七年级数学有理数的乘方

合集下载

人教版数学七年级上册 有理数的乘方及混合运算

人教版数学七年级上册   有理数的乘方及混合运算

有理数的乘方及混合运算(基础)【要点梳理】要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power ). 即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数. 要点诠释:(1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来.(3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写. 要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即 . 要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数.要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用.【典型例题】类型一、有理数乘方1. 把下列各式写成幂的形式:(1)22225555⎛⎫⎛⎫⎛⎫⎛⎫+⨯+⨯+⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (2)(-3.7)×(-3.7)×(-3.7)×(-3.7)×5×5;(3)xxxxxxyy .2.计算:(1)3(4)-(2)(3)(4)(5)⎛⎫⎪⎝⎭335(6)335(7)22×3()(8)22×3举一反三:【变式1】计算:(1)(-4)4(2)23(3)225⎛⎫⎪⎝⎭(4)(-1.5)2【变式2】(2015•长沙模拟)比较(﹣4)3和﹣43,下列说法正确的是()A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同类型二、乘方的符号法则3.不做运算,判断下列各运算结果的符号.(-2)7,(-3)24,(-1.0009)2009,553⎛⎫⎪⎝⎭,-(-2)2010 34-4(3)-43-举一反三:【变式】计算:(-1)2009的结果是( ).A .-lB .1C .-2009D .2009类型三、有理数的混合运算4.计算: (1)()⎡⎤⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭⎣⎦211-1-0.5××2--33(2)()⎡⎤⎣⎦341-1-×2--36 (3)3201111(1+-2.75)×(-24)+(-1)--238(4)33211-+|-2-3|(-0.1)(-0.2)举一反三:【变式1】计算:4211(10.5)[2(3)]3---⨯---【变式2】计算:2421(2)(4)12⎛⎫-÷-⨯- ⎪⎝⎭5. 20032004(2)(2)-+-= ( )(A )2- (B )4007(2)- (C )20032 (D )20032-举一反三: 【变式】计算:7734()()43-⨯-【巩固练习】一、选择题1.(2015•郴州)计算(﹣3)2的结果是( )A .﹣6B . 6C . ﹣9D . 92.下列说法中,正确的是( )A .一个数的平方一定大于这个数;B .一个数的平方一定是正数;C .一个数的平方一定小于这个数;D .一个数的平方不可能是负数.3.下列各组数中,计算结果相等的是 ( ).A .-23与(-2)3B .-22与(-2)2C .22()5与225D .(2)--与2-- 4.式子345-的意义是 ( ) A. 4与5商的立方的相反数 B.4的立方与5的商的相反数 C.4的立方的相反数除5 D.45-的立方 5.计算(-1)2+(-1)3=( )A .-2B .- 1C .0D .26.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649…由此可判断7100的个位数字是( ) .A .7B .9C .3D .17.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第6次后剩下的绳子的长度为( ) .A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米二、填空题8.在(-2)4中,指数是________,底数是________,在-23中,指数是________,底数是________,在225中底数是________,指数是________. 9.(2015•湖州)计算:23×()2= . 10.()3--= ;52-= ;313⎛⎫-- ⎪⎝⎭= ;225= . 11. 3[(3)]_______---=,233(2)_______-⨯-=12.213____+= , 2135_____++=,21357_____+++= ,……,从而猜想:135+++……22005_____+=.13. 21(2)________3-=三、解答题14.(2014秋•渭城区校级期末)﹣23+(﹣3)2﹣32×(﹣2)2.15. 已知x 的倒数和绝对值都是它本身,y 、z 是有理数,并且2|3|(23)0y x z +++=,求32525x yz x y --+-的值.。

七年级数学有理数的乘方

七年级数学有理数的乘方
是一个有10个2相乘的乘积式; 对折100次裁成的张数,可用算式 2 2 2 计算,在这个积中有100个2相乘。 这么长的算式有简单的记法吗?
退出
100
返回 上一张下一张
2 ×2
… ×
×2 ×2
记作210 记作 an
10个2
a×a
… × ×a
×a
n个a 求n个相同因数a的积的运算叫做乘方
议一议 !
3
2
与 (-3) 结果相等吗?
2
3 读作-3的 平方 所以
2
2
2 2 (- 3 ) 读作 3 的相反数,而
(-3) =9
-3 =-9
2
探究性问题 乘方的结果叫做幂,设n为正整数,
(-1) (-1) (-1)
1 3
= =
-1 ________ -1 ________
(-1) (-1) (-1) (-1)
正数的任何次幂都是正1 (源自 ) 231 =- 8
数 负数的偶次幂是正数, 奇次幂是负数
注意:(1)负数的乘方,在书写时一定 要把整个负数(连同符号),用小括 号括起来.这也是辨认底数的方(2) 分数的乘方,在书写的时一定要把 整个分数用小括号括起来. 3 2 1 ( ) 、 ( -3 ) 如: 2
退出
返回 上一张下一张
课堂小结 1、通过这节课的学习,你有 哪些收获?
猜一猜
珠穆朗玛峰是世 界的最高峰,它 的海拔高度是 8848米。

把一张足够大的 厚度为0.1毫米 的纸,连续对折 30次的厚度能超 过珠穆朗玛峰。 这是真的吗?
同学们再见!

/ 菲皇娱乐
1.5有理数的乘方(1)
问题情境

新人教版数学七年级上有理数的乘方课件

新人教版数学七年级上有理数的乘方课件

(5)、 0.=13 -0;.001 (6)、
(7)、 1=2n ;1 (8)、
点击中招:
= =
;.112n31
2
-1
1
8
2 若
x
3
=27,
=y225,xy<0,则x+y的值为____
若a、b互为相反数,c、d互为倒数,则
a b=2009 0 = cd 2008 1
课堂小结 通过这节课的学习,你有哪些收获?
思考:
(-1)的偶数次幂为_1__
(-1)的奇数次幂为_-_1_
1的任何次幂为__1__
0的正整数次幂为_0___
0.13 ___, 1 4 _____ 2
104 _____,104 ____, 103 _____,103 _____
例1 :计算 (1) 53 =125 (2) 4 2 =16 (3) (-3)4 =81
22 2
100
计算,在这个积中有100个2相乘。 这么长的算式有简单的记法吗?
§1.5.1有理数的乘方
知识目标:了解乘方的意义并能正确的读、写; 掌握幂的性质并能进行乘方的运算。
能力目标:培养观察、类比、归纳、知识迁移的能力。 通过乘方运算,培养运算能力;
教学重难点: 重点:有理数乘方的意义; 难点:幂、底数、指数的概念及其表示
课堂小结
1、通过这节课的学习,你有 哪些收获?
2、乘方的结果叫做幂,设n为正整数,
(-1)2n+1=_-1____
(-1)
2n
=
___1_____
珠穆朗玛峰是世 界的最高峰,它 的海拔高度是 8848米。
猜一猜
≈ 把一张足够大的 厚度为0.1毫米

七年级上册数学教案《有理数的乘方》

七年级上册数学教案《有理数的乘方》

七年级上册数学教案《有理数的乘方》教学目标1、理解并掌握有理数的乘方、幂、底数、指数的概念及含义。

2、能够正确进行有理数的乘方运算。

教学重点理解并掌握有理数乘方的意义及运算。

教学难点有理数乘方中幂、指数、底数的概念及其相互关系的理解。

教学过程一、情境导入1、列式求边长为3的正方形面积。

3 × 3 = 3² = 9读作3的平方(或3的二次方)2、列式求边长为5的正方体体积。

5×5×5= 5³= 125读作5的立方(或5的三次方)二、讲授新知1、仿照上述算式,写出这些算式的简便写法或读法。

(-2)×(-2)×(-2)×(-2)记作:(-2)^4 读作:-2的四次方(-2/5)×(-2/5)×(-2/5)×(-2/5)记作:(-2/5)^5 读作:-2/5的五次方3×3…3×3(n个3相乘)记作:3^n 读作:3的n次方a×a×a×…a(n个a相乘)记作:a^n 读作:a的n次方思考:这4个式子有什么共同特征,表示什么运算?因数有什么特征?2、下定义乘方:n个相同因数的积的运算。

记作:读作:a的n次方幂举例:在9^4中,底数是9,指数是4,9^4读作“9的4次方”或“9的4次幂”。

乘方定义理解需注意:①指数n取正整数。

②底数a可代表所有数,可以是正数、负数、0。

③一个数可看作这个数本身的一次方,如 5 = 5^1,指数1通常省略不写。

④书写需注意,当底数为负数、分数时,要用括号把整个底数括起来。

3、计算(1)(-4)^3=(-4)×(-4)×(-4)= 16 ×(-4)= -64(2)(-2)^4= (-2)×(-2)×(-2)= 4 ×(-2)= -8(3)(-2/3)^3= (-2/3)×(-2/3)×(-2/3)= 4/9 × (-2/3)= -8/274、观察上面式子的结果,你发现负数的幂的符号和指数有什么关系?当指数是奇数时,负数的幂是负数;当指数是偶数时,负数的幂是偶数。

七年级数学《有理数的乘方(一)》教案

七年级数学《有理数的乘方(一)》教案

七年级数学《有理数的乘方(一)》教案教学内容:P41-43教学重点:数的乘方运算。

教学难点:乘方运算的探索及底数是负数的幂的符号的确定一、板书课题,揭示目标1.今天,我们一起来学习1.6有理数的乘方。

2.学习目标(1)理解有理数乘方的意义(2)掌握幂的符号法则,会进行有理数乘方运算二、学生自学前的指导怎样才能达到这些目标呢?主要靠大家自学。

下面,请同学们按照指导(手指投影屏幕)自学。

自学指导自学P41-42的内容,思考并回答:1、求n 个相同因数的乘积的运算,叫做乘方.乘方的结果叫做幂,n a 中的a 叫做底数,n 叫做指数.读作:a 的n 次方.当n a 看作是a 的n 次方的结果是,读作a 的n 次幂.2、乘方:n 个相同因数的连乘运算.(特殊的乘法)幂:n 个相同因数的连乘的积.底数:相同的因数.指数:相同因数的连乘运算中,相同因数的个数.3、一个数可以看做这个数的一次方.即5就是15,通常指数是1时,省略不写.三、学生自学,教师巡视学生看书,教师巡视,确保人人紧张看书。

四、检验学生自学情况。

1、计算:(1)4)2(- (2) 42- (3)3)32(- (4)-323 (1)要求学生读出运算,指出底数和指数,说出运算的实质.(2)应用幂的符号确定原则,先定符号,再算绝对值.2、P43:1、2五、引导更正,指导运用1.学生训练。

(1)布置任务:看完了的同学,请举手。

(学生举手)好!下面请XX做第43页练习第3(1)题,其余的同学在座位上练习……请XX做第43页练习第2(1)题……(2)学生练习,教师巡视,把数学练习中的典型错误写在黑板上(同一题下)。

观察板演,找错误。

请大家看黑板,找错误。

找到的请举手。

2.学生更正。

3.学生讨论,评判。

(1)先看第一位同学做的(再看第二位同学做的……)[若对,则师:认为对的举手,师判“√”][若有错,则引导学生错误的原因及更正的道理][估计出现的错误](2)第3(1)题中,符号出错。

七年级数学上册《有理数的乘方》教案、教学设计

七年级数学上册《有理数的乘方》教案、教学设计
2.针对学生运算能力的差异,设计不同难度的练习题,使学生在分层练习中逐步提高运算能力。
3.注重培养学生的观察、分析、总结能力,引导学生发现乘方的性质和规律,提高学生的数学思维能力。
4.考虑到学生的年龄特点,采用生动、有趣的教学方法,激发学生的学习兴趣,营造轻松愉快的学习氛围。
5.关注学生的学习情感,鼓励学生积极参与课堂讨论,培养合作精神,提高学生的自信心和自主学习能力。
(三)教学设想
1.创设情境,引入乘方概念
利用生活中的实例,如平方土地面积、立方体体积等,引导学生理解乘方的意义。通过实际操作,让学生感受乘方的产生过程,从而加深对乘方概念的理解。
2.分层教学,突破难点
针对学生的认知差异,设计不同层次的例题和练习题。对基础薄弱的学生,重点辅导乘方的基本运算;对中等程度的学生,引导他们发现乘方的性质,提高解题能力;对优秀学生,设置拓展题,培养他们的数学思维能力。
(2)学生回答:“边长乘以边长,即a×a。”
(3)教师继续提问:“如果这个正方体的体积怎么计算呢?如果边长为a,那么它的体积是多少呢?”
(4)学生回答:“边长的三次方,即a×a×a。”
通过这个实例,引出乘方的概念,让学生明白乘方是表示几个相同因数相乘的运算。( Nhomakorabea)讲授新知
1.教学内容:讲解有理数乘方的定义、运算方法以及乘方的性质。
教学过程:
(1)教师讲解有理数乘方的定义,让学生明白乘方是指数运算的一种形式,表示几个相同因数相乘。
(2)教师举例说明有理数乘方的运算方法,如:2^3=2×2×2,(-3)^2=(-3)×(-3)。
(3)引导学生发现乘方的性质,如:负数的奇数次幂是负数,偶数次幂是正数;零的任何正整数次幂都是零。
(4)教师通过例题,演示乘方运算的步骤和注意事项,如符号的处理、计算的准确性等。

人教版数学七年级上1.5.1有理数的乘方(教案)

人教版数学七年级上1.5.1有理数的乘方(教案)
人教版数学七年级上1.5.1有理数的乘方(教案)
一、教学内容
本节课选自人教版数学七年级上册第1章《有理数》1.5节《有理数的乘方》,主要包括以下内容:
1.有理数的乘方的定义及意义;
2.正整数指数幂的性质;
3.负整数指数幂的性质;
4.有理数的乘方的运算方法;
5.乘方的实际应用。
二、核心素养目标
1.让学生掌握有理数乘方的概念和性质,培养他们的数学抽象和逻辑推理能力;
同时,关注学生的个体差异。在教学中,我发现部分学生对乘方的理解速度较慢,运算能力较弱。针对这一问题,我将在课后对这些学生进行个别辅导,提高他们的乘方运算能力。
此外,注重教学评价与反馈。在本次教学中,我及时给予了学生评价和反馈,但部分学生对此并不够重视。为了提高教学效果,我将在今后的教学中,更加注重评价与反馈的针对性和实效性,让学生能够真正认识到自己的不足,从而提高学习效果。
其次,注重乘方运算规律的讲解与练习。在讲授过程中,我发现学生对正整数指数幂的性质掌握较好,但对负整数指数幂的运算规律掌握不够熟练。因此,我将在今后的教学中,增加对负整数指数幂的讲解和练习,帮助学生巩固知识点。
此外,加强小组合作与讨论。在实践活动和小组讨论环节,学生们的参与度较高,能够积极发表自己的观点。但我也发现,部分学生在讨论过程中存在依赖心理,不够积极主动。因此,我将在今后的教学中,加强对学生的引导,鼓励他们独立思考,提高小组合作的效果。
2.培养学生运用有理数乘方解决实际问题的能力,提升数学建模和数学应用的核心素养;
3.引导学生通过探索有理数乘方的规律,培养数据分析与数学运算的核心素养;
4.通过小组合作交流,培养学生沟通与合作的能力,提高数学交流的核心素养。
三、教学难点与重点

七年级数学《有理数的乘方》教案设计优秀7篇

七年级数学《有理数的乘方》教案设计优秀7篇

有理数的乘方教案篇一一、学什么1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、怎样学归纳概念n个a相乘aaa= ,读作:。

其中n表示因数的个数。

求相同因数的积的运算叫作乘方。

乘方运算的结果叫幂。

例1:计算(1)26(2)73(3)(3)4(4)(4)3例2:(1)()5(2)()3(3)()4【想一想】1.(1)10,(1)7,()4,()5是正数还是负数?2、负数的幂的符号如何确定?思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算(2)2009+(2)20某某3、在右边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三学怎样1、其中一种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()A8个B16个C4个D32个2、一根长1cm的绳子,第一次剪去一半。

第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )A()3mB()5mC()6mD()12m3、(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。

4、计算(1)(3)3(2)(0.8)2(3)02004(4)12004(5)104(6)()5(7)-()3(8)43(9)32(3)3+(2)223(10)-18(3)25、已知(a2)2+,b5,=0,求(a)3(b)2.2.6有理数的乘方(第2课时)一、学什么会用科学计数法表示绝对值较大的数。

二、怎样学定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。

例题教学例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。

截至20某某年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。

用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十三课时
一、课题§有理数的乘方(1)
二、教学目标
1.理解有理数乘方的概念,掌握有理数乘方的运算;
2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3.渗透分类讨论思想.
三、教学重点和难点
重点:有理数乘方的运算.
难点:有理数乘方运算的符号法则.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a
(n是正整数)呢
在小学对于字母a我们只能取正数.进入中学后,我们学习了有理数,那么a还可以取哪些数呢请举例说明.
(二)、讲授新课
1.求n个相同因数的积的运算叫做乘方.
2.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数.
一般地,在a n中,a取任意有理数,n取正整数.
应当注意,乘方是一种运算,幂是乘方运算的结果.当a n看作a的n次方的结果时,也可以读作a的n次幂.
3.我们知道,乘方和加、减、乘、除一样,也是一种运算,a n就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算.
例1 计算:
教师指出:2就是21,指数1通常不写.让三个学生在黑板上计算.
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系
(1)横向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零.
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
(3)任何一个数的偶次幂是什么数
任何一个数的偶次幂都是非负数.
你能把上述的结论用数学符号语言表示吗
当a>0时,a n>0(n是正整数);
当a=0时,a n=0(n是正整数).
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
a2n-1=-(-a)2n-1(n是正整数);
a2n≥0(a是有理数,n是正整数).
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
让三个学生在黑板上计算.
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n 的底数是-a,表示n个(-a)相乘,-a n是a n的相反数,这是(-a)n与-a n的区别.教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了.
课堂练习
计算:
(2)(-1)2001,3×22,-42×(-4)2,-23÷(-2)3;
(3)(-1)n-1.
(三)、小结
让学生回忆,做出小结:
1.乘方的有关概念.2.乘方的符号法则.3.括号的作用.
七、练习设计
3.当a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
(3)(-a+b-c)2; (4)a2+2ab+b2.
4.当a是负数时,判断下列各式是否成立.
(1)a2=(-a)2; (2)a3=(-a)3;
5*.平方得9的数有几个是什么有没有平方得-9的有理数为什么
6*.若(a+1)2+|b-2|=0,求a2000·b3的值.
八、板书设计
九、教学后记
1.数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力.教学中,既要注重逻辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养.因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标.
2.数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近.在引入新课时,要尽可能使学生的学习方式与数学家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,…,a n是学生通过类推得到的.
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果.一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析.在a n 中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯.3.把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷.
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学.始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.例如,通过实际计算,让学生自己体会到负数与分数的乘方要加括号.
4.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想.符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显.在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实.。

相关文档
最新文档