部编版七年级上册数学有理数的乘方教案

合集下载

初中数学七年级上册《有理数的乘方》教案1

初中数学七年级上册《有理数的乘方》教案1

初中
数学
七年
级上

课题


1 课型新授课
教学
目标
1、知识与能力目标:
在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

在理解基础上,把有理数的乘方运用到新的情境中,提高解决问题的能力。

运用计算
机信息技术,培养学生综合探索、创造能力。

重点
难点
分析





教学重点:关注学生小组合作参与学习的程度,使学生经历知识形成与应用的过程,积累数学活动经验。

教学难点:有理数乘方的应用与拓展
突破措施:
分层次教学,讲授、练习相结合。

教具
准备
彩粉笔、教参、小黑板


设计
2.9有理数的乘方
乘方的意义:底数指数
2.9 有理数
的乘方。

有理数的乘方教案

有理数的乘方教案

有理数的乘方教案一、教学目标1. 知识与技能:(1)理解有理数的乘方的概念;(2)掌握有理数乘方的法则;(3)能够运用有理数乘方解决实际问题。

2. 过程与方法:(1)通过实例探究,引导学生发现有理数乘方的规律;(2)利用图形、符号等辅助工具,帮助学生直观理解有理数乘方的过程;(3)培养学生的数学思维能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生感受数学在生活中的应用,培养学生的数学素养。

二、教学内容1. 有理数的乘方概念:介绍有理数的乘方概念,即一个有理数自乘若干次的结果。

2. 有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇数次幂是负数,负数的偶数次幂是正数;(3)零的任何正整数次幂都是零。

3. 乘方的运算规律:(1)乘方的优先级高于乘除法,但低于加减法;(2)乘方运算可以分配律、结合律和交换律进行简化。

三、教学重点与难点1. 教学重点:(1)有理数的乘方概念;(2)有理数乘方的法则;(3)乘方的运算规律。

2. 教学难点:(1)负数的乘方运算;(2)乘方运算在实际问题中的应用。

四、教学方法1. 实例探究:通过具体例子,引导学生发现有理数乘方的规律;2. 图形、符号辅助:利用图形、符号等工具,帮助学生直观理解有理数乘方的过程;3. 小组讨论:分组讨论,让学生共同探索乘方运算的规律;4. 练习巩固:设计相关练习题,让学生在实践中掌握乘方运算。

五、教学步骤1. 导入新课:通过简单的数学问题,引入有理数的乘方概念;2. 讲解与演示:讲解有理数乘方的法则,并通过示例进行演示;3. 练习与讨论:设计相关练习题,让学生进行乘方运算,并分组讨论;4. 总结与拓展:总结乘方的运算规律,并引导学生思考乘方在实际问题中的应用;5. 布置作业:布置一些有关有理数乘方的练习题,让学生课后巩固。

六、教学评估1. 课堂问答:通过提问的方式,了解学生对有理数乘方的理解和掌握程度;2. 练习批改:对学生的练习题进行批改,了解学生对乘方运算的掌握情况;3. 课后反馈:收集学生的课后作业,了解学生对乘方知识的巩固程度。

七年级数学《有理数的乘方》教案设计

七年级数学《有理数的乘方》教案设计

七年级数学《有理数的乘方》教案设计教学目标1.了解正整数和负整数的乘方;2.掌握有理数幂乘法的基本方法;3.掌握有理数幂乘法的运算规律;4.能够应用有理数幂乘法解决实际问题。

教学重点1.掌握有理数幂乘法的基本方法;2.掌握有理数幂乘法的运算规律。

教学难点有理数幂乘法的综合应用。

教学过程设计1.导入(5分钟)教师用一个生动的例子介绍正整数和负整数的乘方,引出有理数幂乘法的概念。

2.概念讲解(10分钟)通过PPT的形式,讲解有理数幂运算的定义、性质和公式。

3.示例讲解(10分钟)通过几个简单的有理数幂乘法的例子,让学生理解运算规律和基本方法。

4.练习(25分钟)让学生完成课本上的练习题,巩固已经学习的知识点。

5.拓展(10分钟)让学生通过应用题目,进一步了解有理数幂乘法在实际生活中的应用。

6.总结(5分钟)对本节课所学内容进行总结,巩固学习成果。

教学方法1.讲解法:通过PPT讲解有理数幂运算的定义、性质和公式,使学生掌握知识点;2.演示法:通过简单的例子演示有理数幂乘法的运算规律和基本方法;3.练习法:通过让学生进行练习,检查学生的掌握情况;4.讨论法:通过应用题目的讨论,提高学生的思维能力,培养学生解决问题的能力。

教学评估1.观察法:观察学生在课堂上的表现;2.练习法:通过课堂练习,检查学生的掌握情况;3.应用题:让学生进行应用题目的解答,检查学生综合运用知识的能力。

教学资源1.PPT课件;2.有理数幂乘法的练习题;3.应用题目。

教学反思针对学生的学习情况,可以增加一些拓展内容,让学生了解有理数幂乘法的应用场景。

同时,可以增加一些巩固练习,帮助学生更好的掌握有理数幂乘法。

七年级上册数学教案《有理数的乘方》

七年级上册数学教案《有理数的乘方》

七年级上册数学教案《有理数的乘方》教学目标1、理解并掌握有理数的乘方、幂、底数、指数的概念及含义。

2、能够正确进行有理数的乘方运算。

教学重点理解并掌握有理数乘方的意义及运算。

教学难点有理数乘方中幂、指数、底数的概念及其相互关系的理解。

教学过程一、情境导入1、列式求边长为3的正方形面积。

3 × 3 = 3² = 9读作3的平方(或3的二次方)2、列式求边长为5的正方体体积。

5×5×5= 5³= 125读作5的立方(或5的三次方)二、讲授新知1、仿照上述算式,写出这些算式的简便写法或读法。

(-2)×(-2)×(-2)×(-2)记作:(-2)^4 读作:-2的四次方(-2/5)×(-2/5)×(-2/5)×(-2/5)记作:(-2/5)^5 读作:-2/5的五次方3×3…3×3(n个3相乘)记作:3^n 读作:3的n次方a×a×a×…a(n个a相乘)记作:a^n 读作:a的n次方思考:这4个式子有什么共同特征,表示什么运算?因数有什么特征?2、下定义乘方:n个相同因数的积的运算。

记作:读作:a的n次方幂举例:在9^4中,底数是9,指数是4,9^4读作“9的4次方”或“9的4次幂”。

乘方定义理解需注意:①指数n取正整数。

②底数a可代表所有数,可以是正数、负数、0。

③一个数可看作这个数本身的一次方,如 5 = 5^1,指数1通常省略不写。

④书写需注意,当底数为负数、分数时,要用括号把整个底数括起来。

3、计算(1)(-4)^3=(-4)×(-4)×(-4)= 16 ×(-4)= -64(2)(-2)^4= (-2)×(-2)×(-2)= 4 ×(-2)= -8(3)(-2/3)^3= (-2/3)×(-2/3)×(-2/3)= 4/9 × (-2/3)= -8/274、观察上面式子的结果,你发现负数的幂的符号和指数有什么关系?当指数是奇数时,负数的幂是负数;当指数是偶数时,负数的幂是偶数。

《有理数的乘方》教案 (公开课)2022年

《有理数的乘方》教案 (公开课)2022年

教案七年级数学上册第二章有理数及其运算第10节有理数的乘方第一课时〔一〕教学目标1、知识与技能:在现实背景中理解有理数乘方的概念,掌握有理数乘方的运算;2、过程与方法:经历探索有理数乘方的运算过程,培养学生观察、比较、分析、归纳、概括的能力。

3情感、态度与价值观:经历丰富的观察、比较、分析、归纳、概括等数学活动的体验,培养学生的探索精神以及良好的学习习惯,增加学习数学的兴趣。

〔二〕教学重点和难点重点:有理数乘方的意义。

难点:正确有效地进行有理数乘方运算。

〔三〕设计意图:本节课“有理数的乘方〞的第一课时,这节课的目标是通过生活中存在的多个相同因数乘积的情况,引入另一种运算——乘方。

它在整个第二章中起到了一个承上启下的作用,它既是乘法法那么的延续,也是为后面的混合运算打好根底。

本节课的内容是新老教材中都有的内容,是学生必须掌握的根本知识。

?标准?指出:数学课程“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,数学教学必须建立在学生的认知开展水平和已有的知识经验根底之上。

〞因此这节课创设了两个不同的问题情境引入了乘方的概念,使学生感受到生活中处处有数学,这样既帮助学生掌握了乘方的概念又激发了他们学习数学的兴趣。

让学生在自主探索和合作交流的过程中真正理解和掌握根本的数学知识和技能、数学思想方法的同时又获得了广泛的数学活动的经验。

对于重点难点的突破,我认为是让学生在有限的时间内有效地完成不同类型的练习题,因此,我在教学过程中设计了大量的不同类型的小练习题,让学生在积极主动的练习活动中,提高学习兴趣和学习热情,从而到达突出重点,突破难点的目的。

另外,我在练习题中让学生学会观察、总结规律,把学生做稳固性练习和总结运算规律放在一起进行,其效果就远远超出了稳固性练习的初衷,可以很好地培养学生观察、分析、归纳、概括等能力,从而到达提高学习兴趣和学习热情的目的。

〔四〕教学方法:自学—辅导教学模式、问题—探究教学模式〔五〕教具准备:多媒体教学设备〔六〕课堂教学过程设计一、从学生原有认知结构提出问题1、正方形的面积公式是怎样表示的?2、正方体的体积公式是怎样表示的?设计这两个问题的目的是:让学生把小学时学习过的有关与乘方的知识回忆起来,便于新旧知识的过渡,为这节课做好铺垫。

初一上册数学第一章有理数的乘方教案

初一上册数学第一章有理数的乘方教案

初一上册数学第一章有理数的乘方教案一. 教材分析本章内容为有理数的乘方,是整个研究中至关重要的一章,为接下来的研究奠定基础。

本章内容涵盖:有理数的乘方概念,负数乘方,乘方的性质和运算法则等。

二. 教学目标1. 理解有理数的乘方概念和运算法则,掌握有理数的乘方运算;2. 研究整数乘方及其运算规则,掌握一般情况下负数平方、立方的计算方法;3. 培养学生的逻辑思维能力和创新思维能力,激发学生研究数学的兴趣。

三. 教学重点和难点1. 理解有理数乘方的概念及运算法则;2. 掌握负数的平方、立方计算方法。

四. 教学方法1. 数学课程教学是一个非常严谨的学科,注重逻辑推理和概念讲授,因此教师应采用讲授法和演示法等方法,注重概念的培养和应用;2. 运用举例法进行讲解,使同学们更好地理解有理数的乘方以及运算法则;3. 引导学生自主探究,逐步形成系统的知识结构。

五. 教学内容及进度1. 有理数的乘方概念(2课时)(1)什么是有理数乘方;(2)正数乘方;(3)自然数乘方。

2. 负数乘方(3课时)(1)负数乘方的定义;(2)负数乘方的性质;(3)一次方、零次方的概念。

3. 乘方的运算法则(2课时)(1)同底数幂的乘法法则;(2)乘方的除法法则;(3)乘方的乘法法则。

六. 教具及练题教具:黑板、彩笔、练册等;练题:可参考教材后的题选择。

七. 课后反馈1. 布置课后题,巩固所学知识;2. 对难点解释不透彻的地方再进行强化讲解。

以上是初一上册数学第一章有理数的乘方教案。

2.9有理数的乘方(教案)

2.9有理数的乘方(教案)
其次,对于乘方的性质和运算法则,我需要通过更多具体的例子和练习,帮助学生巩固记忆。特别是对于容易混淆的地方,如负数的奇数次幂和偶数次幂,我应该设计一些具有针对性的题目,让学生在实际操作中掌握规律。
此外,课堂上的小组讨论和实践活动也让我看到了学生们的积极性。他们在讨论中互相启发,共同解决问题,这有助于提高他们的合作能力和解决问题的能力。在今后的教学中,我应该更多地安排这样的环节,让学生在互动交流中深化对知识点的理解。
1.教学重点
本节课的教学重点主要包括以下两个方面:
(1)有理数乘方的定义:理解有理数乘方的概念,掌握底数、指数及其关系,能正确表示有理数的乘方。
举例:a^2表示a×a,a^3表示a×a×a,依此类推。
(2)有理数乘方的性质与运算法则:熟练掌握并运用有理数乘方的性质与运算法则进行计算。
举例:
-正数的任何次幂都是正数:2^4 = 16;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调有理数乘方的定义和性质与运算法则这两个重点。对于难点部分,如负数的乘方和乘方的实际应用,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如计算不同底数的乘方,观察其规律。

七年级数学《有理数的乘方》综合应用教案设计

七年级数学《有理数的乘方》综合应用教案设计

【教学目标】1.理解有理数的乘方的概念及运算规律。

2.掌握用因式分解、约分等方法求解有理数幂的方法。

3.通过综合应用题的训练,提高学生解决问题的能力。

【教学重点】1.有理数的乘方的概念及运算规律。

2.因式分解、约分等方法求解有理数幂的方法。

【教学难点】1.综合应用题的训练。

2.对于初学者来说,有理数的乘方概念及运算规律理解有一定难度。

【教学准备】教师:黑板、彩色粉笔、教案、教具。

学生:笔、本、计算器。

【教学过程】一、导入(5分钟)1.问好并制定学习计划。

2.让学生回答一下有理数乘方运算的意义及其预测,明确本次课的学习目标。

二、讲解(35分钟)1.有理数的乘方的定义及运算规律。

根据柯西原理,双因子不能且不同于负数的开放范围可以定义次方。

有理指数幂的若干性质,在学习有理数乘方的时候,需要明确以下几点:1)同底数指数相加,则指数相加。

2)同底数指数相减,则指数相减。

3)指数幂的乘积为底数相乘,指数相加。

4)指数幂的商为底数相除,指数相减。

5)非零的实数的 0 次方等于 1。

2.有理数幂的求解方法。

1)可以通过将有理数因式分解为若干个较小的因子的积的形式,并对这些因子进行约分的方式求解。

2)还可以通过使用计算器完成有理数幂的运算。

3.综合应用题的训练。

在讲解过程中,应设想一些生活实际中的问题,让学生解决这些问题,以提高学生的实用能力。

三、引导练习(15分钟)以上两部分是教师为学生展开各个方面的知识点,并阐述了各个方面运算规则和数学知识的第一手实践。

学生就需要在教师的引导下进行积累,以求达到良好的数学素养水平。

课上,教师会给学生发题,以选择题、填空题等形式进行,学生们应立即将所学知识铺陈出来。

四、作业布置(5分钟)在作业中,学生需要深入思考课堂上讲解过的知识点和技巧,积极思考问题的解决方法。

五、课外拓展(5分钟)学生可以自选一些相关的练习题进行拓展,并预先录制视频上传至网络,以检测自己的练习水平和问题答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册教案

斗 Assistant teacher 为 梦 想 奋
2.9 有理数的乘方
1.在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算法则.
2.能熟练地进行乘方运算.
一、情境导入
贝贝同学说:“珠穆朗玛峰是世界的最高峰,它的海拔高度约是8844m.如果有一张足够大且厚度为0.1mm 的纸,那么连续对折30次(理想状态下)的厚度能超过珠穆朗玛峰.”皮皮疑惑地说“这不可能吧,一张纸能折那么高吗?”通过下面的学习,相信你一定能解开皮皮的困惑!
二、合作探究
探究点一:有理数乘方的意义
把下列各式写成乘方的形式,并指出底数和指数各是什么. (1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14);
(2)25×25×25×25×25×25

(3).
解析:首先化成幂的形式,再指出底数和指数各是什么. 解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5,其中底数是-3.14,指数是5;
(2)25×25×25×25×25×25=(25)6,其中底数是2
5
,指数是6;
(3),其中底数是m ,指数是2n . 方法总结:乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.
探究点二:有理数乘方的运算
计算:(1)-(-3)3; (2)(-3
4)2;
(3)(-2
3
)3; (4)(-1)2015.
解析:可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算;或者先确定幂的符号,再用乘法求幂的绝对值.
解:(1)-(-3)3=-(-33)=33=3×3×3=27;
(2)(-34)2=34×34=916

(3)(-23)3=-(23×23×23)=-8
27

(4)(-1)2015=-1.
方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.
探究点三:与乘方有关的规律探究问题
有一张厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米,求: (1)对折2次后,厚度为多少毫米? (2)对折20次后,厚度为多少毫米?
解析:要求每次对折后纸的厚度,应先求出每次折叠后纸的层数,再用每张的厚度乘以纸的层数即可.纸的对折次数与纸的层数关系如下:
解:(1)∵厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米, ∴对折2次的厚度是0.1×22毫米. 答:对折2次的厚度是0.4毫米;
(2)对折20次的厚度是0.1×220毫米=104857.6(毫米), 答:对折20次的厚度是104857.6毫米. 方法总结:解决本题的关键是将纸的层数化为幂的形式,找出这些幂与对折次数的对应关系.
教学过程中,强调学生自主探索和合作交流,经历丰富的观察、分析、比较、归纳、概括等数学活动的体验,发展学生的数感,培养学生良好的学习习惯,增强学习数学的兴趣和勇于探索的精神.
2.9 有理数的乘方
教学目标:
1.知识与技能:正确理解有理数乘方、幂、指数、底数等概念;会进行有理数乘方运算。

2.过程与方法:通过对乘方意义的理解,培养学生观察,比较,分析,归纳,概括的能力,渗透转化思想。

3.情感态度与价值观:体验小组交流,合作学习的重要性。

教学重难点:
重点:正确理解乘方的意义,掌握有理数乘方的符号规律。

难点:正确理解乘方,底数,指数的概念,并合理运算。

教学过程:
(一)板书课题,揭示目标
本节课我们学习“1.5.1有理数的乘方”,这节课的学习目标为:
①正确理解有理数乘方、幂、指数、底数等概念;
②掌握有理数乘方的符号规律,会进行有理数乘方运算。

(二)指导自学自学指导
游戏一:把面积为1的长方形硬纸片沿中间对折,使两边能完全重合,引导学生思考:如此折叠五次后所得长方形面积是多少?
游戏二:把长方形硬纸片对折后再沿折痕剪开,重叠放置后再对折,剪开,引导学生思考如此操作五次后共有多少张硬纸片?
引导学生观察下列四个算式特点?
21×21×21×21×21
;2×2×2×2×2;(-3)×(-3)×(-3)
×(-3);(-0.3)×(-0.3)×(-0.3)。

请认真看P.41—P42的内容,5分钟后,让学生解决上面两个游戏设置的问题,并回答四个算式特点。

接着让学生思考:正方形面积与边长a 的关系?正方形体积与棱长a 的关系?
类比:21×21×21×21×21
应记作 ,读作 。

2×2×2×2×2应记作 ,读作 。

(-3)×(-3)×(-3)×(-3)应记作 ,读作 。

(-0.3)×(-0.3)×(-0.3) 应记作 ,读作 。

让学生猜想:
a ·a ·a ……·a 的结果?记作 ,读
作 。

总结:求
叫做幂;在中
(三)学生自学
1.学生按照自学指导看书,教师巡视,确保人人学得紧张高效. 2.检查自学效果 一.填空 n a
n
n 个a
学生在座位上口答完成。

(强调:一个数可以看作这个数本身的一次方)。

二.思考:(-2)可以写成-2吗?
()可以写成吗?
(指名学生回答,师生共同总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来)
三.计算:①(-2),②-2,③(-),④
(叫4个学生上台板演,其他练习本上完成,教师巡视,确保人人学得紧张高效).(四)讨论更正,合作探究 1.学生自由更正,或写出不同解法; 2.评讲
思考:将三题①③中将底数换成为正数或0,结果有什么规律? 学生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都为0。

有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果. (五)课堂作业
4
4
323
323
44323
323
1.我们已经学习了五种运算,请把下表补充完整: 2、观察下列各等式:
1=; 1+3= ; 1+3+5=;
1+3+5+7=……
通过上述观察,你能猜想出反映这种规律的一般结论吗? 你能运用上述规律求1+3+5+7+…+2003的值吗? 3、P47第一题
2
12
22
32
4。

相关文档
最新文档