人教版高一物理必修一 第一章 微专题10 追击相遇问题

合集下载

高中物理 追及与相遇问题课件 新人教版必修1

高中物理 追及与相遇问题课件 新人教版必修1

例三、汽车以10米每秒在平直公路 上行驶,突然发现前面有一自行车 以4米每秒的速度同向匀速行驶。 汽车立即关闭油门做加速度大小为 6米每二次方秒的匀减速直线运动, 汽车恰好不碰上自行车。求关闭油 门时,汽车离自行距S0=25米处有一人,当车以1 米每二次方秒启动前进时,人以6 米每秒的速度匀速追车。能否追 上?若追不上,人车最小距离多 大?
追及与相遇问题
追及与相遇问题特点
1.相遇时,必处于同一位置;两物体运动时间、位移 必存在一定关系。
2.当V追>V物时,△X减小,追上。 当V追<V物时,△X增大,追不上。 当V追=V物时,△X不变,追不上。
3.当V追=V物时为临界条件。
解题思路
❖ 分析两物体运动过程,画出两物体运动示意 图。
❖ 根据两物体运动性质,分别列出两物体运动 位移方程,注意要反映出时间关系。
遇上两次;△=0,遇上一次;△<0,遇不 上。 ❖ 相对运动法:以两物体之一为参考系。
课堂练习
例一、甲乙两车同时同地同向运动。 甲以10米每秒匀速运动,乙以2米 每二次方秒的加速度由静止启动。 求;1.经多长时间乙车追上甲车?2. 追上前经多长时间两车相距最远?
例二、已知甲以20米每秒匀速运动。 乙在甲行驶200米远时开始从静止 以2米每二次方秒的加速度追甲。 求乙车追上甲车前两者相差最大距 离?
❖ 由运动示意图找出两物体位移间的关联方程; ❖ 联立方程求解。
注意问题
1.抓住 一个条件:速度相等时满足的临界条件 两个关系:时间关系和位移关系
2.若被追物做匀减速运动,注意追上前该物是否停止 运动。
3.抓住关键字眼:‘恰好’、‘恰好不’、‘最多’、 ‘至少’等
解决方法
❖ 分析法:临界条件(速度相等时) ❖ 判别式法:设追上时间为t,列方程。△>0,

高中物理必修一_追击和相遇问题

高中物理必修一_追击和相遇问题

由A、B 速度关系: v1 at v2
由A、B位移关系:v1t

1 2
at 2

v2t

x0
a (v1 v2 )2 (20 10)2 m/s2 0.5m/s2
2x0
2 100
则a 0.5m / s2
方法二:图象法
1 2
(20 10)t0
100
v/ms-1
20
对汽车由公式 vt v0 at
t vt v0 0 (6) s 2s
a
3
以自行车为 参照物,公式中的 各个量都应是相
vt2 v02 2as
x vt2 v02 0 (6)2 m 6m
2a
23
对于自行车的物 理量.注意物理量 的正负号.
问:xm=-6m中负号表示什么意思?
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度
x汽
相等时,两车之间的距离最大。设
经时间t两车之间的距离最大。则
△x
v汽 at v自
t v自 6 s 2s
x自
xm

x自
a
x汽
3

v自t

1 2
at 2

6 2m

1 2
3
22 m

6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三
角形的面积之差最大。
v/ms-1
V-t图像的斜率表示物体的加速度
汽车
6 tan 3
t0
t0 2s

高一物理追及相遇问题

高一物理追及相遇问题

高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。

解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。

一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。

解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。

定义变量设被追物体为A,追赶物体为B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。

解决相遇问题的关键是找出两个物体之间的位移和速度关系。

定义变量设相遇的两个物体分别为A、B。

设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。

建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。

分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。

如果A、B不能相遇,还可以求出它们之间的距离。

专题追击相遇问题课件高一上学期物理人教版

专题追击相遇问题课件高一上学期物理人教版

【解析】v-t图像的斜率表示物体的加速度,两图
v(m/s)
汽车
线相交时,说明二者速度相等,且对应的时间为:
t v 8 0 4s a2
8
Δx
自行车
此时,两图线与t轴所围面积差值(相同时间位移只差):0
t=4s t(s)
x
x2
x1
8
4
1 2
4
8
16m
此数值刚好等于二者初始距离16m
说明二者此时距离最小,大小为零,即相遇。
两个关系 • 时间关系:同时运动;先后运动 • 位移关系:同一地点出发;有初始距离
1. 匀加速追匀速 (v0加 < v匀)

x0

甲乙两物体同时ห้องสมุดไป่ตู้右运动;
甲做匀加速直线运动,乙做匀速直线运动;
思考:甲乙之间的距离如何变化?当两者速度相同时距离有何特点?
v v乙
Δx v甲
0
甲 (1)0-t0时间,乙比甲速度大,故甲乙距离越来 乙 越远;
v2
v 1
(1)t=t0时,若 x x0
恰好追上,甲乙相遇1次;
(2)t=t0时,若 x x0
追不上,有最近距离;
(3)t=t0时,若 x x0
t = t0时,甲乙速度相等,甲比乙多走了x 能追上,甲乙相遇2次;
追击相遇问题的本质: 两个物体在同一时刻到达同一位置
两个关系
• 时间关系:同时运动;先后运动 • 位移关系:同一地点出发;有初始距离 临界条件 速度相等;它往往是物体间能否追上或距离最 大、最小的临界条件,也是分析判断问题的切 入点;
(4)乙能否追上甲?
均能追上,且都只相遇 一次
2. 匀减速追匀速 (v0减 > v匀)

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1.汽车甲沿着平直的公路以速度做匀速直线运动.当它路过某处的同时,该处有一辆汽车乙开始做初速为0的匀加速运动去追赶甲车.根据上述的已知条件: ()A.可求出乙车从开始起动到追上甲车时所用的时间.B.可求出乙车追上甲车时乙车所走的路程.C.可求出乙车追上甲车时乙车的速度.D.不能求出上述三者中任何一个.【答案】C【解析】甲匀速直线运动有,乙车匀加速有,而且乙车平均速度等于,所以有乙车追上甲车时有,从而可以计算乙车追上甲车时乙车的速度选项C对。

但是不知道乙车的加速度所以无法计算时间和路程选项ABD错【考点】追击相遇问题2.(本题10分)在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在距离停车线多远处汽车追上自行车?追到时汽车的速度是多大?【答案】(1)10s 25m (2)100m 10m/s【解析】(1) 在汽车速度没有达到自行车速度之前,两者的距离是越来越大,当两者速度相等时,两车相距最远,当汽车速度大于自行车速度时,两者距离逐渐减小.设从停车线启动到相距最远所用时间为t,汽车做初速度为0的匀加速直线运动,所以代入数据解得:最远距离(2)汽车追上自行车时,它们相对于停车线的位移相等,设汽车追上自行车所用时间为t′,此时即解得:此时距停车线距离此时汽车速度为:【考点】本题考查追及相遇问题,同时考查匀变速直线运动规律的综合应用.3.甲车以加速度1m/s2由静止开始作匀加速直线运动,乙车落后2s在同一地点由静止出发,以加速度4m/s2作加速直线运动,两车运动方向一致,则乙车追上甲车所用的时间为()A.2s B.3s C.4s D.6s【答案】A【解析】由题意可知,两车机遇时的运动位移相等,运动时间,由运动公式得,,代入数据解得:,故只有A正确。

【考点】追及相遇问题4.如图所示,一辆长为12 m的客车沿平直公路以8.0 m/s的速度匀速向北行驶,一辆长为10 m的货车由静止开始以2.0 m/s2的加速度由北向南匀加速行驶,已知货车刚启动时两车相距180 m,则两车错车所用的时间为A.0.4 s B.0.6 sC.0.8 s D.1.2 s【答案】C时两车开始错车,则有其中,【解析】设货车启动后经过时间t1,在数值上有解之可得,设货车从开始运动到两车错车结束所用时间为t2其中,解得故两车错车时间故选C【考点】考查了追击相遇问题点评:本题属于相遇问题,关键抓住位移关系,运用运动学公式灵活求解.5.某汽车以10 m/s的速度匀速前进,若驾驶员立即刹车,汽车做匀减速运动,经过40 s汽车停止运动.该汽车以10 m/s的速度匀速前进时,突然驾驶员发现正前方60 m处有一辆自行车正以4 m/s的速度与汽车同方向匀速行驶,驾驶员立即刹车做匀减速运动,试求:(1)汽车做匀减速运动的加速度大小a;;(2)汽车做匀减速运动过程中所行驶的距离S1(3)通过计算说明汽车与自行车是否会发生相撞.【答案】(1)(2)(3),所以会发生相撞【解析】(1)由:得:(2)由运动学公式得:(3)当汽车速度减为:时,经历时间:此过程中:汽车前进的位移:自行车前进的位移:由于:所以会发生相撞【考点】追及问题点评:分析追及问题时,一定要注意抓住一个条件、两个关系:①一个条件是两物体速度相等时满足的临界条件,如两物体的距离是最大还是最小,是否恰好追上等.②两个关系是时间关系和位移关系.时间关系是指两物体运动时间是否相等,两物体是同时运动还是一先一后等;而位移关系是指两物体同地运动还是一前一后运动等,其中通过画运动示意图找到两物体间的位移关系是解题的突破口,因此在学习中一定要养成画草图分析问题的良好习惯。

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析

高一物理追击相遇问题试题答案及解析1. A与B两个质点向同一方向运动,A做初速度为零的匀加速直线运动,B做匀速直线运动.开始计时时,A、B位于同一位置,则当它们再次位于同一位置时 ()A.两质点速度相等B.A与B在这段时间内的平均速度相等C.A的瞬时速度是B的2倍D.A与B的位移相同【答案】BCD【解析】设A的加速度为a,B的速度为v,经过时间t,A、B再次位于同一位置,由题意可得,,故此时A的速度,所以A错误;C正确;由题意知A、B在t时间内位移相同,根据平均速度的定义式,可知A与B在这段时间内的平均速度相等,所以B正确;D正确。

【考点】本题考查追击相遇问题,意在考查学生的分析能力。

2.甲乙两车在一平直道路上同向运动,其v-t图象如右图所示,图中△OPQ和△OQT的面积分别为x1和x2(x2>x1),初始时,甲车在乙车前方x处 ( )A.若x0=x1+x2,两车能相遇B.若x0<x1,两车相遇2次C.若x0=x1,两车相遇1次D.若x0=x2,两车相遇1次【答案】BC【解析】由图线可知:在T时间内,甲车前进了,乙车前进了;A、若,即,两车不会相遇。

若,满足,因此两车不会相遇;错误B、若,即,在T时刻之前,乙车会超过甲车,但甲车速度增加的快,所以甲车还会超过乙车,则两车会相遇2次;正确CD、若,即两车只能相遇一次;C正确故选BC【考点】追及问题点评:研究v-t图象时要注意观察:一点,注意横纵坐标的含义;二线,注意斜率的意义;三面,v-t图象中图形与时间轴围成的面积为这段时间内物体通过的位移,研究追及问题最好画出运动轨迹示意图。

3.经检测,火车甲以u甲=20m/s的速度在平直的铁轨上行驶,紧急制动后,需经过200m才能停下。

某次夜间,火车甲以20m/s的速度在平直的铁轨上行驶,突然发现前方仅125m处有一火车乙正以u乙=4m/s的速度同向匀速行驶,司机甲立即制动刹车。

关于能否发生撞车事故,某同学的解答过程是:“设火车甲制动位移为s1=200m所用时间为t,火车乙在这段时间内的位移为s2你认为该同学的结论是否正确?如果正确,请定性说明理由;如果不正确,请说明理由,并求出正确结果【答案】会相撞【解析】不正确,因为火车相撞时,速度不一定为零,紧急制动后,需经过200m才能停下。

高一物理追击与相遇问题

高一物理追击与相遇问题

中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三
角形的面积之差最大。
v/ms-1
v-t图像的斜率表示物体的加速度
6 tan 3
t0
t0 2s
当t=2s时两车的距离最大
6
o α t0
汽车
自 行
车 t/s
xm
1 2 6m 6m 2
动态分析随着时间的推移,矩 形面积(自行车的位移)与三角形面
运动。要使两车不相撞,a应满足什么条件?
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
由A、B位移关系:v1t
1 2
at 2
v2t
x0
a (v1 v2 )2 (20 10)2 m/s2 0.5m/s2
2x0
2 100
则a 0.5m / s2
第一章 匀变速直线运动
追击和相遇问题
一、几种典型追击问题
v


甲的初速度大于乙的速度 o
t
t0
甲一定能追上乙,v甲=v乙的时刻为甲、乙有
最大距离的时刻。
例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽 车以3m/s2的加速度开始加速行驶,恰在这时一辆自 行车以6m/s的速度匀速驶来,从后边超过汽车。试 求:汽车从路口开动后,在追上自行车之前经过多长 时间两车相距最远?此时距离是多少?
vt2 v02 2ax0
a vt2 v02 0 102 m / s2 0.5m / s2 2x0 2100
a 0.5m / s2
以B为参照物,公式中的各个量都应是相对于B的物理量. 注意物理量的正负号。
方法四:二次
v2t x0

高一物理必修一《追及与相遇问题》(课件)共29张

高一物理必修一《追及与相遇问题》(课件)共29张

匀速直线运动中的追及问题
总结词
速度相等的条件下的追及问题
详细描述
当两个物体在匀速直线运动中发生追及,它们之间的相对速度是关键。当速度相 等时,追及问题达到临界状态,此时需要考虑物体的初始位置和速度。
匀加速直线运动中的追及问题
总结词
加速度相等的条件下的追及问题
详细描述
在匀加速直线运动中,两个物体之间的相对加速度决定了追及的难易程度。当加速度相等时,需要综合考虑物体 的初始速度和加速度,以及追及过程中的速度和距离。
速度恒定,位移公式为 $s = v times t$。
总结词
相对速度为零,即两物 体相对静止,无相对位
移。
总结词
两物体在同一直线上运 动,考虑相对位移和相
对速度。
匀加速直线运动中的相遇问题
01
02
03
04
总结词
加速度恒定,速度和位移随时 间变化,计算较复杂。
总结词
使用匀加速直线运动的位移公 式 $s = frac{1}{2}at^{2}$ 和
THANKS
感谢观看
速度公式 $v = at$。
总结词
考虑相对加速度和相对速度, 计算相对位移和相对时间。
总结词
考虑加速度的方向和大小,判 断两物体的相对位置和相对速
度。
匀减速直线运动中的相遇问题
总结词
总结词
加速度恒定但方向与初速度相反,速度逐 渐减小至零,计算较复杂。
使用匀减速直线运动的位移公式 $s = frac{v_{0}^{2}}{2a}$ 和速度公式 $v = v_{0} - at$。
详细描述
行人避让问题需要考虑行人的速度、车辆的速度以及车辆与行人之间的距离。通过分析 这些因素,可以计算出行人需要避让车辆的时间和距离。解决这类问题时,需要注意行
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[方法点拨](1)x-t图象中两图象交点表示相遇、v-t图象在已知出发点的前提下,可由图象面积判断相距最远、最近及相遇.(2)“慢追快”型(匀加速追匀速、匀速追匀减速、匀加速追匀减速):两者间距先增加,速度相等时达到最大,后逐渐减小,相遇一次.追匀减速运动的物体时要注意判断追上时是否已停下.(3)“快追慢”型(匀减速追匀速、匀速追匀加速、匀减速追匀加速):两者间距先减小,速度相等时相距最近,此时追上是“恰好不相撞”.此时还没追上就追不上了.若在此之前追上,则此后还会相遇一次.一、“慢追快”型1.如图1所示,A、B两物体相距x=7 m,物体A以v A=4 m/s的速度向右匀速运动,而物体B此时的速度v B=10 m/s,只在摩擦力作用下向右做匀减速运动,加速度a=-2 m/s2,那么物体A追上物体B所用的时间为()图1A.7 s B.8 s C.9 s D.10 s2.(2018·四川成都第七中学月考)自行车和汽车同时驶过平直公路上的同一地点,此后其运动的v-t 图象如图2所示,自行车在t=50 s时追上汽车,则()图2A.汽车的位移为100 mB.汽车的运动时间为20 sC.汽车的加速度大小为0.25 m/s2D.汽车停止运动时,二者间距最大3.(2017·福建龙岩质检)如图3所示,直线a和曲线b分别是在平行的平直公路上行驶的汽车a和b的速度—时间(v-t)图线,在t1时刻两车刚好在同一位置(并排行驶),在t1到t3这段时间内,下列说法正确的是()图3A.在t2时刻,两车相距最远B.在t3时刻,两车相距最远C.a车加速度均匀增大D.b车加速度先增大后减小4.(多选)(2017·江西新余一中第七次模拟)甲、乙两物体同时从同一位置出发沿同一直线运动,它们的v-t图象如图4所示,则下列判断正确的是()图4A.甲做匀速直线运动,乙先做匀加速直线运动然后做匀减速直线运动B.两物体两次相遇的时刻分别是1 s末和4 s末C.乙在6 s末重新回到出发点D.第2 s末乙物体的运动方向不变5.(2017·河北石家庄调研)甲、乙两车在平直公路上比赛,某一时刻,乙车在甲车前方L1=11 m处,乙车速度v乙=60 m/s,甲车速度v甲=50 m/s,此时乙车离终点线尚有L2=600 m,如图5所示.若甲车加速运动,加速度a=2 m/s2,乙车速度不变,不计车长.则:图5(1)经过多长时间甲、乙两车间的距离最大,最大距离是多少?(2)到达终点时甲车能否超过乙车?二、“快追慢”型6.(2018·山东烟台期中)大雾天发生交通事故的概率比平常要高出几倍甚至几十倍,保证雾中行车安全显得尤为重要.在雾天的平直公路上,甲、乙两汽车同向匀速行驶,乙在前,甲在后.某时刻两车司机听到警笛提示,同时开始刹车,结果两车刚好没有发生碰撞.如图6所示为两车刹车后做匀减速运动的v-t图象,以下分析正确的是()图6A .甲车刹车的加速度的大小为0.5 m/s 2B .两车开始刹车时的距离为100 mC .两车刹车后间距一直在减小D .两车都停下来后相距25 m7.甲、乙两车在公路上沿同一方向做直线运动,它们的v -t 图象如图7所示.两图象在t =t 1时刻相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t =0时刻,乙车在甲车前面,相距为d .已知此后两车相遇两次,且第1次相遇的时刻为t ′,则下面4组t ′和d 的组合中可能的是( )图7A .t ′=t 1,d =SB .t ′=12t 1,d =12SC .t ′=12t 1,d =34SD .t ′=14t 1,d =34S8.(2018·广东东莞模拟) a 、b 两车在平直公路上沿同方向行驶,其v -t 图象如图8所示,在t =0时,b 车在a 车前方x 0处,在0~t 1时间内,a 车的位移为x ,下列说法正确的是( )图8A .若a 、b 在t 1时刻相遇,则x 0=x3B .若a 、b 在t 12时刻相遇,则下次相遇时刻为2t 1C .若a 、b 在t 12时刻相遇,则x 0=x2D .若a 、b 在t 1时刻相遇,则下次相遇时刻为2t 1 三、其它图象问题9.(多选)(2017·湖南怀化二模)假设高速公路上甲、乙两车在同一车道上同向行驶.甲车在前,乙车在后,速度均为v 0=30 m/s ,距离s 0=100 m .t =0时刻甲车遇紧急情况后,甲、乙两车的加速度随时间变化如图9甲、乙所示.取运动方向为正方向.下面说法正确的是( )图9A.t=3 s时两车相距最近B.0~9 s内两车位移之差为45 mC.t=6 s时两车距离最近为10 mD.两车在0~9 s内会相撞10.(2017·河南郑州期中)某同学以校门口为原点,正东方向为正方向建立坐标系,记录了甲、乙两位同学的位置-时间(x-t)图线,如图10所示,下列说法中正确的是()图10A.在t1时刻,甲的速度为零,乙的速度不为零B.在t2时刻,甲、乙速度可能相同C.在t2时刻,甲、乙两同学相遇D.在t3时刻,乙的速度为零、加速度不为零11.(多选)(2017·湖北省部新大纲调研)两辆汽车A、B从同一地点同时出发沿同一方向做直线运动,它们的速度的平方(v2)随位置(x)的变化图象如图11所示,下列判断正确的是()图11A.汽车A的加速度大小为4 m/s2B.汽车A、B在x=6 m处的速度大小为2 3 m/sC.汽车A、B在x=8 m处相遇D.汽车A、B在x=9 m处相遇12.甲、乙两车从同一地点沿相同方向由静止开始做直线运动,它们运动的加速度随时间变化的图象如图12所示.关于两车的运动情况,下列说法正确的是()图12A.在0~4 s内甲车做匀加速直线运动,乙车做匀减速直线运动B.在0~2 s内两车间距逐渐增大,2~4 s内两车间距逐渐减小C.在t=2 s时甲车速度为3 m/s,乙车速度为4.5 m/sD.在t=4 s时甲车恰好追上乙车答案精析1.B [B 物体减速到零所需的时间t =0-v B a =0-10-2 s =5 s在5 s 内A 物体的位移x A =v A t =4×5 m =20 m B 物体的位移x B =v B +02t =10+02×5 m =25 m则在5 s 时两物体相距Δx =x B +x -x A =(25+7-20) m =12 m 则A 追上B 所需的时间为t ′=t +Δx v A =5 s +124s =8 s .]2.C [在t =50 s 时,自行车位移x 1=4×50 m =200 m ,由于自行车追上汽车,所以汽车位移等于自行车位移,即汽车位移为200 m ,选项A 错误.由v -t 图象与t 轴围成的面积表示位移可知,汽车要运动40 s ,位移才能达到200 m ,由此可得汽车运动的加速度大小为a =0.25 m/s 2,选项B 错误,C 正确.两者速度相等时,间距最大,选项D 错误.]3.B [在t 1~t 3时间段内,b 车速度都小于a 车速度,所以在t 3时刻,两车相距最远,选项B 正确,选项A 错误.a 车做匀加速直线运动,a 车加速度不变,选项C 错误.根据速度-时间图象的斜率表示加速度可知,b 车加速度一直在增大,选项D 错误.] 4.AD5.(1)5 s 36 m (2)不能解析 (1)当甲、乙两车速度相等时,两车间的距离最大, 即v 甲+at 1=v 乙,得 t 1=v 乙-v 甲a =60-502 s =5 s.甲车位移x 甲=v 甲t 1+12at 12=275 m乙车位移x 乙=v 乙t 1=60×5 m =300 m 此时两车间的距离Δx =x 乙+L 1-x 甲=36 m. (2)甲车追上乙车时,位移关系为x 甲′=x 乙′+L 1 甲车位移x 甲′=v 甲t 2+12at 22乙车位移x 乙′=v 乙t 2 即v 甲t 2+12at 22=v 乙t 2+L 1代入数值并整理得t 22-10t 2-11=0, 解得t 2=-1 s(舍去)或t 2=11 s. 此时乙车位移x 乙′=v 乙t 2=660 m ,因x 乙′>L 2,故乙车已冲过终点线,即到达终点时甲车不能追上乙车.6.B7.C [如图所示,若第1次相遇的时刻t ′=t1,则相遇后v 乙>v 甲,两车不可能再次相遇,A 错误.若t ′=12t 1,则由v -t 图线与时间轴所围面积的意义及三角形相似的知识可知,t ″=32t 1时一定再次相遇,且图中阴影部分的面积即为原来的距离d ,所以d =34S ,B 错误,C 正确.同理,若t ′=14t 1,则t ″=74t 1时一定再次相遇,且d =716S ,D 错误.]8.C [由图可知a 车初速度等于2v0,在0~t 1时间内发生的位移为x ,则b 车的位移为x 3,若a 、b 在t 1时刻相遇,则x 0=x -x 3=23x ,A 错误;若a 、b 在t 12时刻相遇,则图中阴影部分为对应距离x 0,即x 0=34×23x =x2,由图象中的对称关系可知下次相遇时刻为t 1+t 12=32t 1,C 正确,B 错误;若a 、b 在t 1时刻相遇,之后v b >v a ,两车不可能再次相遇,D 错误.] 9.BC10.C [x -t 图线的斜率表示速度,所以在t 1时刻,甲的速度不为零,乙的速度为零,选项A 错误;在t 2时刻,甲、乙速度方向不相同,所以速度不可能相同,选项B 错误;在t 2时刻,甲、乙两同学在同一位置,所以两同学相遇,选项C 正确;在t 3时刻,乙的速度不为零,加速度无法判断,选项D 错误.] 11.BD12.C [在0~4 s 内,甲车做匀加速直线运动,而乙车做加速度逐渐减小的加速直线运动,选项A 错误;在a -t 图象中,图线与时间轴围成的面积等于物体的速度变化量,因两车的初速度为零,故面积的大小等于两车的速度大小,即t =2 s 时甲车速度为3 m/s ,乙车速度为4.5 m /s ,选项C 正确;两车从同一地点沿相同方向由静止开始运动,由a -t 图象可知,4 s 时两车的速度相等,此时两车的间距最大,选项B 、D 错误.]。

相关文档
最新文档