平面向量历年高考题汇编——难度高
平面向量经典难题

M O A B C N K O A B C N M B A CD 一、平面向量略难1. 已知平面向量α,β(α≠0,α≠β)满足|β|=1,且α与β–α的夹角为120°,则|α|的取值范围是 .2. 设向量a ,b ,c 满足|a |=|b |=1,a ·b= –21, a –c 与b –c 的夹角为60︒,则|c |的最大值等于 ( ) A .2 B .3 C .2 D .13. 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a –c )•(b –c )=0,则|c |的最大值是 ( )A .1B .2C .2D .224. 设a ,b ,c 是单位向量,且a ·b=0,则(a –c )·(b –c )的最小值为 ( ) A .–2 B .2–2 C .–1 D .1–25. 如图在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同两点M 、N ,若AB →=mAM → ,AC →=nAN → ,则mn 的最大值是 .6. 如图所示,在△ABC 中,AO 是BC 上的中线,K 为AO 上一点,且AO →=2AK →,过点K 的直线分别交直线AB 、AC于不同的两点M ,N ,若AB →=mAM → ,AC →=nAN → ,则m +n = .7.在△ABC 中,AC =2,BC =4,O 为△ABC 内的点,且OA →+2OB →+3OC →=0→,则OC →·(BA →+BC → )= .8.若非零向量,a b 满足+=a b b ,则 ( )A.2>2+a a b B.22<+a a b C.2>+2b a b D.22<+b a b9、(天津文理15) 如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD =则AD BC =__________.10. 【2010•天津文数】 如图,在ΔABC 中,AD AB ⊥,3BC =BD ,1AD =,则AC AD ⋅=( )A.23B.32 C.33D.311.(2010浙江文)(17)在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N 分别是线段OA 、OB 、OC 、OD 的中点,在APMC 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F ,设G 为满足向量OG OE OF =+的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不含边界)的概率为 。
高中数学平面向量(有难度含答案)

AM 2 .设 OA x , 0 x 2
OAOB OAOC OA OB OC 2OAOM
2 OA OM 2x 2 x 2 x2 2x
2 x
2 2
2
1
所以当 x
2
,即
OA
2 时,原式取得最小值为 1.
2
2
故选:C. 【点睛】
方法点睛:(1)向量求和经常利用平行四边形法则转化为中线的 2 倍; (2)利用向量三点共线,可以将向量的数量积转化为长度的乘积; (3)根据向量之间模的关系,二元换一元,转化为二次函数求最值即可. 11.B 【分析】
示 在 上的射影. 解:∵△ABC 是等腰三角形,CP 是∠ACB 的角平分线, ∴CP⊥AB,AP=BP= =3.
∵M 在 PC 上,∴ 在 上的射影为 BP=3.
即 BMBA =3. BA
故选 C.
考点:平面向量数量积的运算;平面向量的基本定理及其意义.
10.C
【分析】
根据向量求和的平行四边形法则可以得出 OA OB OA OC 2OA OM ,再利用向量的
点,且满足 = +λ(
+
)(λ>0),则 BMBA 的值为( )
BA
A.1 B.2 C.3 D.4
10. ABC 中, AB AC , M 是 BC 中点, O 是线段 AM 上任意一点,且
AB
AC
2
,则
OAOB
OAOC
的最小值为(
)
A.-2
B.2
C.-1
D.1
11.如图是由等边△ AIE 和等边△ KGC 构成的六角星,图中的 B , D , F , H , J ,
以点 O 为坐标原点, OD 为 x 轴, OA 为 y 轴建立平面直角坐标系,设等边三角形的边长为
平面向量历年考题汇编——难度高

数 学平面向量 平面向量的概念及其线性运算1.★★(2014·辽宁卷L) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是 ( )A .p ∨qB .p ∧qC .)()(q p ⌝∧⌝D .)(q p ⌝∨ 2.★★(·新课标全国卷ⅠL ) 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________.3.★★(2014·四川卷) 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 4. ★★ (2014·新课标全国卷ⅠW)设D 、E 、F 分别为△ABC 的三边BC 、CA 、AB 的中点,则=+FC EB ( )A . B.21 C. D. 215. ★★(2014福建W)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OD OC OB OA +++等于 ( )A .OM B. OM 2 C. OM 3 D. OM 4 6. ★★(2011浙江L )若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
7. ★★(2014浙江 L )记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y ≥⎧=⎨<⎩,设,a b为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+8. ★★ (2013广东W)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ).A .1B .2C .3D .4 9. ★★(2010浙江L )已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°,则α的取值范围是__________________ .10. ★★(2010安徽L)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A )a b = (B)·a b = (C) a b -与b 垂直 (D )a b ∥ 11. ★★ (2013课标全国Ⅱ,理)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__________.12. ★★(2013山东卷L )已知向量与的夹角为01203=2=,若+=λ,且⊥,则实数λ的值为 。
平面向量分类专题(难度)(含答案)

《平面向量分类专题》难度 姓名:一、【向量的代数形式】3.(08·广东)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b [答案] B[解析] 由E 是线段OD 的中点,∴BE →=3ED →,由平行四边形ABCD ,∴|AB ||DF |=|EB ||ED |,∴|DF |=13|AB |∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →-OC →)=a +23(12b -12a )=23a +13b . 故选B.5.在▱ABCD 中,AB →=a ,AD →=b ,AM →=4MC →,P 为AD 的中点,则MP →=( )A.45a +310b B.45a +1310b C .-45a -310b D .-34a -14b [答案] C[解析] 如图,MP →=AP →-AM →=12AD →-45AC →=12AD →-45(AB →+BC →)=12b -45(a +b )=-45a -310b . 8.(2010·全国)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若C B →=a ,C A →=b ,|a|=1,|b|=2,则CD →=( )A.13 a +23 b B.23 a +13b C.35 a +45b D.45 a +35b [答案] B[解析] 如图,由题设条件知∠1=∠2,∴|BD ||DA |=|CB ||CA |=12,∴BD →=13BA →=13(CA →-CB →)=13b -13a ,∴CD →=CB →+BD →=a +⎝⎛⎭⎫13b -13a =23a +13b .二、【求角度】2、设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则〈a ,b 〉= 120°【解】∵|a |=|b |=|c |≠0,且a +b =c ∴如图所示就是符合题设条件的向量,易知OACB 是菱形, △OBC 和△OAC 都是等边三角形.∴〈a ,b 〉=120°.18、若非零向量a ,b ,c 满足230a b c ++=,且a b b c c a ⋅=⋅=⋅,则b 与c 的夹角为 43π19、若两个非零向量,a b a b a 2==,则向量+与-的夹角是32π20、已知两向量,的夹角为60°,且,2||2||==在△ABC 中,b a AB -=,a =则A 的值为150°21、已知两点()()2,3,1,4,AB 满足()1sin ,cos ,,(,)222AB ππαβαβ=∈-,则αβ+= 62ππ-或22、已知→a 、→b 是非零向量且满足→→→⊥⎪⎭⎫ ⎝⎛-a b a 2,→→→⊥⎪⎭⎫ ⎝⎛-b a b 2,则向量⎪⎭⎫ ⎝⎛-→a 与→b 的夹角是23π 为ABC ∆的外心,且0543=++OC OB OA ,则ABC ∆的内角C 的值为 4π【方法】基底选择C AOB ∠=∠2 , o 22900)5()43(=∠⇒=•⇒-=+→→→→→AOB OB OA OC OB OA3、不共线的向量1m ,2m 的模都为2,若2123m m a -=,2132m m b -= ,则两向量b a +与b a - 的夹角为 90°6、已知在ABC ∆中,120A ∠=,记||cos ||cos BA BC BA A BC C α=+,||cos ||cos CA CBCA A CB Bβ=+,则向量α与β夹角的大小为 o60三、【求三角函数值】10、设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos 2θ等于 0 【解析】02cos 0cos 212=⇔=+-⇔⊥θθ13、设单位向量e 1、e 2的夹角为60°,则向量3e 1+4e 2与向量e 114、已知O 是ABC ∆的外心,2,3AB AC ==,若AO xAB y AC =+且21x y +=,则cos BAC ∠=4319、在△OAB 中,O 为直角坐标系的原点,A ,B 的坐标分别为A (3,4),B (-2,y ),向量AB 与x 轴平行,则向量OA 与AB 所成的余弦值是 -3525、在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅AF AC AE AB ,则与的夹角的余弦值等于23【解】因为2=⋅+⋅AF AC AE AB ,所以2)()(=+⋅++⋅, 即22=⋅+⋅+⋅+BF AC AB AC BE AB AB 。
高考数学压轴专题《平面向量及其应用》难题汇编百度文库

一、多选题1.题目文件丢失!2.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( )A .::sin :sin :sin a b c ABC = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C3.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)4.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°D .()//2a a b +5.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB += D .0PA PB PC ++=6.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解7.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 8.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )A .2OA OD ⋅=-B .2OB OH OE +=-C .AH HO BC BO ⋅=⋅D .AH 在AB 向量上的投影为2-9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形10.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-11.设a 、b 、c 是任意的非零向量,则下列结论不正确的是( ) A .00a ⋅= B .()()a b c a b c ⋅⋅=⋅⋅ C .0a b a b ⋅=⇒⊥D .()()22b b a b a a +-=⋅-12.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=13.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=-14.点P 是ABC ∆所在平面内一点,满足20PB PC PBPC PA --+-=,则ABC ∆的形状不可能是( ) A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形15.下列命题中正确的是( ) A .单位向量的模都相等B .长度不等且方向相反的两个向量不一定是共线向量C .若a 与b 满足a b >,且a 与b 同向,则a b >D .两个有共同起点而且相等的向量,其终点必相同二、平面向量及其应用选择题16.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 17.若O 为ABC 所在平面内任意一点,且满足()20BC OB OC OA ⋅+-=,则ABC 一定为( )A .锐角三角形B .直角三角形C .等腰三角形D .钝角三角形18.已知,a b 是两个单位向量,则下列等式一定成立的是( ) A .0a b -=B .1a b ⋅=C .a b =D .0a b ⋅=19.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .4320.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S =A .310B.38C.25D.42121.在ABC中,CB a=,CA b=,且sin sina bOP OC ma Bb A⎛⎫⎪=++⎪⎝⎭,m R∈,则点P的轨迹一定通过ABC的()A.重心B.内心C .外心D.垂心22.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A.3323B.5323C .323D.832323.已知1a=,3b=,且向量a与b的夹角为60︒,则2a b-=()A7B.3 C11D1924.若点G是ABC的重心,,,a b c分别是BAC∠,ABC∠,ACB∠的对边,且3aGA bGB cGC++=.则BAC∠等于()A.90°B.60°C.45°D.30°25.在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,若()()(23)a b c a c b ac+++-=+,则cos sinA C+的取值范围为A.33)2B.3(3)C.3(3]2D.3(3)226.题目文件丢失!27.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形28.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1429.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆=,则2sin 2sin sin a b cA B C++=++( )A .2393B .2633C .833D .2330.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 31.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .432.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形D .不确定33.已知ABC 中,1,3,30a b A ︒===,则B 等于( )A .60°B .120°C .30°或150°D .60°或120°34.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( )A B .1C D .235.已知M (3,-2),N (-5,-1),且12MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2⎛⎫-- ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(8,-1)【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角 解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 3.ABC【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C .()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.4.AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量,, 则,故A 正确; ,故B 错误;解析:AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222b =+=,故B 错误;2cos ,21a b a b a b⋅<>===⋅+,又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.5.CD 【分析】转化为,移项运算即得解 【详解】 由题意: 故 即 , 故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.解析:CD 【分析】转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】由题意:3AB AC AP +=故())(AB AP AC AP AP +=-- 即PB PC AP +=0C PA PB P ++=∴,PA AB PB +=故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.6.ABC 【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】对于,因为为锐角且,所以三角解析:ABC 【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解. 【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且sin 4 3.92c B b c =⨯==<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 sin 43c B b ==>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确. 故选:ABC. 【点睛】本题考查了判断三角形解的个数的方法,属于基础题.7.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共解析:AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.8.AB 【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形,其中, 对于;故正确. 对于,故正确.对于,,但对应向量的夹角不相等,所以不成立.故错误. 对于解析:AB 【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果. 【详解】图2中的正八边形ABCDEFGH ,其中||1OA =,对于3:11cos4A OA OD π=⨯⨯=;故正确. 对于:22B OB OH OA OE +==-,故正确.对于:||||C AH BC =,||||HO BO =,但对应向量的夹角不相等,所以不成立.故错误.对于:D AH 在AB 向量上的投影32||cos ||4AH AH π=-,||1AH ≠,故错误. 故选:AB . 【点睛】本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.9.AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC 【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒= 所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=, 因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确;对D ,因为2220a b c +->,所以222cos 02a b c A ab+-=>,A 为锐角.但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误. 故选:AC 【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.10.AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论.当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.11.AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,,A 选项错误;对于B 选项,表示与共线的向量,表示与共线的向量,但与不一定共线,B 选项错误; 对于C 选项,解析:AB 【分析】利用平面向量数量积的定义和运算律可判断各选项的正误. 【详解】对于A 选项,00a ⋅=,A 选项错误;对于B 选项,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,但a 与c 不一定共线,B 选项错误;对于C 选项,0a b a b ⋅=⇒⊥,C 选项正确;对于D 选项,()()2222a b a b a b a b +⋅-=-=-,D 选项正确.【点睛】本题考查平面向量数量积的应用,考查平面向量数量积的定义与运算律,考查计算能力与推理能力,属于基础题.12.ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知成立, 故也成立;由向量加法的三角形法则,知成立,不成立. 故选:ABD 【点睛】 本题主要考查解析:ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知a b c +=成立, 故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立. 故选:ABD 【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.13.AB 【分析】若,则反向,从而; 若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立. 【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选解析:AB 【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.14.AD 【解析】 【分析】由条件可得,再两边平方即可得答案. 【详解】∵P 是所在平面内一点,且, ∴, 即, ∴,两边平方并化简得, ∴,∴,则一定是直角三角形,也有可能是等腰直角三角形, 故解析:AD 【解析】 【分析】由条件可得||||AB AC AC AB -=+,再两边平方即可得答案. 【详解】∵P 是ABC ∆所在平面内一点,且|||2|0PB PC PB PC PA --+-=, ∴|||()()|0CB PB PA PC PA --+-=, 即||||CB AC AB =+,∴||||AB AC AC AB -=+, 两边平方并化简得0AC AB ⋅=, ∴AC AB ⊥,∴90A ︒∠=,则ABC ∆一定是直角三角形,也有可能是等腰直角三角形, 故不可能是钝角三角形,等边三角形, 故选:AD. 【点睛】本题考查向量在几何中的应用,考查计算能力,是基础题.15.AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据解析:AD 【分析】利用向量的基本概念,判断各个选项是否正确,从而得出结论. 【详解】单位向量的模均为1,故A 正确; 向量共线包括同向和反向,故B 不正确; 向量是矢量,不能比较大小,故C 不正确; 根据相等向量的概念知,D 正确. 故选:AD 【点睛】本题考查单位向量的定义、考查共线向量的定义、向量是矢量不能比较大小,属于基础题.二、平面向量及其应用选择题16.D 【分析】利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案. 【详解】利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力. 向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是: (1)平行四边形法则(平行四边形的对角线分别是两向量的和与差); (2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单). 17.C 【分析】由向量的线性运算可知2OB OC OA AB AC +-=+,所以()0BC AB AC ⋅+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】由题意,()()2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()0BC AB AC ⋅+=,取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=. 所以0BC AE ⋅=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.【点睛】本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 18.C 【分析】 取,a b 夹角为3π,计算排除ABD ,得到答案. 【详解】 取,a b 夹角为3π,则0a b -≠,12a b ⋅=,排除ABD ,易知1a b ==. 故选:C . 【点睛】本题考查了单位向量,意在考查学生的推断能力. 19.A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C . 【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=,即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 20.A 【解析】∵2350OA OB OC ++=,∴()()23OA OC OB OC +=-+. 设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且32OM ON=, ∴36132255410OACOMCCMNABC ABC SSSS S ⎛⎫==⨯=⨯= ⎪⎝⎭,即12310S S =.选A . 21.A 【分析】设sin sin a B b A CH ==,则()mCP a b CH=+,再利用平行四边形法则可知,P 在中线CD 上,即可得答案; 【详解】 如图,sin sin a B b A CH ==,∴()m OP OC a b CH =++,()mCP a b CH=+, 由平行四边形法则可知,P 在中线CD 上,∴P 的轨迹一定通过ABC 的重心.故选:A. 【点睛】本题考查三角形重心与向量形式的关系,考查数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意向量加法几何意义的运用. 22.B 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度. 【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒, 在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==/秒). 故选B . 【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件. 23.A 【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解. 【详解】因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=. 故选:A. 【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 24.D 【分析】由点G 是ABC 的重心可得0GA GB GC ++=,即GA GB GC =--,代入303aGA bGB cGC ++=中可得3()03b a GB c a GC ⎛⎫-+-= ⎪ ⎪⎝⎭,由,GB GC 不共线可得00b a a -=⎧-=⎩,即可求得,,a b c 的关系,进而利用余弦定理求解即可 【详解】因为点G 是ABC 的重心,所以0GA GB GC ++=, 所以GA GB GC =--,代入30aGA bGB cGC ++=可得3()03b a GB c a GC ⎛⎫-+-=⎪ ⎪⎝⎭, 因为,GB GC 不共线,所以00b a a -=⎧-=,即b a c =⎧⎪⎨=⎪⎩,所以222cos 22b c a BAC bc +-∠==,故30BAC ︒∠=,故选:D 【点睛】本题考查向量的线性运算,考查利用余弦定理求角 25.A 【分析】先化简已知()()(2a b c a c b ac+++-=+得6B π=,再化简cos sin AC +)3A π+,利用三角函数的图像和性质求其范围.【详解】由()()(2a b c a c b ac +++-=+可得22()(2a c b ac +-=+,即222a cb +-=,所以222cos 22a cb B ac +-==,所以6B π=,56C A π=-,所以5cos sin cos sin()6A C A A π+=+-553cos sin cos cos sin cos sin )66223A A A A A A πππ=+-=+=+,又02A π<<,506A π<-2π<,所以32A ππ<<,所以25336A πππ<+<,所以3)262A π<+<,故cos sin A C +的取值范围为3()22.故选A .【点睛】(1)本题主要考查余弦定理解三角形,考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)利用函数的思想研究数学问题,一定要注意“定义域优先”的原则,所以本题一定要准确计算出A 的范围32A ππ<<,不是02A π<<.26.无27.D【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =, 由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A AB B B B B B AB===, ∵sin sin B 0A ≠, ∴sin cos sin cos A B B A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形,故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.28.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n == 所以1344CP CA CD =+可得4AD PD = 因为BPC ∆与ABC ∆有相同的底边,所以面积之比就等于DP 与AD 之比所以BPC ∆与ABC ∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.29.A【分析】根据面积公式得到4c =,再利用余弦定理得到a =,再利用正弦定理得到答案.【详解】1sin 424ABC S bc A c c ∆====利用余弦定理得到:2222cos 116413a b c bc A a =+-=+-=∴= 正弦定理:sin sin sin a b c A B C ==故2sin 2sin sin sin 3a b c a A B C A ++===++ 故选A【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 30.B【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →. 【详解】 解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,已知14AD AB →→=,12AE AC →→=, //FN AC ,则MFE ABE △△和MCF ACD △△,则:MF ME AB AE =且MF MC AD AC=, 即:2MF ME AB AC =且14MF MC AC AB =,所以124MC MF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =, 解得:37AM AC →→=, 同理//FM AB ,NBF ABE △△和NFD ACD △△,则:NF NB AE AB =且NF ND AC AD=, 即:12NF NB AB AC =且14NF ND AC AB =,所以142NB NF ND AC AB AB ==, 则:8NB ND =,即()8AB AN AD AN -=-,所以184AB AN AB AN ⎛⎫-=-⎪⎝⎭,即28AB AN AB AN -=-, 得:17AN AB =, 解得:17AN AB →→=, 四边形AMFN 是平行四边形,∴由向量加法法则,得AF AN AM →→→=+,所以1377AF AB AC →→→=+. 故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力.31.C【分析】不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =,则求c b ⋅的最大值,即求x 的最大值,然后将问题转化为关于y 的方程22sin (cos 2)2cos 0y y x x ααα-+-++=有解的问题,最后求出x 的最值即可.【详解】根据题意,不妨设(2,0)b =,(2cos 2sin )a αα=,,[0,2]απ∈,(,)c x y =, 则2b c x ⋅=,所以求b c ⋅的最大值,即求x 的最大值,由()()20c a c b ⋅--=可得2220c a c b c a b -⋅-⋅+⋅=,即22sin (cos 2)2cos 0y y x x ααα-+-++=,因为关于y 的方程有解,所以22sin 44(cos 2)8cos 0x x ααα∆=-++-≥, 令cos (11)t t α=-≤≤,则2244(2)810x x t t t -+++-≤,所以2222t t x ++≤≤,(13)m m =≤≤2(2)178m --+=,当2m =时,22(2)1717288t m +--+==, 所以178x ≤,所以174b c ⋅≤, 所以b c ⋅的最大值为174, 故选:C.【点睛】 思路点睛:该题考查了平面向量的数量积的问题,解题思路如下:(1)先根据题意,设出向量的坐标;(2)根据向量数量积的运算律,将其展开;(3)利用向量数量积的坐标公式求得等量关系式;(4)利用方程有解,判别式大于等于零,得到不等关系式,利用换元法求得其最值,在解题的过程中,关键点是注意转化思想的应用,属于难题.32.B【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状.【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭, 即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭, 所以在ABC 中,AB 与AB 边上的中线垂直,则CA CB →→=,同理0BC AC AB →→→⎛⎫⋅+= ⎪⎝⎭,AC AB →→=, 所以AC AB CB →→→==,ABC 是等边三角形.故选:B【点睛】本题主要考查了向量的数量积,向量垂直,考查了运算能力,属于中档题.33.D【分析】由正弦定理可得,sin 2B =,根据b a >,可得B 角的大小. 【详解】由正弦定理可得,sin sin b A B a ==, 又0,,π<<>∴>B b a B A ,60︒∴=B 或120B =.故选:D【点睛】本题考查了正弦定理的应用,考查了运算求解能力和逻辑推理能力,属于基础题目. 34.B【分析】由题意可得2b a c =+,平方后整理得22242a c b ac +=-,利用三角形面积可求得ac 的值,代入余弦定理可求得b 的值.【详解】解:∵a ,b ,c 成等差数列,∴2b a c =+,平方得22242a c b ac +=-,①又ABC 的面积为32,且30B ∠=︒, 由11sin sin 3022ABC S ac B ac ==⋅︒△1342ac ==,解得6ac =, 代入①式可得222412a c b +=-,由余弦定理得222cos 2a c b B ac+-=,2224123122612b b b ---===⨯,解得24b =+,∴1b =+故选:B .【点睛】本题考查等差数列的性质和三角形的面积公式,涉及余弦定理的应用,属于中档题. 35.B【分析】由向量相等的坐标表示,列方程组求解即可.【详解】解:设P(x ,y ),则MP = (x -3,y +2),而12MN =12(-8,1)=14,2⎛⎫- ⎪⎝⎭, 所以34122x y -=-⎧⎪⎨+=⎪⎩,解得132x y =-⎧⎪⎨=-⎪⎩,即31,2P ⎛⎫-- ⎪⎝⎭, 故选B.【点睛】本题考查了平面向量的坐标运算,属基础题.。
高考数学压轴专题专题备战高考《平面向量》难题汇编及答案

C. 三点共线D. 三点共线
【答案】B
【解析】
【分析】
利用平面向量共线定理进行判断即可.
【详解】
因为 ,
所以 ,
因为 ,所以
由平面向量共线定理可知, 与 为共线向量,
又因为 与 有公共点 ,所以 三点共线.
故选: B
【点睛】
本题考查利用平面向量共线定理判断三点共线;熟练掌握共线定理的内容是求解本题的关键;属于中档题、常考题型.
故选:D.
【点睛】
本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力.
20.已知向量 , 的起点均为原点,而终点依次对应点 , ,线段 边上的点 ,若 , ,则 , 的值分别为()
A. , B. , C. , D. ,
【答案】C
【解析】
【分析】
根据 , , ,得到 , , ,再利用 求解.
【详解】
因为 , , ,
所以 , , ,
所以 ,
当 时, .
故选:D
【点睛】
本题考查向量的模以及数量积的运算,还考查运算求解能力,属于中档题.
16.设 , 不共线, , , ,若 , , 三点共线,则实数 的值是()
A. B. C. D.
【答案】D
【解析】
【详解】
以OA所在的直线为x轴,过O作与OA垂直的直线为y轴,建立直角坐标系如图所示:
因为 ,且 ,∴ ,
∴A(1,0),B( ),又令 ,则 = ,∴ =7,
又如图点C在∠AOB内,∴ = ,sin = ,又 ,∴C( ),
∵ ,(m,n∈R),∴( )=(m,0)+( )=(m , )
(完整版)全国卷高考题汇编—平面向量

2011年——2016年高考题专题汇编专题3 平面向量1、(16年全国1 文)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .2、(16年全国1 理)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .3、(16年全国2 文)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.4、(16年全国2 理)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8 (B )-6 (C )6 (D )85、(16年全国3 文)已知向量BA →=(12,2),BC →=(2,12),则∠ABC = (A )30° (B )45° (C )60° (D )120°6、(16年全国3 理)已知向量1(,)22BA = ,31(),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)12007、(15年新课标2 文)向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .38、(15年新课标2理)设向量,不平行,向量与平行,则实数_________.9、(15年新课标1文)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 10、(15年新课标1理)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =-11、(14年新课标3 文)已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .212、(14年新课标3 理)若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2BC .1 D13、(14年新课标2 文)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 514、(14年新课标2 理)设向量a,b 满足|a+b |=|a -b ,则a ⋅b = ( )A. 1B. 2C. 3D. 515、(14年新课标1文)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC 21 D. BC16、(14年新课标1理)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .17、(13全国2 文 理)已知正方形ABCD 的边长为2, E 为CD 的中点,,则 =_______.18、(12全国2 文)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=19、(11全国2 文)若向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A B CD 20、(11全国2 理)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1。
平面向量全国高考难题荟萃

平面向量全国高考难题荟萃1.(2006年高考•四川)如图,已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( ) (A )1213PP PP ( B )1214PP PP (C )1215PP PP (D )1216PP PP2.(2007年高考•浙江)若非零向量a 与b 满足a b b +=,则( ) (A )22a a b >+ (B )22a a b <+ (C )22b a b >+ (D )22b a b <+3.(2005年高考•全国)点O 是三角形ABC 所在平面内的一点,满足OA OB OB OC OC OA ==,则点O 是∆ABC 的 ( )(A )三个内角的角平分线的交点 ( B )三条边的垂直平分线的交点 (C )三条中线的交点 (D )三条高的交点4.(2007年高考•山东) 在Rt ⊿ABC 中,CD 是斜边AB 上的高,则下列等式不成立的是( ) (A )2AC AC AB = (B )2BC BA BC = (C )2AB AC CD = (D )22())AC AB BA BC CD AB⨯(=5.(2007年高考•重庆)如图,在四边形ABCD 中,4A B B D D C ++=, 4AB BD BD DC ⋅+⋅=,0AB BD BD DC ==, 则()AB DC AC +⋅的值为( )(A ) 2 ( B )22 (C ) 4 (D )42P1P2P3P6P5P4 AB CD第1题图 第5题图6.(2007年高考•北京)已知O 是⊿ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么( ) (A )AO OD = (B )2AO OD = (C )3AO OD = (D )2AO OD =7.(2007年高考⋅辽宁)0()a aa b a b c a b a c a b⋅⋅≠=-⋅若向量与不共线,,且,则向量与的夹角为( ) A.0 B.6π C.3π D.2π8.(2005年高考•全国)已知点A (3,1),(0,0)B ,(3,0)C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学平面向量 平面向量的概念及其线性运算1.★★(2014·辽宁卷L) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是 ( )A .p ∨qB .p ∧qC .)()(q p ⌝∧⌝D .)(q p ⌝∨ 2.★★(·新课标全国卷ⅠL ) 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________.3.★★(2014·四川卷) 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 4. ★★ (2014·新课标全国卷ⅠW)设D 、E 、F 分别为△ABC 的三边BC 、CA 、AB 的中点,则=+FC EB ( )A . B.21 C. D. 215. ★★(2014福建W)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OD OC OB OA +++等于 ( )A .OM B. OM 2 C. OM 3 D. OM 4 6. ★★(2011浙江L )若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 。
7. ★★(2014浙江 L )记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a br r 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+8. ★★ (2013广东W)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ).A .1B .2C .3D .4 9. ★★(2010浙江L )已知平面向量,(0,)αβααβ≠≠满足1β=,且α与βα-的夹角为120°,则α的取值范围是__________________ .10. ★★(2010安徽L)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A )a b = (B)2·a b = (C) a b -与b 垂直 (D )a b ∥ 11. ★★ (2013课标全国Ⅱ,理)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅u u u r u u u r=__________.12. ★★(2013山东卷L )已知向量AB 与AC 的夹角为0120,且3=AB ,2=AC ,若AC AB AP +=λ,且BC AP ⊥,则实数λ的值为 。
13. ★★(2012山东L )如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
当圆滚动到圆心位于(2,1)时,的坐标为______________。
14. ★★(2010浙江W )已知平面向量,,1,2,(2),αβαβααβ==⊥-则2a β+的值是 。
15. ★★★(2013重庆L)在平面上,1AB u u u r ⊥2AB u u u u r ,|1OB u u u r |=|2OB u u u u r |=1,AP u u u r =1AB u u u r +2AB u u u u r .若|OP uuu r |<12,则|OA u u u r |的取值范围是( ).A .52⎛ ⎝⎦B .5722⎛⎝⎦C .522⎛ ⎝ D .722⎛ ⎝ 16. ★★★(2014浙江 W) 设θ为两个非零向量,的夹角,已知对任意实数t ,a b 的最小值为1.则( )A.若θaB.若θb 唯一确定C.a θ唯一确定D.b 确定,则θ唯一确定平面向量基本定理及向量坐标运算1.★(2014·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .32.★(2014·福建卷 )在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)3. ★(2014山东W )已知向量3),(3,)a b m ==r r . 若向量,a b r r 的夹角为6π,则实数m =(A) 23(B)3(C) 0(D) 34. ★(2014广东W )已知向量)2,1(=,)1,3(=,则=-a b(A) 23(B)3(C) 0(D) 35. ★(2014北京W )已知向量)1,1(),4,2(-==b a ,则=-2 A .(5,7) B. (5,9) C. (3,7) D. (3,9)6. ★(2013辽宁卷L )已知点)3,1(A ,)1,4(-B ,则与向量AB 同方向的单位向量为.A )54,53(- .B )53,54(- .C )54,53(- .D )53,54(-7. ★(2013陕西卷W )已知向量),1(m a =,)2,(m b =,若∥,则实数m 等于.A 2- .B 2 .C 2-或2 .D 08. ★(2012广东W )若向量AB u u u r=(1,2),BC uuu r =(3,4),则AC u u u r =( )A (4,6B (-4,-6)C (-2,-2)D (2,2) 9. ★★(2013福建卷L )在四边形ABCD 中,)2,1(=AC ,)2,4(-=BD ,则该四边形的面积为.A 5 .B 52 .C 5 .D 1010. ★★(2014•四川)平面向量=(1,2),=(4,2),=m +(m ∈R ),且与的夹角等于与的夹角,则m=( ) . A .﹣2B . ﹣1C . 1D . 211. ★★(2013浙江卷L )设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00•≥•。
则A. 090=∠ABCB. 090=∠BAC C. AC AB = D.BC AC =12. ★★(2012安徽L )在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP uuu r按逆时针旋转34π后,得向量OQ uuu r ,则点Q 的坐标是( )()A (72,2)-- ()B (2,2)- ()C (46,2)-- ()D (6,2)- 13. ★★(2011广东w ) 已知向量(1,2),(1,0),(3,4)a b c ===.若λ为实数,()//,a b c λλ+=则 A .14 B .12D . 2 14. ★★(2010新课标全国W ) a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665(D )1665-15. ★★(2013山东卷L )已知向量AB 与AC 的夹角为01203=AB 2=AC ,若+=λ,且⊥,则实数λ的值为 。
16. ★★(2013江苏L )设D 、E 分别是△ABC 的边AB 、BC 上的点,且12,23AD AB BE BC ==。
若12DE AB AC λλ=+u u u r u u u r u u u r (1λ、2λ均为实数),则1λ+2λ的值为 。
17. ★★(2011北京L )已知向量a =(3,1),b =(0,-1),c =(k ,3)。
若a -2b 与c 共线,则k=___________________。
18. ★★(2010陕西L )已知向量a=(2,-1),b=(-1,m ),c=(-1,2),若(a+b )∥c则m= . 19. ★(2012福建W )若向量a=(1,1),b=(-1,2),则a ·b 等于_____________.20★(2014北京L ) 已知向量u r α、rb 满足1=r a ,()2,1=r b ,且()λλ+=∈0R r r a b ,则λ= .21. ★★(2014陕西L )设20πθ<<,向量()()sin 2cos cos 1a b θθθ==r r ,,,,若b a ρρ//,则=θtan _______.22. ★★(2014•江西W )已知单位向量与的夹角为α,且cos α=,若向量=3﹣2,则||= _________ .23.★★[2014·江西卷L] 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________. 24.★★(2014·山东卷)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.25.★★(2014·陕西卷L)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.26.★★(2014·陕西卷L) 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.平面向量的数量积及应用1.★(2014·北京卷) 已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.2.★★(2014·湖北卷) 设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.3.★★(2014·江西卷) 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.5.★★(2014·新课标全国卷Ⅱ) 设向量a ,b 满足|a +b |=10,|a -b |=6,则=•( )A .1B .2C .3D .56. ★★★(2014安徽L)设,a b r r 为非零向量,2b a =r r ,两组向量1234,,,x x x x u r u u r u u r u u r和1234,,,y y y y u u r u u r u u r u u r 均由2个a r 和2个b r 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r所有可能取值中的最小值为24a r ,则a r 与b r的夹角为( )A.23πB.3πC.6π7. ★★(2014重庆L)已知向量(,3),(1,4),(2,1)a k b c ===r r r,且()c b ⊥-32,则实数=k ( )9.2A - .0B .C 3 215.D8. ★★(2014山东L )在ABC ∆中,已知tan AB AC A ⋅=u u u r u u u r ,当6A π=时,ABC ∆的面积为 .9.★★(2014·天津卷) 已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )10. ★★(2014湖北L )设向量(3,3)a =r ,(1,1)b =-r,若()()a b a b λλ+⊥-r r r r ,则实数λ=________.11. ★★(2014陕西)设20πθ<<,向量)cos ,1(),cos ,2(sin θθθ-==b a ,若0=⋅b a ,则=θtan ______.12. ★★★(2013湖南卷L )已知b a ,是单位向量,0=⋅b a ,若向量c 满足b a c --=1,则c 的取值范围是.A ]12,12[+- .B ]22,12[+- .C ]12,1[+ .D ]22,1[+13. ★★ (2011·广东卷L ) 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c·(a +2b )=( )A .4B .3C .2D .014. ★★ (2011·湖南卷L ) 在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=________.15. ★★ (2011·辽宁卷L ) 若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )-1 B .1 D .216. ★★ (2011·全国卷)设向量a ,b ,c 满足|a |=|b |=1,a ·b =-12,〈a -c ,b -c 〉=60°,则|c |的最大值等于( )A .2 D .1 17. ★( 2011·重庆卷) 已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a·b 的值( )A .1B .2C .3D .418. ★★ (2011·江苏卷) 已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2, 若a ·b =0,则实数k 的值为________.19. ★★ (2011·江西卷)已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.20. ★★ (2011·湖北卷)若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于 ( )A .-π4 D .3π421. ★ (2011·安徽卷) 已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________.22. ★★(2011·浙江卷) 若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是________.23. ★★(2011·山东卷)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA1A2→(λ∈R),A1A4→=μA1A2→(μ∈R),且1λ+1μ=2,则称A3,A4调和分割A1,A2,已知点C(c,0),D(d,0)(c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上24. ★★(2013安徽卷W )若非零向量,a b r r 满足32a b a b ==+r r r r ,则,a b r r夹角的余弦值为_______.25. ★★(2013浙江卷W )设1e ,2e 的是单位向量,非零向量21e y e x +=(R y x ∈,)若21,e e 的夹角为6πbx 的最大值等于 。