三角形可看作是一个斜边为70cm的等腰直角三角形,由等腰三角形三线合一的性质可得到高,即可求出答案.【详解】由题意可知,进入容器内的三角形可看作是一个斜边为70cm的等腰直角三角形,由等腰三角形三线合一的性质可得到高斜边上的高应该为35cm,使容器中的液面与上方装置相接触,容器中液体的高度至少应为100﹣35=65cm.故选D.考点:等腰直角三角形.6.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.5【答案】B【分析】根据△ABE≌△ACF,可得三角形对应边相等,由EC=AC-AE即可求得答案.【详解】解:∵△ABE≌△ACF,AB=5,AE=2,∴AB=AC=5,∴EC=AC-AE=5-2=3,故选:B .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键. 7.已知a 2+a ﹣4=0,那么代数式:a 2(a+5)的值是( )A .4B .8C .12D .16 【答案】D【分析】由a 2+a ﹣4=0,变形得到a 2=-(a-4),a 2+a=4,先把a 2=-(a-4)代入整式得到a 2(a+5)=-(a-4)(a+5),利用乘法得到原式=-(a 2+a-20),再把a 2+a=4代入计算即可.【详解】∵a 2+a ﹣4=0,∴a 2=-(a-4),a 2+a=4,a 2(a+5)=-(a-4)(a+5)=-(a 2+a-20)=−(4−20)=16,故选D【点睛】此题考查整式的混合运算—化简求值,掌握运算法则是解题关键8.若264x kx -+是完全平方式,则k 的值是( )A .8±B .16±C .+16D .-16 【答案】B【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可得出结论.【详解】解:∵264x kx -+是完全平方式,∴()2222226488168x kx x kx x x x -+=-+±==±+解得:16k =±故选B .【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键. 9.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x ,则210x x +=( )A .12B .16C .20D .24【答案】D 【分析】设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,整理方程即可.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =4,CE =CF =6,∴BC =BE +CE =BD +CF =10,在Rt △ABC 中,AC 2+AB 2=BC 2,即(6+x )2+(x +4)2=102,整理得,x 2+10x ﹣24=0,∴x 2+10x =24,故选:D .【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.10.已知一个等腰三角形两边长之比为1:4,周长为18,则这个等腰三角形底边长为( )A .2B .6C .8D .2或8 【答案】A【分析】题中只给出了两边之比,没有明确说明哪个是底哪个是腰,所以应该分两种情况进行分析,再结合三角形三边的关系将不合题意的解舍去.【详解】因为两边长之比为1:4,所以设较短一边为x ,则另一边为4x ;(1)假设x 为底边,4x 为腰;则8x +x =18,x =1,即底边为1;(1)假设x 为腰,4x 为底边,则1x +4x =18,x =3,4x =11;∵3+3<11,∴该假设不成立.所以等腰三角形的底边为1.故选:A .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.二、填空题11.在实数范围内分解因式:221x x --=_______.【答案】(11x x --【分析】先把含未知数项配成完全平方,再根据平方差公式进行因式分解即可.【详解】222221(1)2(1)(2)(12)(12)x x x x x x --=--=--=-+--故填:()()1212x x ---+.【点睛】本题主要考查利用完全平方和平方差公式进行因式分解,熟练掌握公式是关键.12.如图在ABC ∆中,13,10,AB AC BC AD ===是ABC ∆的中线,F 是AD 上的动点,E 是边AC 上动点,则CF EF +的最小值为______________.【答案】12013【分析】作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N ,根据等腰三角形“三线合一”得出BD 的长和AD ⊥BC ,再利用勾股定理求出AD ,利用“等面积法”结合垂线段最短进一步求出最小值即可.【详解】如图,作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N ,∵AB=AC=13,BC=10,AD 是△ABC 的中线,∴BD=DC=5,AD ⊥BC ,AD 平分∠BAC ,∴M 在AB 上,在Rt △ABD 中,由勾股定理可得:AD=22 13512-=,∴1122ABC S BC AD AB CN ∆=⨯=⨯, ∴120AB 13BC AD CN ⨯==, ∵E 关于AD 的对称点M ,∴EF=FM ,∴CF+EF=CF+FM=CM ,根据垂线段最短可得:CM≥CN ,即:CF+EF≥12013, ∴CF+EF 的最小值为:12013, 故答案为:12013. 【点睛】 本题主要考查了几何图形中最短路线问题,关键是熟练运用轴对称性质找出相应的线段进行求解.13.已知()230a -+=,则23a b -的值是_________.【答案】18【分析】根据平方和算术平方根的非负性可得a 和b 的值,代入可得23a b -的值.【详解】解:∵()230a -=,∴a-3=0,b+4=0,∴a=3,b=-4,代入, 23a b -=18.故答案为:18.【点睛】本题考查了代数式求值,解题的关键是通过平方和算术平方根的非负性得出a 和b 的值.14.比较大小:(填“>”“<”或“=”).【答案】<.【分析】先求出4=【详解】∵4==,∴4<故答案为:<.【点睛】本题考查了实数的大小比较,能选择适当的方法比较两个实数的大小是解此题的关键.15.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.【答案】4913【解析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG +=+=13CE AB AC ==∴= 由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.16.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣2)(b﹣1).现将数对(m,2)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是_____.(结果要化简)【答案】m2﹣5m+4【分析】魔术盒的变化为:数对进去后变成第一个数减2的差乘以第二个数减1的差的积.把各个数对放入魔术盒,计算结果即可.【详解】解:当数对(m,2)放入魔术盒,得到的新数n=(m﹣2)(2﹣1)=m﹣2,把数对(n,m)放入魔术盒,得到的新数为:(n﹣2)(m﹣1)=(m﹣2﹣2)(m﹣1)=(m﹣4)(m﹣1)=m2﹣5m+4故答案为:m2﹣5m+4【点睛】本题考查了整式的乘法,多项式乘多项式,即用第一个多项式的每一项乘第二个多项式的每一项,熟练掌握多项式乘多项式是解题的关键.17.比较大小:35211【答案】>【分析】根据二次根式的性质,对35、211【详解】∵3545,211444544,∴35211故答案是:>.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质,是解题的关键.三、解答题18.甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题(1)甲登山的速度是每分钟米;乙在A地提速时,甲距地面的高度为米;(2)若乙提速后,乙的速度是甲登山速度的3倍;①求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;②乙计划在他提速后5分钟内追上甲,请判断乙的计划能实现吗?并说明理由;(3)当x为多少时,甲、乙两人距地面的高度差为80米?【答案】(1)10,1;(2)①15(02)3030(211)x xyx x≤≤⎧=⎨-<≤⎩,②能够实现.理由见解析;(3)当x为2.5或10.5或3时,甲、乙两人距地面的高度差为80米.【分析】(1)由时间,速度,路程的基本关系式可解;(2)①分段代入相关点的坐标,利用待定系数法来求解即可;②分别计算甲乙距离地面的高度再比较即可;(3)求出甲的函数解析式,分0≤x≤2时,2<x≤11时,11<x≤20时来讨论即可求解.【详解】(1)甲登山的速度为:(300﹣2)÷20=10米/分,2+10×2=1米,故答案为10,1.(2)①V乙=3V甲=30米/分,t=2+(300﹣30)÷30=11(分钟),设2到11分钟,乙的函数解析式为y=kx+b,∵直线经过A(2,30),(11,300),∴30230011k bk b=+⎧⎨=+⎩解得3030kb=⎧⎨=-⎩∴当2<x≤11时,y=30x﹣30设当0≤x≤2时,乙的函数关系式为y=ax,∵直线经过A(2,30)∴30=2a解得a=15,∴当0≤x≤2时,y=15x,综上,15(02)3030(211)x xyx x≤≤⎧=⎨-<≤⎩②能够实现.理由如下:提速5分钟后,乙距地面高度为30×7﹣30=180米.此时,甲距地面高度为7×10+2=170米.180米>170米,所以此时,乙已经超过甲.(3)设甲的函数解析式为:y=mx+2,将(20,300)代入得:300=20m+2∴m=10,∴y=10x+2.∴当0≤x≤2时,由(10x+2)﹣15x=80,解得x=4>2矛盾,故此时没有符合题意的解;当2<x≤11时,由|(10x+2)﹣(30x﹣30)|=80得|130﹣20x|=80∴x=2.5或x=10.5;当11<x≤20时,由300﹣(10x+2)=80得x=3∴x=2.5或10.5或3.∴当x为2.5或10.5或3时,甲、乙两人距地面的高度差为80米.【点睛】本题是一道一次函数的综合试题,考查了行程问题中路程=速度×时间的关系变化的运用,待定系数法求一次函数的解析式的运用,图象的交点坐标的求法.在解答中注意线段的解析式要确定自变量的取值范围.19.如图,台风过后,旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆在离地面6米处折断,请你求出旗杆原来的高度?【答案】16米【分析】利用勾股定理求出AB,即可得到旗杆原来的高度.【详解】由题可知AC⊥BC,AC=6米,BC=8米,∴在Rt△ABC中,由勾股定理可知:2222226810AB AC BC=+=+=,∴AB=10.则旗杆原来的高度为10+6=16米.【点睛】此题考查勾股定理的实际应用,实际问题中构建直角三角形,将所求的问题转化为勾股定理解答是解题的关键.20.如图,ABC ∆与ADE ∆均为等腰直角三角形,90.∠=∠=︒ACB AED(1)如图1,点E 在AB 上,点D 与C 重合,F 为线段BD 的中点,则线段EF 与FC 的数量关系是 ,EF 与FC 的位置是 .(2)如图2,在图1的基础上,将ADE ∆绕点A 顺时针旋转到如图2的位置,其中,,D A C 在一条直线上,F 为线段BD 的中点,则线段EF 与FC 是否存在某种确定的数量关系和位置关系?证明你的结论.(3)若ADE ∆绕A 点旋转任意一个角度到如图3的位置,F 为线段BD 的中点,连接EF 、FC ,请你完成图3,猜想线段EF 与FC 的关系,并证明你的结论.【答案】(1)EF=FC ,EF ⊥FC ;(2)EF=FC ,EF ⊥FC ,证明见解析;(3)EF=FC ,EF ⊥FC ,证明见解析;【分析】(1)根据已知得出△EFC 是等腰直角三角形即可.(2)延长线段CF 到M ,使FM=CF ,连接DM 、ME 、EC ,利用SAS 证△BFC ≌△DFM ,进而可以证明△MDE ≌△CAE ,即可得证;(3)延长线段CF 到M ,使FM=CF ,连接DM 、ME 、EC ,利用SAS 证△BFC ≌△DFM ,进而可以证明△MDE ≌△CAE ,即可得证;.【详解】解:(1)∵ABC ∆与ADE ∆均为等腰直角三角形,90.∠=∠=︒ACB AED∴90BEC AED ∠=∠=︒,45.∠=∠=︒B BCE∴BE=EC∵F 为线段BD 的中点, 12,∴==⊥EF FC BC EF FC ; 故答案为:EF=FC ,EF ⊥FC(2)存在EF=FC ,EF ⊥FC ,证明如下:延长CF 到M ,使FM=CF ,连接DM 、ME 、EC∵F 为线段BD 的中点,∴DF=FB ,∵FC=FM ,∠BFC=∠DFM ,DF=FB ,∴△BFC ≌△DFM ,∴DM=BC ,∠MDB=∠FBC ,∴MD=AC ,MD ∥BC ,∴∠MDC=∠ACB=90°∴∠MDE=∠EAC=135°,∵ED=EA ,∴△MDE ≌△CAE (SAS ),∴ME=EC ,∠MED=∠CEA ,∴∠MED+∠FEA=∠FEA+∠CEA=90°,∴∠MEC=90°,又F 为CM 的中点,∴EF=FC ,EF ⊥FC ;(3)EF=FC ,EF ⊥FC .证明如下:如图4,延长CF 到M ,使CF=FM ,连接ME 、EC ,连接DM 交延长交AE 于G ,交AC 于H ,∵F 为BD 中点,∴DF=FB ,在△BCF 和△DFM 中FC FM BFC DMF BF DF =⎧⎪∠=∠⎨⎪=⎩∴△BFC ≌△DFM (SAS ),∴DM=BC ,∠MDB=∠FBC ,∴MD=AC ,HD ∥BC ,∴∠AHG=∠BCA=90°,且∠AGH=∠DGE ,∴∠MDE=∠EAC ,在△MDE 和△CAE 中MD AC MDE EAC DE AE =⎧⎪∠=∠⎨⎪=⎩∴ME=EC ,∠MED=∠CEA ,∴∠MED+∠FEA=∠FEA+∠CEA=90°,∴∠MEC=90°,又F 为CM 的中点,∴EF=FC ,EF ⊥FC .【点睛】本题考查了全等变换--旋转、全等三角形的性质和判定、等腰直角三角形的性质,延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决是解题的关键.21.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:进价(元/只) 售价(元/只) 甲种节能灯30 40 乙种节能灯 35 50(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?【答案】(1)甲、乙两种节能灯各进80只,40只;(2)该商场获利1400元【分析】(1)根据题意可以列出相应的方程组,从而可以求得甲、乙两种节能灯各进了多少只; (2)根据(1)中的答案和表格中的数据可以求得该商场获得的利润.【详解】(1)设甲种节能灯进了x 只,乙种节能灯进了y 只,依题意得:12030353800x y x y +=⎧⎨+=⎩, 解得:8040x y =⎧⎨=⎩, 答:甲、乙两种节能灯各进80只,40只;(2)由题意可得,该商场获利为:(40-30)×80+(50-35)×40=800+600=1400(元),答:该商场获利1400元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.22.某地长途汽车公司规定旅客可随身携带一定质量的行李,如果超过规定质量,则需要购买行李票,行李票y 元是行李质量xkg 的一次函数,如图所示:(1)求y 与x 之间的表达式(2)求旅客最多可免费携带行李的质量是多少?【答案】 (1)0.26y x =-;(2)旅客最多可免费携带行李的质量是30kg .【分析】(1)由图,已知两点,可根据待定系数法列方程,求函数关系式;(2)旅客可免费携带行李,即y=0,代入由(1)求得的函数关系式,即可知质量为多少.【详解】解:(1)设y 与x 之间的表达式为y kx b =+,把()(6068010),,,代入 y kx b =+,得: 6068010k b k b +=⎧⎨+=⎩,解方程组,得0.26k b =⎧⎨=-⎩ y ∴与x 之间的表达式为0.26y x =-.(2)当0y =时,0.260x -=,30x ∴=∴旅客最多可免费携带行李的质量是30kg .【点睛】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.注意自变量的取值范围不能遗漏.23.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?【答案】(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.24.因式分解:(1)4416x y -;(2)3296x x x +-【答案】(1)22(4)(2)(2)x y x y x y ++-;(2)()23x x -. 【分析】(1)两次利用平方差公式分解因式即可;(2)先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:(1)4416x y -=2222(4)(4)x y x y +-=22(4)(2)(2)x y x y x y ++-;(2)3296x x x +-=2(69)x x x -+=()23x x -. 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.25.如图,90E F ∠=∠=,B C ∠=∠,AE AF =,请你判断ACN ABM ≌是否成立,并说明理由.【答案】成立,证明见解析【分析】先根据全等三角形的判定定理求出△AEB ≌△AFC ,根据全等三角形的性质定理得出AC=AB ,求出∠AMB=∠ANC ,根据全等三角形的判定定理推出即可.【详解】解:成立,理由如下:∵在△AEB 和△AFC 中,B=C E=F AE=AF ∠∠⎧⎪∠∠⎨⎪⎩∴△AEB ≌△AFC (AAS ),∴AC=AB ,∵∠C+∠CDM=∠AMB ,∠B+∠BDN=∠ANC ,∠C=∠B ,∠CDM=∠BDN ,∴∠AMB=∠ANC ,在△ACN 和△ABM 中,ANC=AMB C=BAC=AB ∠∠⎧⎪∠∠⎨⎪⎩∴△ACN ≌△ABM (AAS ).【点睛】本题考查了全等三角形的性质和判定定理,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D 【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质. 2.如图所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①△ACD ≌△BCE ;②AD=BE ;③∠AOB=60°;④△CPQ 是等边三角形.其中正确的是( )A.①②③④B.②③④C.①③④D.①②③【答案】A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4.如图,∠MCN=42°,点P在∠MCN内部,PA⊥CM,PB⊥CN,垂足分别为A、B,PA=PB,则∠MCP的度数为( ).A.21°B.24°C.42°D.48°【答案】A【分析】根据角平分线的判定可知CP平分∠MCN,然后根据角平分线的定义即可求出结论.【详解】解:∵PA⊥CM,PB⊥CN,PA=PB,∴CP平分∠MCN∵∠MCN=42°,∴∠MCP=12∠MCN=21°故选A.【点睛】此题考查的是角平分线的判定,掌握角平分线的判定定理是解决此题的关键.5.方程组341235x y kx y-=+⎧⎨+=⎩的解中x与y的值相等,则k等于()A.-1B.-2C.-3D.-4【答案】B【解析】分析:首先根据方程组的解法求出x和y的值,然后根据x=y得出k的值.详解:解方程组可得:3k2317132k17xy+⎧=⎪⎪⎨-⎪=⎪⎩,∵x与y的值相等,∴3k23132k1717+-=,解得:k=-2,故选B.点睛:本题主要考查的就是二元一次方程组的解法,属于基础题型.解二元一次方程组就是利用消元的思想来进行,可以加减消元,也可以代入消元.本题中在解方程组的时候一定要讲k看作是已知数,然后进行求解得出答案.6.实数-2,0.3,17,2,-π中,无理数的个数是: A .2B .3C .4D .5【答案】A 【分析】实数包括有理数和无理数,而无限不循环小数是无理数【详解】解:给出的数中,,-π是无理数,故选A . 考点:无理数的意义.7.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱, 却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程( ) A .24x 2+ -20 x=1 B .20x -24 x 2+ =1 C .24x - 20x 2+ =1 D .20x 2+ -24 x =1 【答案】B 【解析】试题解析:设他上月买了x 本笔记本,则这次买了(x+2)本,根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.8.下列语句正确的是( )A 42B .±3是9的平方根C .﹣2是﹣8的负立方根D .()22-的平方根是﹣2 【答案】B【分析】依据立方根、平方根定义和性质回答即可.【详解】解:A 42,=2的平方根是2±A 错误;B 、±3是9的平方根,故B 正确;C 、﹣2是﹣8的立方根,故C 错误;D 、()22-的平方根是±2,故D 错误.故选:B .【点睛】本题考查的是平方根,立方根的含义,及求一个数的平方根与立方根,掌握以上知识是解题的关键. 9.如图,等边三角形ABC 中,D 、E 分别为AB 、BC 边上的两动点,且总使AD=BE ,AE 与CD 交于点F ,AG ⊥CD 于点G ,则FG AF =( )A .12 B .2 C .3 D .3【答案】A【解析】∵△ABC 是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB ,又∵AD=BE ,∴AB-AD=BC-BE ,即BD=CE ,∴△ACE ≌△CBD ,∴∠CAE=∠BCD ,又∵∠AFG=∠ACF+∠CAE ,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG ⊥CD 于点G ,∴∠AGF=90°,∴∠FAG=30°,∴FG=12AF ,∴12FGAF .故选A.10.如图,在△ABC 中,CB=AC ,DE 垂直平分AC ,垂足为E ,交BC 于点D ,若∠B=70°,则∠BAD=()A .30°B .40°C .50°D .60°【答案】A【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:∵CB=CA ,∴∠B=∠BAC=70°,∴∠C=180°﹣70°﹣70°=40°.∵DE 垂直平分AC ,∴∠DAC=∠C=40°,∴∠BAD=30°.故选:A .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.二、填空题11.如图,在△ABC 中,AC =AD =BD ,当∠B =25°时,则∠BAC 的度数是_____.【答案】105°【分析】由在△ABC 中,AC =AD =BD ,∠B =25°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C 的度数,然后根据三角形内角和定理可得∠BAC 的度数.【详解】解:∵AD =BD ,∴∠BAD =∠B =25°,∴∠ADC =∠B+∠BAD =25°+25°=50°,∵AD =AC ,∴∠C =∠ADC =50°,∴∠BAC =180°﹣∠B ﹣∠C =180°﹣25°﹣50°=105°,故答案为105°.【点睛】本题考查等腰三角形的性质,三角形外角的性质以及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.12.如图,在一张长为7cm ,宽为5cm 的矩形纸片上,现要剪下一个腰长为4cm 的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为_____.【答案】82cm 或152cm 或72cm【详解】分三种情况计算:(1)当AE=AF=4时,如图:∴S △AEF =12AE•AF=12×4×4=82cm ; (2)当AE=EF=4时,如图:则BE=5﹣4=1,BF=22224115EF BE -=-=,∴S △AEF =12•AE•BF=12×4×15=2152cm ; (3)当AE=EF=4时,如图:则DE=7﹣4=3,DF=2222437EF DE =-=-,∴S △AEF =12AE•DF=12×4×7=272cm ; 13.如图,正方形ABCD 的边长为5,4,3AG CH BG DH ====,连结GH ,则线段GH 的长为________.2【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,∵正方形ABCD 的边长为5,4,3AG BG ==,∴AG 2+BG 2=AB 2,∴∠AGB=90°,在△ABG 和△CDH 中,AB CD AG CH BG DH =⎧⎪=⎨⎪=⎩∴△ABG ≌△CDH (SSS ),∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG 和△BCE 中,1324AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABG ≌△BCE (ASA ),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE-BG=4-3=1,同理可得HE=1,在RT △GHE 中,2222112GH GE EH =+=+=2【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为等腰直角三角形是解题的关键.14.如图,在矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使DA 与对角线DB 重合,点A 落在点A′处,折痕为DE ,则A′E 的长是_________.【答案】32. 【详解】在Rt △ABD 中,AB=4,AD=3,∴BD=222243AB AD +=+=5,由折叠的性质可得,△ADE ≌△A'DE ,∴A'D=AD=3,A'E=AE ,∴A'B=BD-A'D=5-3=2,设AE=x ,则A'E=AE=x ,BE=4-x ,在Rt △A'BE 中,x 2+22=(4-x )2解得x=32, 即AE=32. 考点:1.翻折变换(折叠问题);2.勾股定理.15.如图,在ABC ∆中,30B ∠=︒,点D 是BC 的中点,DE BC ⊥交AB 于E ,点O 在DE 上,OA OC =,1OD =,25OE =,则AE =_________.【答案】92【分析】根据直角三角形的性质得到BE=2DE=2(1+2.5)=7,过O 作OF ⊥AB 于F ,根据等腰三角形的性质得到BF=AF ,根据直角三角形的性质即可得到结论.【详解】解:∵1OD =,25OE =∴DE=1+2.5=3.5∵DE ⊥BC ,∠B=30°,∴BE=2DE=7,过O 作OF ⊥AB 于F ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年成都市郫都区八年级(上)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.8的立方根是()A.±2 B.2 C.﹣2 D.2.下列哪个点在第四象限()A.(2,﹣1)B.(﹣1,2)C.(1,2)D.(﹣2,﹣1)3.如图,在数轴上点A所表示的实数是()A.B.C.﹣D.﹣4.某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是()A.10、6 B.10、5 C.7、6 D.7、55.甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为9.2环,方差如下表所示:选手甲乙丙丁方差 1.75 2.93 0.50 0.40则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁6.如图,将△ABC放在正方形网格中(图中每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()A.90°B.60°C.30°D.45°7.点A(﹣5,4)关于y轴的对称点A′的坐标为()A.(﹣5,﹣4)B.(5,﹣4)C.(5,4)D.(﹣5,4)8.下列是二元一次方程的是()A.5x﹣9=x B.5x=6y C.x﹣2y2=4 D.3x﹣2y=xy9.若一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为()A.x=﹣2 B.x=﹣0.5 C.x=﹣3 D.x=﹣410.说明命题“若a2>b2,则a>b.”是假命题,举反例正确的是()A.a=2,b=3 B.a=﹣2,b=3 C.a=3,b=﹣2 D.a=﹣3,b=2二、填空题(每小题4分,共16分)11.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标.12.某校来自甲、乙、丙、丁四个社区的学生人数分布如图,若来自甲社区的学生有120人,则该校学生总数为人.13.如图所示,若∠1+∠2=180°,∠3=100°,则∠4的大小为.14.已知方程组和方程组有相同的解,则a2﹣2ab+b2的值为.三、解答题(共54分)15.(12分)计算:(1)(2)16.(6分)解方程组:.17.(8分)如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=15m,CD=7m,DA=24m,求这块草地的面积.18.(8分)如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187(1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)19.(10分)如图,已知直线y=kx+2与x轴、y轴分别相交于点A、点B,∠BAO=30°,若将△AOB沿直线CD折叠,使点A与点B重合,折痕CD与x轴交于点C,与AB交于点D.(1)求k的值;(2)求点C的坐标;(3)求直线CD的表达式.20.(10分)在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且ED=AD.(1)求证:BE∥AC;(2)求∠CAD的大小;(3)求点A到BC的距离;B卷(50分)一、填空题(每小题4分,共20分)21.有理化分母:=.22.如图,把一张长方形纸片折叠,如果∠2=64°,那么∠1=.23.定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m ※n=.24.如图,有一棱长为3dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为dm.25.如图,点C为y轴正半轴上一点,点P(2,2)在直线y=x上,PD=PC,且PD⊥PC,过点D作直线AB ⊥x轴于B,直线AB与直线y=x交于点A,直线CD与直线y=x交于点Q,当∠CPA=∠PDB时,则点Q的坐标是.二、解答题(共30分)26.(8分)学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,乙的速度为米/分钟;(2)求点A的坐标.27.(10分)寒假即将到来,外出旅游的人数逐渐增多,对旅行包的需求也将增多,某店准备到生产厂家购买旅行包,该厂有甲、乙两种新型旅行包.若购进10个甲种旅行包和20个乙种旅行包共需5600元,若购进20个中种旅行包和10个乙种旅行包共需5200元.(1)甲、乙两种旅行包的进价分别是多少元?(2)若该店恰好用了7000元购买旅行包;①设该店购买了m个甲种旅行包,求该店购买乙种旅行包的个数;②若该店将甲种旅行包的售价定为298元,乙种旅行包的售价定为325元,则当该店怎么样进货,才能获得最大利润,并求出最大利润.28.(12分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=,b=;(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:+.参考答案与试题解析一、选择题1.【解答】解:∵23=8,∴8的立方根是2.故选:B.2.【解答】解:因为第四象限内的点横坐标为正,纵坐标为负,各选项只有A符合条件,故选:A.3.【解答】解:由勾股定理,得斜线的为=,由圆的性质,得点表示的数为﹣,故选:D.4.【解答】解:由条形统计图可知7出现的次数最多,则众数是7(环);这组数据的最大值是10,最小值是5,则极差是10﹣5=5;故选:D.5.【解答】解:∵2.93>1.75>0.50>0.4,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.6.【解答】解:根据图形可得:∵AB=AC==,BC==,∴∠BAC=90°,∴∠ABC=45°,故选:D.7.【解答】解:点A(﹣5,4)关于y轴的对称点A′的坐标为:(5,4).故选:C.8.【解答】解:A、含有一个未知数,不是二元一次方程;B、符合二元一次方程的定义;C、未知项的最高次数为2,不是二元一次方程;D、2x﹣3y=xy是二元二次方程.故选:B.9.【解答】解:∵从图象可知:一次函数y=kx+b的图象与x轴的交点坐标是(﹣2,0),∴关于x的方程kx+b=0的解为x=﹣2,故选:A.10.【解答】解:当a=﹣3,b=2时,满足a2>b2,而不满足a>b,所以a=﹣3,b=2可作为命题“若a>b,则a2>b2”是假命题的反例.故选:D.二、填空题11.【解答】解:建立平面直角坐标系如图,兵的坐标为(﹣2,3).故答案为:(﹣2,3).12.【解答】解:∵甲社区人数所占百分比为1﹣(30%+20%+35%)=15%,∴该校学生总数为120÷15%=800(人),故答案为:800.13.【解答】解:∵∠1+∠2=180°,∠2+∠5=180°,∴∠1=∠5,∴AB∥CD,∴∠4=∠6,∵∠3=100°,∴∠6=180°﹣∠3=80°,∴∠4=80°,故答案为:80°.14.【解答】解:由方程组和方程组有相同的解,可得:,把代入方程组中,可得:,解得:,把a=2,b=1代入a2﹣2ab+b2=1,故答案为:1.三、解答题15.【解答】解:(1)原式=+2﹣2=+4﹣2=3;(2)原式=1﹣2﹣(1﹣2+2)=﹣1﹣3+2=﹣4+2.16.【解答】解:①﹣②×2得:﹣5y=﹣10,解得:y=2.把y=2代入①得:x=5.所以原方程组的解为.17.【解答】解:如图,连接AC,如图所示.∵∠B=90°,AB=20m,BC=15m,∴AC===25m.∵AC=25m,CD=7m,AD=24m,∴AD2+DC2=AC2,∴△ACD是直角三角形,且∠ADC=90°,∴S△ABC=×AB×BC=×20×15=150m2,S△ACD=×CD×AD=×7×24=84m2,∴S四边形ABCD=S△ABC+S△ACD=234m2.18.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.19.【解答】解:(1)令x=0,则y=2,即:OB=2,由勾股定理得:OA=6,则k=﹣;(2)设:BC=AC=a,则OC=6﹣a,在△BOC中,(2)2+(6﹣a)2=a2,解得:a=4,则点C(2,0);(3)点D时AB的中点,则点D(3,),将点C、D的坐标代入一次函数:y=kx+b得:,解得:,故直线CD的表达式为:y=x﹣2.20.【解答】解:(1)证明:∵AD是△ABC的中线,∴BD=CD,在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴∠CAD=∠BED,∴BE∥AC.(2)∵△ADC≌△EDB,∴BE=AC=5,在△ABE中,∵AB=13,BE=5,AE=2AD=12,∴AE2+BE2=122+52=169,AB2=132=169,∴AE2+BE2=AB2∴∠E=90°,∵BE∥AC,∴∠CAD=∠E=90°;(3)如图,过点A作AF⊥BC于F,在Rt△ACD中,CD===,∵AF•CD=AC•AD,∴AF===,即点A到BC的距离为.一、填空题21.【解答】解:原式==+,故答案为:+22.【解答】解:如右图所示,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠4,又∵∠1折叠后与∠3重合,∴∠1=∠3,又∵∠1+∠3+∠4=180°,∴2∠1=180°﹣64°=116°,∴∠1=58°,故答案为58°.23.【解答】解:根据题意,得:,解得:,则x※y=4x﹣y2,∴4※(﹣1)=4×4﹣(﹣1)2=15,故答案为:1524.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AD即为最短路线.展开后由勾股定理得:AD2=92+62,故AD=3dm.故答案为3.25.【解答】解:过P点作x轴的平行线交y轴于M,交AB于N,如图,设C(0,t),∵P(2,2),∴OP=2,OM=BN=PM=2,CM=t﹣2,∵线段PC绕点P顺时针旋转90°至线段PD,∴PC=PD,∠CPD=90°,∴∠CPM+∠DPN=90°,而∠CPM+∠PCM=90°,∴∠PCM=∠DPN,在△PCM和△DPN中,∴△PCM≌△DPN(AAS),∴PN=CM=t﹣2,DN=PM=2,∴MN=t﹣2+2=t,DB=2+2=4,∴D(t,4),∵∠COP=∠OAB=45°,∠CPQ=∠PDB,∴∠CPO=∠PDA,∴△OPC≌△ADP(AAS),∴AD=OP=2,∴A(t,4+2),把A(t,4+2)代入y=x得t=4+2,∴C(0,4+2),D(4+2,4),设直线CD的解析式为y=kx+b,把C(0,4+2),D(4+2,4)代入得,解得,∴直线CD的解析式为y=(1﹣)x+4+2,解方程组得,∴Q(2+2,2+2).故答案为(2+2,2+2).二、解答题26.【解答】解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟,甲、乙两人的速度和为2400÷24=100米/分钟,乙的速度为:米/分钟.故答案为24,60;(2)乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).27.【解答】解:(1)设甲种旅行包每个进价是x元,乙种旅行包每个进价是y元,可得:,解得,答:甲、乙两种旅行包的进价分别是160元,200元;(2)①设购进甲种旅行包m个,则乙种旅行包个;②设购进甲种旅行包m个,可得:w=(298﹣160)m+(325﹣200)×=38m+4375,∵m=40时,时,能获得最大利润,最大利润是5895元.28.【解答】解:(1)设a+b=(m+n)2=m2+7n2+2mn(其中a、b、m、n均为整数),则有a=m2+7n2,b=2mn;故答案为m2+7n2,2mn;(2)∵6=2mn,∴mn=3,∵a、m、n均为正整数,∴m=1,n=3或m=3,n=1,当m=1,n=3时,a=m2+3n2=1+3×9=28;当m=3,n=1时,a=m2+3n2=9+3×1=12;即a的值为为12或28;(3)设+=t,则t2=4﹣+4++2=8+2=8+2=8+2(﹣1)=6+2=(+1)2,∴t=+1。

相关文档
最新文档