集成模拟乘法器
四象限乘法器

四通道四象限模拟乘法器MLT04四通道四象限模拟乘法器MLT041MLT04的结构功能和主要特点在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量电压或电流相乘的电子器件。
采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。
在目前的乘法器中,单通道器件(如MOTOROLA的MC1496)无法实现多通道的复杂运算;二象限器件(如ADI公司的AD539)又会使负信号的应用受到限制。
而ADI公司的MLT04则是一款完全四通道四象限电压输出模拟乘法器,这种完全乘法器克服了以上器件的诸多不足之处,适用于电压控制放大器、可变滤波器、多通道功率计算以及低频解调器等电路。
非常适合于产生复杂的要求高的波形,尤其适用于高精度CRT显示系统的几何修正。
其内部结构及引脚排列如图1所示。
MLT04是由互补双极性工艺制作而成,它包含有四个高精度四象限乘法单元。
温度漂移小于0.005%/℃。
0.3μV/Hz的点噪声电压使低失真的Y通道只有0.02%的总谐波失真噪声,四个8MHz通道的总静止功耗也仅为150mW。
MLT04的工作温度范围为-40℃~+85℃。
MLT04的其它主要特性如下:●四个独立输入通道;●四象限乘法信号;●电压输入电压输出;●乘法运算无需外部元件;●电压输出:W=(X×Y)/2.5V,其中X或Y上的线性度误差仅为0.2%;●具有优良的温度稳定性:0.005%;●模拟输入范围为±2.5V,采用±5V电压供电;●低功耗一般为150mW。
2误差源和非线性模拟乘法器的静态误差主要由输入失调电压、输出偏置电压、比例系数以及非线性度引起。
在这四种误差源中,只有X和Y的输入失调电压可以由外部调整。
而MLT04的输出偏置电压在出厂时已由厂家调整至50mV,比例系数在整个量程之内被内部调整为2.5%。
集成运算放大器的应用_电子电路

第一节 模拟乘法器 一、变跨导式乘法运算电路 实际是一个具有射极恒流源的差动放大电路
恒流源电流受外电压UY控制
正常情况下,可认为差动T1、T2,集电极电流和UBE 关系近似指数关系
iC 1 I S 1 e
U BE 1 VT U BE
I S 1e
VT
U BE1 U BE 2 I S1 I S 2 iE 1
1 R2 3 , 即R 2R (补偿反馈网络的衰弱) 振幅条件:从A A f 2 1 R1
因为反馈网络: F
V2 V1
1 3
三、石英晶体振荡器
1、石英晶体的压电效应及其等效电路 压电效应: 晶片上加电压(会产生机械变形)晶片上 施加机械压力(或拉力)(会在相应方向上产生电压) (1) 0<X<fS 容性区 (2) fS<X<fP 感性区 (3) X>fP 容性区
U0 Rf Rc R1 U0
Rf RC R1 Rc U XUY 2VT Re
=KUXUY
(实现了乘法运算)
二、四象限模拟乘法器
集成乘法器:通常采用二级差动放大,实现四象限乘法器 应用: I. 利用集成模拟乘法器和集成运放可组成除法,开方及平方 等运算,通信中可作平衡调制器、同步检波、混频器等。 II. 在测量技术中可进行单相功率测量,三相功率测量, 功率因素COSψ的测量等。还可作信频器、压控滤波器。
原理:将输出电压Uo经R 电路后,利用电容C的充放电电压U f C 代替滞回比较器的外加输入信号UL送入反相器与同相端, 门限电压UB相比较,使比较器的输出不断发生转换, 从而形成自激振荡。
基于模拟乘法器MC1496的混频器设计

摘要在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。
采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。
混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。
特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
Multisim10是属于新一代的电子工作平台,是一种电子技术界广泛应用的优秀计算机仿真软件。
主要内容是基于MC1496的混频器应用设计与仿真,阐述混频器基本原理,并在电路设计与Multisim仿真环境中创建集成电路乘法器MC1496电路模块,利用模拟乘法器MC1496完成各项电路的设计与仿真,并结合双踪示波器实现对信号的混频,对接收信号进行频率的转换,变成需要的中频信号。
关键词:MC1496乘法器;混频器;MultisimAbstractIn high frequency electronic circuit course, amplitude modulation,synchronization demodulation, mixer, frequency, frequency modulation and demodulation are regarded as the process of the two signals are multiplied, and the integrated analog multiplier is the realization of two analog electronic device, a voltage or current multiplication. The integrated analog multiplier to achieve the above functions than discrete devices are much more simple, and superior performance, therefore the integrated analog multiplier is widely used in wireless communications, radio and television broadcasting.The mixer in communication engineering and radio technology,application is very extensive, in modulation system, the input of baseband signal are through frequency conversion into a high frequency modulated signal. In the demodulation process, the received modulated high frequency signal after frequency conversion, into intermediate frequency signals corresponding to. Especially in the superheterodyne receiver, mixer is widely used, mixing circuit is the key module of Applied Electronic Technology and professional radio must master.Multisim10 is a new generation of electronic platform belongs to, is an excellent computer widely used an electronic technology field simulation software.The main content is the mixer application design and simulation based on MC1496, expounds the basic principle of mixer, and the circuit design and Simulation in Multisim environment to create integrated circuit MC1496 multiplier circuit module, the analog multiplier MC1496 to complete the design and Simulation of the circuit, and combined with the dual trace oscilloscope to achieve signal mixing, the switching frequency of the received signal the intermediate frequency signal, a need.Key Words:MC1496 multiplier; mixer; Multisim目录摘要 (1)Abstract (II)引言 (1)1.方案分析 (2)2.单元电路的工作原理 (4)2.1 LC正弦波振荡器 (4)2.2 模拟乘法器电路 (6)2.3 选频﹑放大电路 (8)3.电路性能指标的测试 (9)结论 (11)致谢 (12)参考文献 (13)引 言混频技术应用的相当广泛,混频器是超外差接收机中的关键部件。
运放组成的加减乘除等运算电路

第7章
集成运放组成的运算电路
7.1 概述 7.2 基本运算电路 7.3 对数和指数运算电路 7.4 集成模拟乘法器 7.5 除法运算电路
小结
模 拟电子技术
7.1 概述
1. 运放的电压传输特性:
运算放大器的两个工作区域(状态):线性区和非线性区,
设:电源电压±VCC=±10V, 运放的AVO=104
P+
uO 解:uO1RF(uRI33uRI44)
uO2 RF(uRI11uRI22)
R
uORF(uRI33u RI44uRI11u RI22)
(2) 双运放减法运算电路
uI3 R3 uI4 R4
RF
-∞ +
+
uI1 R1 uO1 RF uI2 R2
RF
-∞ +
+
uO1(R RF 3uI3R RF 4uI4) uO uO(R RF 1uI1R RF 2uI2R RF FuO)1
当 R1 = ,Rf = 0 时,
此时有 Auf 1
值得注意的是,电压跟随器反馈系数F=1,
反馈深度深,输入电阻高,输出电阻低, 常用作阻抗变换或缓冲级,
uI
RF
-∞ +
uO
+
同相比例运算电路有输入电阻高的特点,但输入共 模信号电压高,对集成运放的共模抑制比要求也高, 另一方面如果共模电压超过允许的数值,电路也无法 正常工作,
R1 i1
i1i2i3iF
uI2
R2 i2
RF iF
uI1uI2uI3uO
uI3
R3 i3 N - ∞
+
uO
R1 R2 R3 RF
实验7 集成乘法器混频器实验

仅供个人参考 不得用于商业用途 一、实验准备 1.做本实验时应具备的知识点:混频的概念、MC1496模拟相乘器、用模拟乘法器实现混频 2.做本实验时所用到的仪器:集成乘法器混频模块、LC振荡与射随放大模块、高频信号源、双踪示波器 二、实验目的 1. 了解集成混频器的工作原理,掌握用MC1496来实现混频的方法; For personal use only in study and research; not for commercial use
2. 了解混频器的寄生干扰。 三、实验内容 1. 用示波器观察输入输出波形; 2. 用频率计测量混频器输入输出频率; 3. 用示波器观察输入波形为调幅波时的输出波形。 四、基本原理 混频器的功能是将载波为fs(高频)的已调波信号不失真地变换为另一载频fi (固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535-1605KHZ的已调波信号变为中心频率为465KHZ的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器,外差频率计等。混频器的电路模型如图 7-1所示。
混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号,并与输入信号Us经混频器后所产生的差频信号经带通滤波器滤出。目前,高质量的通信接收机广泛采用二极管环形混频器和由差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器,本实验采用集成模拟相乘器作混频电路实验。 图7-2是用MC1496构成的混频器,本振电压UL(频率为(8.8MHZ)从乘法器的一个输入端(10脚)输入,信号电压Vs(频率为6.3MHZ)从乘法器的另一个输入端(1脚)输入,混频后的中频(Fi=FL-Fs)信号由乘法器的输出端(6脚)输出。输出端的带通滤波器必须调谐在中频Fi上,本实验的中频为Fi=FL-Fs=8.8MHZ-6.3MHZ=2.5MHZ。
《模拟乘法器》课件

# 模拟乘法器 本课程将介绍模拟乘法器的原理及其应用。
模拟乘法器的定义
பைடு நூலகம்
作用
模拟乘法器用于实现模拟 信号的乘法运算,将不同 信号相乘得到新的信号。
原理
模拟乘法器基于电子元件 的特性,通过电压或电流 乘法进行运算。
分类
模拟乘法器可以根据不同 的实现方式和应用场景进 行分类。
模拟乘法器的应用
电子测量中的应用
模拟乘法器在测量仪器中用于信号放大和校正,提高测量精度。
通信系统中的应用
模拟乘法器在通信系统中用于信号调制、解调和频谱分析。
音频系统中的应用
模拟乘法器在音频系统中用于音频效果处理和音频信号放大。
模拟乘法器的实现
电路实现
模拟乘法器可以通过电路设计和集成电路制 造来实现。
软件实现
模拟乘法器也可以通过软件算法来实现,例 如在数字信号处理中。
2 应用前景
模拟乘法器在未来将继续发挥重要作用,随着科技的发展将有更广泛的应用。
参考文献
1. 2. 3.
Author 1. Title 1. Publisher 1. Author 2. Title 2. Publisher 2. Author 3. Title 3. Publisher 3.
模拟乘法器的应用案例
电子秤上的应用
模拟乘法器在电子秤中用于 测量物体的重量并进行计算。
无线电通信系统中 的应用
模拟乘法器在无线电通信系 统中用于信号调制和解调, 实现高质量的通信。
音频放大器中的应 用
模拟乘法器在音频放大器中 用于调节音量和音频效果的 处理。
总结
1 优点和不足
模拟乘法器的优点包括快速响应和高精度,但也存在精度损失和成本较高的不足。
乘法器及其应用电路
乘法器是反相型,ui≥0。
仅介绍几种基本运算电路。
1. 乘方运算
a) ui
K
uo
uo= Kui2
b) ui
K
K
uo
uo= Kui3
第六章 集成运算放大器及其应用
2. 除法运算
由反相输入端得
ui1 u2
R1
R2
由乘法器 u2= Kuoui2
uo
R2 KR1
ui1 ui2
为保证引入负反馈:
u2 K
R2
ui1
R1
Rp
− +
+
第六章 集成运算放大器及其应用
乘法器及其应用电路
模拟乘法器是一种完成两个模拟信号相乘作用的电
子器件。电路符号为
输入和输出之间的关系:
uo Kuxuy
ux uy
K
uo
其中K为乘法器的比例系数或标度系数。 当K>0时,为同相乘法器, K<0时,为反相乘法器。
第六章 集成运算放大器及其应用
利用模拟乘法器和集成运放相组合,通过各种不同的外 接电路,可组成乘方、除法及开方等运算电路,还可组成各 种函数发生器、调制解调器和锁相环电路等。
ui2 uo
若乘法器为同相型,则ui2≥0。ui1可正可负,故此电路为二 象限的除法器。
第六章 集成运算放大器及其应用
3. 开方运算
由反相输入端得 ui u2
R1
R2
u2 K
R2
由乘法器 u2 Kuo2
ui
R1
−
uo R2 KR1ui NhomakorabeaRp
+ +
开方运算电路
一、设计任务与要求。
1 •用模拟乘法器设计一个开方运算电路;2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(土12V);二、方案设计与论证根据设计要求,即要设计出一个可以把输入的电压Ui进行开方运算后,成输出电压Uo输出的电路,可以通过利用模拟乘法器集成块和集成块UA741来实现这一功能。
并且各个芯片的电源可用直流电源提供。
方案一、1、直流电源部分电路可把220V的交流电变成+12V和-12V的直流电:开方运算电路D5D1占1N4007I D3 古1N4007丄C13.3mFV1 3D2▲ 1N400710D4 C23.3mFEC9220nFC5470nFC6470nFU4LM7912CTD61N4007U3LM7812CT_ CIO 半220nFC7220uFC8220uFQ1k4R11L<?U1LED_GREEN_RATED壮殳U E D_GREEN_RATED6R21kQ2、开方运算电路部分零的值)进行开方运算成输出电U。
-12V方案二、1、直流电源部分电路可把220V 的交流电变成+12V 和-12V 的直流电:1N4007U4 LM7912CTD62、开方运算电路部分电路可以把输入的电压 Vx1(可以是正值)进行开方运算成输出电压 Vo :V1 3 D2 占 1N4007 10D4 牛 1N4007 二二C1 C9C10 LINE VREG VOLTAGEC5 C2 ±3.3mF $220nFCOMMON C7 斗 470nF 牛 220uFC6 470nFVOLTAGVREG LINE. _C8 220uF4R1 :1kQRATEDRATEDR2 1kQD5220 Vrms 50 Hz 0°8D1 1N4007TS_PQ4_10D31N4007斗 3.3口尸 *220nFU1LED GREEN U2LED_GREEN1N40071即先通过一个集成块UA741的作用将原来的正电压Vx1变成负电压Vol再输入到后面的模拟乘法器中,从而实现所要的效果。
幅度调制及解调实验2
幅度调制及解调实验一、实验目的1、理解幅度调制与检波的原理;2、掌握用集成乘法器构成调幅与检波电路的方法。
二、实验原理实验电路图如图2-2所示调幅就是用低频调制信号去控制高频载波信号的幅度,使高频载波信号的振幅按调制信号变化。
而检波则是从调幅波中取出低频信号。
振幅调制信号按其不同频谱结构分为普通调幅(AM )信号,抑制载波的双边带调制(DSB )信号,单边带调制(SSB )信号。
此实验主要涉及普通调幅(AM )及检波原理。
三、实验设备1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器 四、实验内容及步骤1、“测控电路二”实验挂箱接入12V ±直流电源;2.调幅波的观察(1)把“U12信号产生单元”电源开关拨到“开”方向,调节此单元的电位器(电位器W1调节信号幅度,电位器W2调节信号频率),使之输出频率为Z 3KH .1、幅值为P P 1V -的正弦波信号,接入“U1调幅单元”的调制波输入端;(2)调节实验屏上的函数信号发生器,使之输出频率为Z 100KH 、幅值为P P 4.0V -的正弦波信号,接入“U1调幅单元”的载波输入端。
0tUs图2-1 普通调幅(AM )波波形 (3)“U1调幅单元”的输出端接入示波器CH1,调节“U1调幅单元”的电位器W ,在示波器上观测到如图2-1所示的普通调幅(AM )波。
3.解调波的观察(1)在保持调幅波的基础上,将“U1调幅单元”的输出端接入“U2解调单元”的调幅波输入端,把输入“U1调幅单元”的载波信号接入“U2解调单元” 载波输入端; (2)“U2解调单元”的输出端接入虚拟示波器的CH2,调节“U2解调单元“的电位器W1,观测到解调信号。
五、实验注意事项1、实验挂箱中的直流电源正负极切忌接反,否则就会烧坏实验箱上的集成芯片。
2、为了得到更好的实验效果,实验时,外加信号的幅度不宜过大,请按照“实验内容及步骤”说明部分做实验。
8101423145612MC1496C20.1u FR5750R6750R71K R81KR251R11KC30.1u FR41KR31K R103.3KR113.3KC50.1u FR96.8KW147K-8V+12V132V VGNDINOUT 79L08-12V8101423145612MC1496C10.1u FC20.1u FR5910R6910R71KR81KC40.1u FR251R11KC30.1u FR41KR31K R103.3KR113.3KC60.01uF R96.8KW147K+12VR1310KC50.01uFR1210KR1451K R16200KR17200KR1551K3261574U?TL081+VCC -VEE0.33uF0.1u F调制信号输入载波输入C?10u F载波输入调幅波输出调幅波输入解调输出图2-2 幅度调制与解调单元六、思考题集成乘法器调幅及解调电路有何特点?试简述它们的工作原理。
集成乘法器幅度调制电路实验
实验9 集成乘法器幅度调制电路—、实验准备1. 做本实验时应具备的知识点: 幅度调制用模拟乘法器实现幅度调制 MC1496四象限模拟相乘器 2.做本实验时所用到的仪器:集成乘法器幅度调制电路模块,高频信号源,双踪示波器,万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用MC1496来实现AM 和DSB 的方法,并研究已调波与调制信号、载波之间关系; 3.掌握在示波器上测量调幅系数的方法; 4.通过实验中波形的变换,学会分析实验现象。
三、实验内容1.模拟相乘调幅器的输入失调电 压调节、直流调制特性测量。
2.用示波器观察DSB 波形。
3.用示波器观察AM 波形,测量调幅系数。
4.用示波器观察调制信号为方波时的调幅波。
四、基本原理 1.MC1496简介MC1496是一种四象限模拟相乘器,其内部电路以及用作振幅调制器时的外部连接如图9-1所示。
由图可见,电路中采用了以反极性方式连接的两组差分对(T 1~T 4),且这两组差分对的恒流源管(T 5、T 6)又组成了一个差分对,因而亦称为双差分对模拟相乘器。
其典型用法是:⑻、⑽脚间接一路输入(称为上输入v 1),⑴、⑷脚间接另一路输入(称为下输入v 2),⑹、⑿脚分别经由集电极电阻R c 接到正电源+12V 上,并从⑹、⑿脚间取输出v o 。
⑵、⑶脚间接负反馈电阻R t 。
⑸脚到地之间接电阻R B ,它决定了恒流源电流I 7、I 8的数值,典型值为6.8k Ω。
⒁脚接负电源-8V 。
⑺、⑼、⑾、⒀脚悬空不用。
由于两路输入v 1、v 2的极性皆可取正或负,因而称之为四象限模拟相乘器。
可以证明:122th 2co t T R v v v R v ⎛⎫=⋅ ⎪⎝⎭,因而,仅当上输入满足v 1≤V T (26mV)时,方有:12co t TR v v v R v =⋅,才是真正的模拟相乘器。
本实验即为此例。
图9-1 MC1496内部电路及外部连接2.1496组成的调幅器用1496组成的调幅器实验电路如图9-2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低频信号UΩ
高频载波信号分别为
式中,F为输入信号频率, 为载波频率,设两者波形的初相角均为零。将 和 分别输入模拟乘法器的X和Y输入端, 为一固定的直流电压,要求 ≥ ,一般选取 为1V。由此可得输入端总的输入电压为
= +
因此,模拟乘法器的输出电压
U。=K = ( + )
= K
= K
其中Ma为调幅系数,由设计要求已知调幅系数为0.5,UΩm=500mv ,F=1.5KHz; =100mv.的比例常数。 称为包络函数,它反映了 的变化规律。因此,调幅波的数学表达式为
根据乘法运算的代数性质,乘法器有四个工作区域,由它的两个输入电压的极性来确定,并可用X-Y平面中的四个象限表示。能够适应两个输入电压四种极性组合的乘法器称为四象限乘法器;若只对一个输入电压能适应正、负极性,而对另一个输入电压只能适应一种极性,则称为二象限乘法器;若对两个输入电压都只能适应一种极性,则称为单象限乘法器。
2.设计方案论证
2.1乘法器常规调幅的设计作用
随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。用集成模拟乘法器可以构成性能优良的调幅和解调电路,其电路元件参数通常采用器件典型应用参数值。作调幅时,高频信号加到输入端,低频信号加到Y输入端;作解调时,同步信号加到X输入端,已调信号加到Y输入端。调试时,首先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。集成模拟乘法器是实现两个模拟信号相乘的器件,它广泛用于乘法、除法、乘方和开方等模拟运算,同时也广泛用于信息传输系统作为调幅、解调、混频、鉴相和自动增益控制电路,是一种通用性很强的非线性电子器件,目前已有多种形式、多品种的单片集成电路,同时它也是现代一些专用模拟集成系统中的重要单元。
U。=K =K0.5 cos2π15000t .0.1cos2π10000t
=0.25(cos3000πt+cos20000πt)
根据要求对输出波形放大10倍,所以K取10,所以
U。=0.25[ (23000πt)+ (17000πt)]
对于其它参数根据资料查询可知K=
R3的取值可由下面方程决定
0-(-VEE)=(3β+β )R3+Vbe+(1+β)IbR2
图1乘法器框图
作调幅时,高频信号加到X输入端,低频信号加到Y输入端;作解调时,同步信号加到X输入端,已调信号加到Y输入端,本实验电路中将载波信号加在X端,调制信号加在Y端。调试时,先检查器件各管脚直流电位应符合要求,其次调节调零电路,使电路达到平衡。还需注意:(1)Y端输入信号幅度不应超过允许的线性范围,其大小与反馈电阻RY有关,否则输出波形会产生严重失真;(2)X端输入信号可采用小信号(小于26mV)或者大信号(大于260mV),采用大信号可获得较大的调幅或解凋信号输出,本实验给出的是大信号。信息传输系统中,调制是用以实现电信号远距离传输及信道复用的重要手段。由于低频信号不能实现远距离传输,若将它装载在高频信号上,就可以进行远距离传输,当使用不同频率的高频信号,可以避免各种信号之间的干扰,实现多路复用。
模拟乘法器
1.课程设计目的
随着电子技术的发展,集成模拟乘法器应用也越来越广泛,它不仅应用于模拟量的运算,还广泛应用于通信、测量仪表、自动控制等科学技术领域。
在本次课程设计实验中,通过对高频电子线路的振幅调制与解调,模拟乘法器的学习设计出由双差分对乘法器为主构成的乘法器常规调幅电路,通过对电路的设计,参数的确定,设计出了方案,按照设计的电路图在Multisim仿真软件中画出具体的仿真电路图并进行了调试,观察实验结果并与课题要求的性能指标做了对比,最后对实验结果经行了分析总结。
2.2乘法器常规调幅设计
调制就是指携带有用信息的调制信号去控制高频载波信号解调是调制的逆过程,将有用的低频信号从高频载波中还原出来。调幅过程是非线性变换的过程。
普通调幅是用需传送的信息(调制信号) 去控制高频载波 的振幅,使其随调制信号 的规律而变化。
调幅时,载波的频率和相位不变,而振幅将随调制信号线性变化。若载波信号为 ,调制信号为 。则普通调幅波的振幅为:
差分放大器是基本放大电路之一,由于它具有抑制零点漂移的优异性能,因此得到广泛的应用,并成为集成电路中重要的基本单元电路,常作为集成运算放大器的输入级。本实验采用双差分对相乘器设计,其电路如下图
图2双差分放大器电路
差分放大电路不仅具有放大作用,还具有乘法功能,所以它成为变跨导单片集成模拟乘法器的基本单元电路。双差分电路由两对差分放大器组成第一对差分放大器Q11,Q9管,第二对差分放大器Q10,Q13管,Q14和1Q8分别是两对差分放大器的恒流源他们的输入电压为差模输入电压,输出集电极交叉连接,同时Q14,Q18又组成一对差分放大管。本实验恒流源Io/2用Q17,Q19实现,二极管与电阻500Ω构成Q17与Q19的偏置电路,R7为反馈电阻,用于扩展输入信号的范围,计算电路参数,在Multism10中画出仿真电路图正确输入载波信号和调制信号即可进行设计电路仿真。直流电源采用正负双极电源VCC=|VEE|,差分放大电路都具有放大差分信号,抑制共模信号的作用,实验设计电路中设计的输入信号是差模信号,5和8线输入的是输入信号,由于其幅值很小,在实际电路中采用负反馈技术来扩展它的动态范围R7为增益电阻,在这里起到负反馈的作用流过R7的共模电流为0,给每管的负载为R7的一半,R4,R5 R6组成单端输出,利用这三个电阻的负反馈作用抑制共模信号,在设计电路中对差模视为短路,R3的作用是给内部差分对管提供恒流源的外接阻抗。