数据结构各种排序算法的时间性能

合集下载

数据结构复习与习题解析(2)

数据结构复习与习题解析(2)
❖迪杰斯特拉 (Dijkstra) 算法:
按路径长度递增次序产生最短路径
1、把 V 分成两组: (1) S:已求出最短路径的顶点的集合。 (2) V - S = T:尚未确定最短路径的顶点集合。
2、将 T 中顶点按最短路径递增的次序加入到 S 中,保证: (1) 从源点 v0 到 S 中各顶点的最短路径长度都不大于 从 v0 到 T 中任何顶点的最短路径长度。 (2) 每个顶点对应一个距离值: S中顶点:从 v0 到此顶点的最短路径长度。 T中顶点:从 v0 到此顶点的只包括 S 中顶点作中间顶点的 最短路径长度。
例题解析
例已知某网的邻接(出边)表,请画出该网络。
当邻接表的存储 结构形成后,图 便唯一确定!
图的遍历
❖广度优先搜索
从图的某一结点出发,首先依次访问该结点的所有邻接顶点 V1, V2, …, Vn 再按这些顶点被访问的先后次序依次访问与它们 相邻接的所有未被访问的顶点,重复此过程,直至所有顶点均 被访问为止。
7 10 3
a10 16 16 0 ✓
a11 14 14 0 ✓
v2
v7
v5
v9
v3
v8
v4 a6=2 v6
顶点 ve vl
v1
00
v2
66
v3
46
v4
58
v5
77
v6
7 10
v7 16 16
v8 14 14
v9 18 18
有向图的应用 应用
无向图的应用
Dijkstra算法 最短路径 Floyd算法
条件:边数不等于 n-1时 边 动作 连通分量 (0,2) 添加 {0,2},{1},{3},{4},{5} (3,5) 添加 {0,2},{3, 5},{1},{4} (1,4) 添加 {0,2},{3, 5},{1,4} (2,5) 添加 {0,2,3,5},{1,4} (0,3) 放弃 因构成回路 (2,3) 放弃 因构成回路 (1,2) 添加 {0,2,3,5,1,4}

数据结构第9章 排序

数据结构第9章 排序

R[3] 10
R[4] 60
R[5] 25
R[6] 30
R[7] 18 18 18 18
18 36 20

10 10 36
60 60 60
25 25 25
30 30 30
【算法】直接插入排序 void D_InsertSort(datatype R[ ], int n) { /*对排序表R[1]..R[n]进行直接插入排序,n是记录的 个数*/ for(i=2; i<=n; i++) if (R[i].key<R[i-1].key) {R[0]=R[i]; /*将R[i]插入R[1].. R[i-1]中, R[0]为监测哨*/ for(j=i-1; R[0].key<R[j].key; j--) R[j+1]=R[j]; /*后移记录*/ R[j+1]=R[0]; /*插入到合适位置*/ } }
空间性能:除排序表以外的内存占用情况。 时间性能:比较关键码的次数,数据移动的次数。 它们往往是排序表规模(n)的函数
6. 记录和排序表的数据结构
一般采用顺序结构存储排序表。 记录和排序表的类型定义如下: #define MAXNUM … /* MAXNUM 为足够大的数 typedef struct { keytype key; …… } datatype; datatype R[MAXNUM]; /*关键码字段*/ /*其它信息*/ /*记录类型*/ /*定义排序表的存储
第一趟排序结果,使得间隔为5的字表有序: P=3
29 7 41 30 11 39 50 76 41 13 10 0 80 78 86
子序列分别为:{29,30,50,13,78},{7,11,76,100,86}, {41,39,41,80}。第二趟排序结果: P=1

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较

数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。

内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。

本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。

冒泡排序是一种简单直观的排序算法。

它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。

因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。

插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。

选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。

以此类推,直到全部待排序的数据元素排完。

选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。

快速排序是一种分治的排序算法。

它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。

快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。

然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。

归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。

数据结构课程设报告—各种排序算法的比较

数据结构课程设报告—各种排序算法的比较

数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。

排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。

每种排序过程中均显示每一趟排序的细节。

程序的输入:输入所需排序方式的序号。

输入排序的数据的个数。

输入具体的数据元素。

程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。

b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。

开始时建立一个初始的有序序列, 它只包含一个数据元素。

然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。

c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。

等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。

d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。

8-1-数据结构——从概念到C++实现(第3版)-王红梅-清华大学出版社

8-1-数据结构——从概念到C++实现(第3版)-王红梅-清华大学出版社

大 学

int length;
版 社
};
void MergeSort1(int first, int last);
void MergeSort2( );
void Print( );
排序类的定义
Sort :: Sort(int r[ ], int n)
void Sort :: Print( )
{
{
data = new int[n];
( 从 概 念

升序(非降序) 降序(非升序)
实 现

排序码:排序的依据, 简单起见,也称关键码。
不失一般性,做如下约定:
(1)进行升序排序
清 华 大 学 出 版 社
排序的数据模型是什么?
排序是对线性结构的一种操作
(2)记录只有排序码一个数据项 (3)采用顺序存储,且下标从 1 开始
正序、逆序
正序:待排序序列中的记录已按关键码排好序。
快速排序
堆排序
二路归并非递归算法
(2)不基于比较:根据待排序数据的特点所采取的其他方法
第八章 v 排序技术
8-1-2 排序算法的性能
排序算法的性能
如何衡量排序算法的性能呢?
(1)时间性能:排序算法在各种情况(最好、最坏、平均)下的时间复杂度。

例如,基于比较的内排序在排序过程中的基本操作:
据 结 构
( 从 概 念

升序(非降序) 降序(非升序)
实 现

排序码:排序的依据,
职工号
姓名
性别
年龄
工作时间
清 华

简单起见,也称关键码。 0001
0002
王刚 张亮

数据结构之的拓扑排序算法拓扑排序算法的实现和性能分析

数据结构之的拓扑排序算法拓扑排序算法的实现和性能分析

数据结构之的拓扑排序算法拓扑排序算法的实现和性能分析数据结构之拓扑排序算法拓扑排序算法的实现和性能分析拓扑排序是一种常用的图算法,用于对有向无环图(DAG)进行排序。

拓扑排序的主要应用包括任务调度、编译顺序、依赖关系管理等方面。

本文将介绍拓扑排序算法的实现及其性能分析。

一、拓扑排序算法的实现拓扑排序算法一般采用深度优先搜索(DFS)或广度优先搜索(BFS)来实现。

下面将以DFS实现为例进行介绍。

1. 创建图数据结构在进行拓扑排序之前,首先需要创建图的数据结构。

可以使用邻接表或邻接矩阵来表示图。

以邻接表为例,可以使用一个字典来表示每个节点和其相邻节点的关系。

2. 初始化标记数组为了保证每个节点只被访问一次,需要使用一个标记数组来记录节点的访问状态。

可以使用布尔数组或整数数组来表示,将未访问的节点标记为false或0,已访问的节点标记为true或1。

3. 实现拓扑排序函数拓扑排序函数的主要功能是对图进行遍历,并将节点按照拓扑排序的顺序输出。

拓扑排序函数通常使用递归的方式实现。

4. 输出排序结果拓扑排序算法完成后,可以将排序的结果输出。

按照拓扑排序的定义,输出的结果应该是一个拓扑有序的节点列表。

二、拓扑排序算法的性能分析拓扑排序算法的性能取决于图的规模和结构。

下面将从时间复杂度和空间复杂度两个方面进行性能分析。

1. 时间复杂度分析拓扑排序算法的时间复杂度主要取决于图的节点数和边数。

在最坏情况下,每个节点都需要遍历一次,而每个节点的边数是有限的,所以拓扑排序的时间复杂度为O(V+E),其中V表示节点数,E表示边数。

2. 空间复杂度分析拓扑排序算法的空间复杂度主要取决于存储图和标记数组的空间。

在使用邻接表表示图时,需要额外的空间来存储每个节点及其相邻节点的关系。

同时,需要使用标记数组来记录节点的访问状态。

所以拓扑排序的空间复杂度为O(V+E+V),即O(V+E),其中V表示节点数,E表示边数。

三、总结拓扑排序是一种常用的图算法,可以对有向无环图进行排序。

数据结构查找与排序

数据结构查找与排序

第二部分 排序
• 各种排序算法的特性
– 时间性能(最好、最坏、平均情况) – 空间复杂度 – 稳定性
• 常见排序算法
– 堆排序-堆的定义,创建堆,堆排序(厦大3次,南航2次,南大3次) – 快速排序 – 基数排序 – 插入排序 – 希尔排序 – 冒泡排序 – 简单选择排序 – 归并排序
一、基于选择的排序
• 快速排序算法关键字的比较和交换也是跳跃式进行的,所以快速排序 算法也是一种不稳定的排序方法。
• 由于进行了递归调用,需要一定数量的栈O(log2n)作为辅助空间
例如
1、快速排序算法在 数据元素按关键字有序的 情况下最不利于发挥其长处。
2、设关键字序列为:49,38,66,80,70,15,22,欲对该序列进行从小到大排序。 采用待排序列的第一个关键字作为枢轴,写出快速排序法的一趟和二趟排序之 后的状态
49
49
38
66
38
10
90
75
10
20
90
75
66
20
10
38
20
90
75
66
49
2.序列是堆的是( C )。 A.{75, 65, 30, 15, 25, 45, 20, 10} B.{75, 65, 45, 10, 30, 25, 20, 15} C.{75, 45, 65, 30, 15, 25, 20, 10} D.{75, 45, 65, 10, 25, 30, 20, 15}
➢ 依靠“筛选”的过程
➢ 在线性时间复杂度下创建堆。具体分两步进行: 第一步,将N个元素按输入顺序存入二叉树中,这一步只要求满 足完全二叉树的结构特性,而不管其有序性。
第二步,按照完全二叉树的层次遍历的反序,找到第一个非叶子结点, 从该结点开始“筛选”,调整各结点元素,然后按照反序,依次做筛选,直到做 完根结点元素,此时即构成一个堆。

(完整版)数据结构与算法第8章答案

(完整版)数据结构与算法第8章答案

第8 章排序技术课后习题讲解1. 填空题⑴排序的主要目的是为了以后对已排序的数据元素进行()。

【解答】查找【分析】对已排序的记录序列进行查找通常能提高查找效率。

⑵对n个元素进行起泡排序,在()情况下比较的次数最少,其比较次数为()。

在()情况下比较次数最多,其比较次数为()。

【解答】正序,n-1,反序,n(n-1)/2⑶对一组记录(54, 38, 96, 23, 15, 72, 60, 45, 83)进行直接插入排序,当把第7个记录60插入到有序表时,为寻找插入位置需比较()次。

【解答】3【分析】当把第7个记录60插入到有序表时,该有序表中有2个记录大于60。

⑷对一组记录(54, 38, 96, 23, 15, 72, 60, 45, 83)进行快速排序,在递归调用中使用的栈所能达到的最大深度为()。

【解答】3⑸对n个待排序记录序列进行快速排序,所需要的最好时间是(),最坏时间是()。

【解答】O(nlog2n),O(n2)⑹利用简单选择排序对n个记录进行排序,最坏情况下,记录交换的次数为()。

【解答】n-1⑺如果要将序列(50,16,23,68,94,70,73)建成堆,只需把16与()交换。

【解答】50⑻对于键值序列(12,13,11,18,60,15,7,18,25,100),用筛选法建堆,必须从键值为()的结点开始。

【解答】60【分析】60是该键值序列对应的完全二叉树中最后一个分支结点。

2. 选择题⑴下述排序方法中,比较次数与待排序记录的初始状态无关的是()。

A插入排序和快速排序B归并排序和快速排序C选择排序和归并排序D插入排序和归并排序【解答】C【分析】选择排序在最好、最坏、平均情况下的时间性能均为O(n2),归并排序在最好、最坏、平均情况下的时间性能均为O(nlog2n)。

⑵下列序列中,()是执行第一趟快速排序的结果。

A [da,ax,eb,de,bb] ff [ha,gc]B [cd,eb,ax,da] ff [ha,gc,bb]C [gc,ax,eb,cd,bb] ff [da,ha]D [ax,bb,cd,da] ff [eb,gc,ha]【解答】A【分析】此题需要按字典序比较,前半区间中的所有元素都应小于ff,后半区间中的所有元素都应大于ff。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HUNAN UNIVERSITY 课程实习报告题目:排序算法的时间性能学生姓名学生学号专业班级指导老师李晓鸿完成日期设计一组实验来比较下列排序算法的时间性能快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象)要求(1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。

(2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。

实验结果要能以清晰的形式给出,如图、表等。

(3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。

(4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。

(5)要给出实验的方案及其分析。

说明本题重点在以下几个方面:理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。

一、需求分析(1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。

用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。

于是数据为整数(2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和比较次数。

(3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。

(4)测试数据:略二、概要设计1.抽象数据类型ADT List数据对象D={ ai | ai ∈ElemSet, i=1,2,...,n, n≥0 }数据关系R1={ <ai-1 ,ai >|ai-1 ,ai∈D, i=2,...,n }基本操作virtual void clear() = 0;bool insert(const Elem&) = 0;bool append(const Elem&) = 0;lbool remove(Elem&) = 0;void setStart() = 0;void setEnd() = 0;void prev() = 0;void next() = 0;int leftLength() const = 0;int rightLength() const = 0;bool setPos(int pos) = 0;bool getValue(Elem&) const = 0;void print() const = 0;2.程序的流程(1)输入模块:输入要排序的数的数量n(2)处理模块:系统产生n个随机数,对随机数进行排序(3)输出模块:将排序的结果输出3.算法的基本思想1、随机数的产生:利用srand()产生随机数。

2、快速排序:选定一记录R,将所有其他记录关键字k’与记录R的关键字k比较, 若k’<k则将记录换至R之前,若k’ >k 则将记录换至R之后,继续对R前后两部分记录进行快速排序,直至排序范围为13、插入排序:逐个处理待排序的记录,每个新记录与前面已排序的子序列进行比较,将它插入到子序列中正确的位置4、冒泡排序:比较并交换相邻的元素对,直到所有元素都被放到正确的地方为止。

5、归并排序:将两个或者多个有序表归并成一个有序表6、堆排序:首先将数组转化为一个满足堆定义的序列,然后将堆顶的最大元素取出,再将剩下的数排成堆,再取堆顶数值,…。

如此下去,直到堆为空。

到最后结束时,就排出了一个由小到大排列的数组。

三、详细设计(1)产生随机数:直接调用函数srand(),以时间作为随机种子进行选择,并把随机数装入数组中unsigned long int *Sort::setRan(unsigned long int num){unsigned long int *ra;ra=(unsigned long int*)malloc(num*sizeof(unsigned long int));srand(time(NULL));for(unsigned long int m=0;m<num;m++){ra[m]=rand();}cout<<endl;return ra;}(2)快速排序:要实现快速排序首先选择一个轴值,这里选取数组第一个为轴值。

定义两个标识low,high。

high标识最后一个元素的位置,从后向前,将关键字与轴值比较,直至遇到小于轴值的关键字,前移,low标识在第二个元素的位置,从前向后,将关键字与轴值比较,直至遇到大于轴值的关键字,后移。

当low,high相遇后第一趟排序结束。

调整数列,轴值左边的为比轴值小的,右边为比轴值大的。

对轴值左边(即low到pivotkey-1的数)和右边的子列(pivotkey+1到high的数)分别进行上述递归快速排序,直到范围为1结束。

int partition(int a[],int low,int high){//快速排序中的一趟int pivotkey; //作为枢轴来使用pivotkey=a[low];while(low<high){while(low<high&&a[high]>=pivotkey)--high;a[low]=a[high];while(low<high&&a[low]<=pivotkey)++low;a[high]=a[low];}a[low]=pivotkey;return low;}void qsort(int a[],int low,int high){//快速排序的递归形式int pivotloc;if(low<high){pivotloc=partition(a,low,high);//一趟排序结果的调用qsort(a,low,pivotloc-1);qsort(a,pivotloc+1,high);}}(3)插入排序:插入排序的思想是将一组无序的元素分别插入一个已经有序的的数组里,并保证插入后的数组也是有序的。

当所有无序组的元素都插入完毕时,一个有序数组构造完成。

数组n[1…r]为初始的一个无序数组(为了直观起见,我们这里设定数组从1开始,而不是0),则n[1]默认为只有一个元素的有序数组,n[2]插入只有n[1]构成的有序数组中,则此时有序数组的元素数量变为2。

以此类推,到第i个元素时,前i-1个元素已经是有序的,此时只需将第i个元素插入到有序数组中并使之保持有序。

如此直至最后一个元素插入完毕,整个插入排序完成。

void Sort::insertSort(unsigned long int *s){this->setNum();LARGE_INTEGER Freg;LARGE_INTEGER Count1,Count2;QueryPerformanceFrequency(&Freg);QueryPerformanceCounter(&Count1);//获取时间Count1double d;int temp,j;for (unsigned long int i=0;i<this->getRanNum();i++){j=i;temp=s[i];while (j>=1 && temp<s[j-1]){s[j]=s[j-1];j--;this->SortNum++;}if(j>1)this->SortNum++;s[j]=temp;}QueryPerformanceCounter(&Count2);//获取时间Count2d=(double)(Count2.QuadPart-Count1.QuadPart)/(double)Freg.QuadPart*1000.0;//计算时间差,d的单位为ms.cout<<"插入排序算法对"<<this->RanNum<<"个随机数排序时间为为"<<d<<" ms."<<endl;cout<<"插入排序算法对"<<this->RanNum<<"个随机数交换次数为"<<this->SortNum<<"次。

"<<endl;}(4) 冒泡排序(bubble sort):将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。

根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。

如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。

从无序区底部向上依次比较相邻的两个气泡的重量,若发现轻者在下、重者在上,则交换二者的位置。

即依次比较(R[n],R[n-1]),(R[n-1],R[n-2]),…,(R[2],R[1]);对于每对气泡(R[j+1],R[j]),若R[j+1].key<R[j].key,则交换R[j+1]和R[j]的内容。

第一趟扫描完毕时,"最轻"的气泡就飘浮到该区间的顶部,即关键字最小的记录被放在最高位置R[1]上。

扫描R[2..n]。

扫描完毕时,"次轻"的气泡飘浮到R[2]的位置上……最后,经过n-1 趟扫描可得到有序区R[1..n]void Sort::bubbleSort(unsigned long int *s){this->setNum();LARGE_INTEGER Freg;LARGE_INTEGER Count1,Count2;QueryPerformanceFrequency(&Freg);QueryPerformanceCounter(&Count1);//获取时间Count1double d;unsigned long int temp;for(unsigned long int i=0;i<(this->RanNum);i++){for(int j=i+1;j<(this->RanNum);j++){if(s[i]>s[j]){temp = s[i];s[i]=s[j];s[j]=temp;this->SortNum++;}}}QueryPerformanceCounter(&Count2);//获取时间Count2d=(double)(Count2.QuadPart-Count1.QuadPart)/(double)Freg.QuadPart*1000.0;//计算时间差,d的单位为ms.cout<<"冒泡排序算法对"<<this->RanNum<<"个随机数排序时间为"<<d<<" ms."<<endl;cout<<"冒泡排序算法对"<<this->RanNum<<"个随机数交换次数为"<<this->SortNum<<"次。

相关文档
最新文档