初一上册-有理数的乘方

合集下载

《有理数的乘方》优质课课件

《有理数的乘方》优质课课件
到“数学教学是数学活动的教学”。
• 3.教学手段分析:
• 利用多媒体教学,目的之一是使课堂生动、形
象又直观,能激发学生的学习兴趣,目的之二 是增大教学容量,增强教学效果。
• 2.学法分析:
• 从实际问题出发,创设有助于学生自主学习的 问题情境,借助多媒体展示实际生活中的问题, 并分析问题中的数量关系,引导学生主动探索, 发现问题;互动合作,解决问题;归纳概括, 形成能力。通过合理的问题设计,让学生亲历 探究,突出学生在教学中的主体地位;通过适 当的练习,及时的进行信息反馈,使学生体会
思考:用乘方式子怎么表示 3的3 相反数? 答案: - 33
1. 5看成幂的话,底数是 5,指数是 1 。
2. 在( 5)15中,底数是 -5 ,指数是1 , (5)15 读作-5的15次方(幂) 。 5
3.在(- 2)4 中,底数是( -2 ),指数是( 4 ),
读作(-2的4次方(幂)),意义(4个-2相乘 ) 结果是( 16 )
1、1×1×1×1×1×1×1= 1;7
2、3×3×3×3×3= 3;5
3、(-3)×(-3)×(-3)×(-3)= ;34
4、5 5 5= 5
6666
; 5 4 6
把下列乘方写成乘法的形式:
1、 0.=93 0.9 0;.9 0.9
9
4
2、 7=
9 7
9 7
;79
9 7
3、a
有理数的运算是数学中许多其他运算的基础,培养学 生正确迅速的运算能力,是数学教学的一项重要目标。有 理数的乘方是初一年级上学期第一章第五节的教学内容, 是有理数的一种基本运算,从教材编排的结构上看,共需 要4个课时,此课为第一课时,是在学生学习了有理数的 加、减、乘、除运算的基础上来学习的,它既是有理数乘 法的推广和延续,又是后继学习有理数的混合运算、科学 记数法和开方的基础,起到承前启后、铺路架桥的作用。 在这一课的教学过程中,可以培养学生观察问题、分析问 题和解决问题的能力,以及转化的数学思想,通过这一课 的学习,对培养学生的这些能力和转化的数学思想起到很 重要的作用。

人教七年级数学上册第二章 有理数乘方的概念和计算

人教七年级数学上册第二章 有理数乘方的概念和计算

A.23和32
B.(-3)3和-33
C.(-3)2和-32
D.-(-2)和-|-2|
变式1:已知(x+2)2+|y+1|=0,则3xy2的值为-__6__.
变式2:计算:(1)0100;
-(542)
3;
(3)-25;
(4)(-0.5)3.
解:(1)原式=0.
(2)原式=-16245.
(3)原式=-32.
Байду номын сангаас境导入
同学们,珠穆朗玛峰是世界最高的山峰,它的海拔高度约是8849 米,听说把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚 度能超过珠穆朗玛峰,这是真的吗? 对折一次,纸的厚度是多少? 对折两次,纸的厚度是多少? 对折五次呢?
故事导入 传说,古印度国王第一次玩国际象棋就被深深的迷住了.他决 定奖赏发明者,并让他自己提要求,发明者指着棋盘对国王说: “那就在棋盘的第一格中放入一粒麦粒,第二格中放入二粒麦 粒,第三格中放入四粒麦粒,第四格中放入八粒麦粒……按这 样的规律放满64格.” 国王反对说:“不、不、这么一点麦子算不上什么奖赏.”但发 明者坚持如此. 同学们,请想一想,如果国王答应发明者的要求,国王应给发 明者多少粒麦子?
24 3
,所以234

24 3
是不一样的
类似地,说说-an与-an、abn与
an b
的区别.
(-a)n 表示 n 个-a 相乘,而-an 表示 n 个 a 相乘的积的相反
数;abn表示
n
个ab相乘,而
an b
表示
a

n
次方与
b
的商
小组展示
越展越优秀
提疑惑:你有什么疑惑?

2.4有理数的乘方(教案)北师大版(2024)数学七年级上册

2.4有理数的乘方(教案)北师大版(2024)数学七年级上册

2.4有理数的乘方第1课时乘方的意义1.理解有理数乘方的意义;2.掌握有理数乘方的运算方法,并能熟练地进行有理数的乘方运算.重点理解有理数乘方的概念,掌握计算方法.难点运用乘方的意义进行正确的计算.一、导入新课问题1:在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a呢?问题2:在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明.学生思考后回答,教师点评.二、探究新知1.有理数乘方的相关概念课件出示教材第58页细胞分裂示意图,提出问题:某种细胞每过30 min便由1个分裂成2个.经过5 h,这种细胞由1个能分裂成多少个?引导学生分析题意得出:5 h后要分裂10次,分裂成=1024(个).教师进一步讲解:为了简便,可将记为210.一般地,n个相同的因数a相乘,记作a n,即=a n.这种求n个相同因数a的积的运算叫作乘方,乘方的结果叫作幂,a叫作底数,n叫作指数,a n读作“a的n次幂”.(或“a的n次方”) 强调:①一般地,在a n中,a取任意有理数,n取正整数.②乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.2.有理数乘方的计算教师:我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.课件出示:(1)52=________;53=________;54=________;55=________;(2)(-5)2=________;(-5)3=________;(-5)4=________;(-5)5=________;(3)01=________;02=________;03=________.引导学生观察、比较、分析这几道计算题中,底数、指数和幂之间有什么关系?学生独立完成,教师点评,并进一步讲解:(1)正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.(2)互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.(3)任何一个数的偶次幂都是非负数.引导学生把上述的结论用数学符号语言表示:当a >0时,a n >0(n 是正整数);当a =0时,a n =0(n 是正整数);当a <0时,⎩⎪⎨⎪⎧a n >0(n 为偶数),a n <0(n 为奇数).a 2n =(-a )2n (n 是正整数);a 2n -1=-(-a )2n -1(n 是正整数);a 2n ≥0(a 是有理数,n 是正整数).3.有理数乘方的应用有一张厚度是0.1 mm 的纸,将它对折1次后,厚度为2×0.1 mm.(1)将这张纸对折2次后,厚度为多少毫米?(2)假设可以将这张纸对折20次,那么对折20次后厚度为多少毫米?三、课堂练习1.教材第59页“随堂练习”第1、2题.2.平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?【答案】2.2个 ±3 没有 任何数的平方都大于或等于零四、课堂小结1.通过本节课的学习,你有什么收获?2.在学习乘方的概念时应注意什么?五、课后作业教材第61页习题2.4第1,2题.本节课通过自主学习与合作交流,多数学生能够掌握乘方和幂的意义,但在负数的乘方时,对于理解加括号和不加括号的区别,部分学生会有困难.而在后续的拓展中,利用乘方的意义解决问题,大部分学生可能存在困难,应用意识不够强.针对这一问题,采取策略是:师生共同对每一个算式先分析幂的意义,再计算,对易混淆的形式,举例辨析.第2课时科学记数法1.理解科学记数法的意义,学会用科学记数法表示大数;2.对用科学记数法表示的数进行简单的运算.重点用科学记数法表示大数,把用科学记数法表示的数还原成原数.难点归纳出科学记数法中指数与整数位数之间的关系.一、导入新课问题1:什么叫作乘方?103,-103,(-10)3,a n的底数、指数、幂分别是什么?问题2:计算:101,102,103,104,105,106,1010.学生完成后举手回答,教师进一步讲解问题2:左边用10的n 次幂表示简洁明了,且不易出错,右边有许多零,很容易出现写错的情况,读的时候也是左易右难,这就使我们想到用10的n次幂表示较大的数,比如一亿、一百亿等.又如像太阳的半径大约是696000千米、光速大约是300000000米/秒,中国人口大约是13亿等.教师:我们如何能简单明了地表示大数呢?这就是本节课我们要学习的内容——科学记数法.二、探究新知教师:同学们,请观察第2题:101=10,102=100,103=1000,104=10000,…,1010=10000000000.10n中的n表示n个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系?学生:10n=100…0(n个0),n恰巧是1后面0的个数.n比运算结果的位数少1.课件出示:(1)把下面各数写成10的幂的形式:1000,100000000,100000000000.(2)指出下列各数是几位数:103,105,1012,10100.学生完成后举手回答,教师点评,引导学生总结科学记数法的定义:把大于10的数记成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫作科学记数法.教师进一步讲解:现在我们只学习大于10的数的科学记数法,以后我们还要学习其他一些数的科学记数法.说它科学,因为它简单明了,易读易记易判断大小,在自然科学中经常运用.例(课件出示教材第60页例2)要求学生独自完成后汇报答案,教师讲评.三、课堂练习教材第61页“随堂练习”第1,2题.四、课堂小结1.什么是科学记数法?2.10的幂指数与原数整数位位数有什么关系?五、课后作业教材第61页习题2.4第3,4题.本节课的内容是科学记数法.在教学过程中,通过复习乘方的知识,进而引入本课内容.教师引导学生自主探究科学记数法的概念,知道怎样用科学记数法表示大于10的数.理清10的幂指数与原数整数位位数的关系.教学由浅入深,循序渐进,学生探究的问题愈来愈有挑战性,教师适当点拨和学生充分讨论形成共识,教师利用对科学记数法的认识,设置由浅入深的练习题,加深对概念的理解与掌握.通过例题的学习、习题的训练,学生对科学记数法有了一定的认识和掌握.。

人教版(2024)数学七年级上册2.3.1.1有理数的乘方课件(共21张PPT)

人教版(2024)数学七年级上册2.3.1.1有理数的乘方课件(共21张PPT)

(1) 9
(2) 27
(3) -81
(4) 243
(5)(-3)×(-3) (6) (-3)×(-3)×(-3) (7)(-3)×(-3)×(-3)×(-3)
(5) 9
(6) -27
(7) 81
像这种,乘数都相同的乘法运算如何表示?怎么计算更简呢?
下面就来研究这种乘法运算!
新知学习
边长为2cm的正方形面积为多少?
(3)底数是0,指数是7, 07 =0×0×0×0 × 0×0×0=0
; (4)底数是
2
3
,指数是3,
2 3 3
2 3
பைடு நூலகம்
2 3
2 3
287.
探究
观察式子,你发现这些负数幂的正负与指数有什么关系?
(-4)3 =(-4)×(-4)×(-4)=
-64;
(-2)4 =(-2)×(-2)×(-2)×(-2)= 16;
07 =0×0×0×0 × 0×0×0= 0;
2 3 3
2 3
2 3
2 3
8 27
请再列举一些乘方的例子.
22 23
22
23
(3)2
33 02 07
底数符号 指数的奇偶性
+

+

-

-

-

-



幂的符号 + + + -
+ -
幂的运算,实际是乘法运算,所以计算结果时,也要先定符号, 再计算绝对值的乘积: 负数的奇次幂是负数;负数的偶次幂是正数. 正数的任何次幂都是正数. 0的任何正整数次幂都是0.

人教版七年级数学上册1.5有理数的乘方教案

人教版七年级数学上册1.5有理数的乘方教案
其次,针对乘方的性质和运算法则,我打算在下一节课通过更多的例题和练习,让学生们熟练掌握,尤其是负整数乘方的计算,这是学生们的一个难点。
再者,我发现学生们在解决实际问题时,运用乘方知识的能力较弱。因此,我计划在接下来的课程中,设计更多与生活实际相结合的案例,让学生在实践中感受数学的魅力,提高他们解决实际问题的能力。
1.培养学生的逻辑推理能力:通过有理数乘方的性质和运算法则的学习,让学生掌握数学推理方法,提高其逻辑思维水平。
2.提升解决问题的能力:通过解决实际应用问题,使学生能够运用有理数乘方知识分析和解决问题,增强其数学应用意识。
3.培养数学抽象和建模能力:让学生从具体实例中抽象出有理数乘方的概念和规律,建立数学模型,提高其数学抽象和建模能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版七年级数学上册1.5有理数的乘方教案
一、教学内容
本节教学内容为人教版七年级数学上册1.5节“有理数的乘方”。主要内容包括:

人教七级上册有理数的乘方

人教七级上册有理数的乘方

举例说明
在94中,底数是( 9),指数( 4 ). 读作:9的4次方。
在106中,底数是(10),指数是( 6 )。 读作:10的6次方。
口答
1)在1210 中,12是 底 数,10是 指 数,读
作 12的10次方 ;
2)( 2 ) 7的底数是

3
2
的7次方
2
3 ,指数是 ;
7
3
,读
1.把下列各式写成乘方运算的形式,并指
出底数,指数各是什么?
1. 5×5×5×5×5
55
2. (-1.3)(-1.3)(-1.3)(-1.3) ( 1 .3 ) 4
3. 111111 ( 1 ) 6 555555 5
4. m·m ·m ·… ·m
m 2a
2a个
2. 把下列乘方写成乘法的形式:
0.93 = 0.9 0.9 0.9 ;
1的任何次幂等于1.
例:计算 (1) 102 =100
103 =1000 104 =10000
想一想: 观察例2的结果,你又能 发现什么规律?
1、10的几次幂,1
(2)(-10)2 =100
的后面就有几个0。
(-10)3 =-1000 2、互为相反数的相 同偶次幂相等,相同
(-10)4 =10000 奇次幂互为相反数。
猜一猜
同学们再见!

!议一议
_3_或_-__3_的平方等于9
(-4)2底数是__-__4__指数是__2____ (-4)2=_1_6_____
34表示__4_个_3__ 相乘 (-2)3=__-_8___
(+1)2003 -(- 1)2002=_0__
- 14+1=__0____

部编版七年级上册数学教学课件-乘方

部编版七年级上册数学教学课件-乘方
n个
的n次方,其中a叫做底数,n叫做a的幂的指数,简
称指数,当an看作a的n次方的结果时,也可读作“a
的n次幂”.
如: 指数 an 幂 底数
知1-导
乘方书写规则:
知1-导
(1)一个数可以看作这个数本身的一次方,指数1通常
省略不写;
(2)书写负数或分数的乘方时底数要加括号,如(-2)2, 53

2
知1-导
要点精析:(1)(-a)n与-an的区别:一个底数为-a, 一个底数为a;(2)乘方是一种运算,运算过程根据其 意义转化为乘法来计算,而幂是乘方运算的结果; (3)当底数是负数、分数或含运算符号的式子,表示 乘方时,要先用括号将底数括起来,再写指数.
例1 计算:(1)(-4)3;
知1-讲
导引:(1)中2100与2101的底数相同,指数接近,实
质上2101=2×2100,可运用分配律计算;(2)中
0.125= 18,8101=8×8100,即原题可化为
( 1 )100 8
×8100×8,100个 18的积与100个8的积的积为1.
(来自《点拨》)
知1-讲
解:(1)2100-2101=2100-2×2100=2100×(1-2) =-2100.
是( C )
A. 1 <x<x2
x
C.x2<x<
1 x
B.x<x2<
1
1 x
D. x <x2<x(来自《典中点》)
有理数的乘方运算主要是将它转化为有理数的乘法运 算来进行计算的,因此它具有如下性质: (1)负数的奇次幂是负数,负数的偶次幂是正数; (2)正数的任何次幂都是正数,0的任何正整数次幂
都是0.
第1章 有理数
1.6 有理数的乘方 第1课时 乘方

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方

七年级数学上册有理数的乘方有理数的乘方是数学中一个重要的概念,它在数学运算和实际问题中都有着广泛的应用。

本文将介绍有理数的乘方的定义、规则以及解答习题的方法。

一、有理数的乘方定义及性质1. 定义:对于任意的有理数a和正整数n,a的n次方记为a^n,它表示将a连乘n次的结果。

当n为0时,任何非零有理数a的0次方都等于1,即a^0 = 1。

2. 性质:a. 乘方的运算性质:对于任意的有理数a、b和正整数m、n,有以下规则:(a) a^m × a^n = a^(m + n)(b) (a^m)^n = a^(m × n)(c) a^m ÷ a^n = a^(m - n)b. 乘方的特殊性质:(a) 任何数的1次方都等于该数本身,即a^1 = a。

(b) 非零数的负次方等于该数的倒数的正次方,即a^(-m) = 1 / (a^m)。

二、有理数的乘方计算方法1. 同底数的乘方计算:当底数相同时,可以直接将指数进行运算。

例如:计算2^3 × 2^4。

解:由乘方的运算性质(a)得知,2^3 × 2^4 = 2^(3 + 4) = 2^7。

2. 乘方与乘法的关系:乘方运算可以转化为多次乘法运算。

例如:计算3^4。

解:3^4 = 3 × 3 × 3 × 3 = 81。

3. 有理数的乘方与整数指数的乘法:有理数的乘方可以转化为整数指数的乘法。

例如:计算(-5)^3。

解:(-5)^3 = (-5) × (-5) × (-5) = -125。

4. 有理数的乘方与分数指数的开方:有理数的分数指数可以转化为开方。

例如:计算4^(2/3)。

解:4^(2/3)等于将4开3次方再平方。

4开3次方得到2,再平方得到4。

三、解答习题例题:计算下列各式的值。

1. 5^2 + 3 × 4^2 - (-2)^3解:由乘方的计算方法可得,5^2 + 3 × 4^2 - (-2)^3 = 25 + 3 × 16 - (-8) = 25 + 48 + 8 = 81。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精讲提升题型一:有理数乘方 【知识梳理1】1、定义:n 个相同因数a 相乘,即a ·a ·…·a(个),记作a n ,读作a 的n 次方. 求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a n中,a 叫做底数,n 叫做指数.读作a 的n 次方或a 的n 次幂.2、运算法则:负数奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.【例题精讲】例1 判断下列乘方的幂的符号.(1)223- (2)3(0)a a < (3)21(2)n +-例2 计算(1)31(1)2- (2)3(0.75)- (3)4(2)-- (4)23(2)⨯- (5)548(2)÷- (6)32(2)(3)-⨯-解:(1)331327(1)()228-=-=-(2)33327(0.75)()464-=-=- (3)4(2)16--=- (4)23(2)3412⨯-=⨯= (5)5348(2)48(32)2÷-=÷-=- (6)32(2)(3)8972-⨯-=-⨯=-例3 当2a =-,23b =,14c =-时,求222a b c +-的值。

解:当2a =-,23b =,14c =-时,222222214155(2)()()4434916144a b c +-=-++-=+-= 例4 (1)如果一个有理数的正偶次幂是非负数,那么这个数是( )9(1)=-871()88⨯=20032002()1()()...()(5)(5)...(5)=5555-⨯-⨯⨯-⨯-⨯-⨯⨯--个个(1)1(1)10-++⋅⋅⋅+-+=;2011(1)(1)(1)(1)(1)1-⨯-⨯-⨯-⋅⋅⋅-=-;是有理数,且211(1)024x x y ++-+=,求y x 的值。

0≥,21(1)04x y -+≥, 又因为)(2011-所以10,30,310,a b c -=⎧⎪+=⎨⎪-=⎩所以1,3,1.3a b c ⎧⎪=⎪=-⎨⎪⎪=⎩所以1a b c ⨯⨯=-,93211(27)39a b c ⨯⨯=⨯-⨯=-,所以125125()(1)1a b c ⨯⨯=-=-, 所以125()a b c ⨯⨯÷932()a b c ⨯⨯=(1)-÷(3)-=13.题型二:科学记数法【知识梳理2】把一个大于10的数表示a×10n 的形式(其中a 是整数数位上只有一位的数,n 是正整数).这种表示方法叫科学记数法.【例题精讲】例1:用科学记数法记出下列各数:(1)696 000; (2)1 000 000; (3)58 000; (4)―7 800 000。

解:(1)原式=56.9610⨯;(2) 原式=610;(3) 原式=45.810⨯;(4) 原式=67.810-⨯。

巩固:宇宙现在的年龄约为200亿年,200亿用科学记数法表示为( )A .0.2×1011B .2×1010C .200×108D .2×109解:将200亿用科学记数法表示为:2×1010. 故选:B .例2:地球上的植物每年能生产1.65×1017克即6.6×1017大卡的有机物质,但实际上人类只能利用101,即6.6×1016大卡,若每人每天消耗2200大卡植物能量,试问地球上最多可以养活多少亿人口?解:6.6×1016÷365÷2200÷108≈833.33亿.巩固:在一次水灾中,大约有2.5×107个人无家可归,假如一顶帐篷占地100平方米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000平方米.要安置这些人,大约需要多少个这样的广场?(所有结果用科学记数法表示)解:帐篷数:2.5×107÷40=6.25×105;这些帐篷的占地面积:6.25×105×100=6.25×107;需要广场的个数:6.25×107÷5000=1.25×104.例3:一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学? (5)经过以上计算,你有何感想和建议? 解:(1)10÷500≈0.02(克). 答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克).答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元).答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105;答:卖得的钱可供1.1388×105名失学儿童上一年学;(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人. 所以提倡节约,杜绝浪费,我们要行动起来.题型三:混合运算【知识梳理3】先乘方,再乘除,最后加减.同级运算从左到右进行.如有括号,先做括号里的运算,按小括号、中括号、大括号依次进行.【例题精讲】例1:(1)(-33)-(-18)+(-15)-(+1)+(+23)(2)(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8) (3)-53-21+43-52+21-87(3) 22-×()221-÷()38.0- (4)2-×23-()232⨯-【巩固练习】(1)-4×()[]3671÷-+()[]()33235-÷--(2)-33-()[]1283--÷+()23-×()32-÷25.01(3)-{()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛-⨯+--)2(2114.0333}(4)-41+(1-0.5)×31×[2×()23-]【答案】:1、20 2、-43 3、30.3 4、2达标检测1、811表示( )。

A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加 2、下列结论中正确的是( )。

A.绝对值大于1的数的平方一定大于1B.一个数的立方一定大于原数C.任何小于1的数的平方都小于原数D.一个数的平方一定大于这个数 3、对于4(2)-与42-,下面说法正确的是( )。

A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等 4、a ,b 互为相反数,0a ≠,n 为自然数,则( )。

A. na ,nb 互为相反数 B. 2na ,2nb 互为相反数 C. 21n a+,21n b+互为相反数 D.以上都不对5、的值等于( )。

A 、0B 、1C 、-1D 、2 6、下列各式中正确的是( )A. 22()a a =- B. 33()a a =- C. 22a a -=- D. 33a a =7、当=a 时,代数式()218+-a 取得最大值 ,此时代数式122+-a a 的值为 .8、已知2.0,21-=-=y x ,求y x y x 3223---的值.9、若()()02322=-++b a ,求5a b-的值.10、已知b a ,互为相反数,d c ,互为倒数试求20032003)()()(cd b a x cdba b a -++++++的值200320022001)1(|1|)1()1(-+-÷-+-1、乘方的定义是什么?怎么理解乘方的中的底数跟幂的符号的关系?2、有理数的混合运算,应注意以下运算顺序:①先算乘方,再算乘除,最后算加减; ②同级运算,按照从左到右的顺序进行; ③如果有括号,先算括号里的。

课后巩固一、填空1. 在下列各式的括号内填上适当的数: (1)-(-5)+( )=5(2)( )×(-9)=-1 (3)(+53)×( )=1 (4)(-7)-(-2)=( ) (5)( )÷(-41)= 4(6)(-5)÷( )=15(7)-5×4×51=( )(8)3×5×7+(-3)(-5)(-7)=( )(9))(=912. 填写下表空格原数 -15 0 0.•3 相反数 -231倒数 a 绝对值二、选择题1. 两个负数的和一定是( )(A )非负数 (B )非正数(C )负数(D )正数11. -1×⎭⎬⎫⎩⎨⎧--÷⎥⎦⎤⎢⎣⎡-⨯-+-÷2)32()4.0()411()4(324答案及解释一、填空: 1. (1)、0;(2)、91;(3)、35;(4)、-5;(5)、-1;(6)、-31;(7)、-4;(8)、0;(9)、±91(此题错得多) 2. 填写下表空格原数 -15 231 0 0.•3 a 1 相反数 15 -2310 -0.•3 -a1 倒数-151 73 不存在3a绝对值 15231 00.•3a1 二、选择:题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 CACCCDCBDCADCBC三、判断:1、2、3、4、7、8、9错,其他对 四、计算: 1、-41;2、-81;3、-10;4、-338;5、-34;6、74;7、-60;8、13.34;9、-471;10、-19;11、0;12、165、解:原式=8+1 =96、解:原式=3-[-12] =15四、1、解:-[4+(-3)] =-1 2、解:-1-(-+) =-1-() =-1+=-3、(-11)-(-7) =-11+7 =-4五、1、解:原式=-2-2+4 =2+1 =-12、解:原式=-2+4.7-0.5+2.4-3.2 =4.7-3.7 =1 六、解:-3+5-3 =-1 答:半夜的气温是-1℃。

相关文档
最新文档