基于FPGA的高速图像采集系统设计.

合集下载

基于FPGA的MIPI CSI-2图像采集系统设计

基于FPGA的MIPI CSI-2图像采集系统设计

基于FPGA的MIPI CSI-2图像采集系统设计赵清壮【摘要】This paper elaborates a design of MIPI CSI-2 high-definition camera interface image acquisition system based on FPGA. Now, MIPI high-definition CCD is used widely, this design uses FPGA to achieve MIPI high-definition CCD collect and provides two outputs of LCD screen and USB, the data transmission is stable and reliable, it make MIPI interface camera applied widely by the other circuit systems, accelerates system development and saves cost.%阐述一种基于FPGA的MIPI CSI-2接口高清摄像头图像采集系统设计,该设计用FPGA实现当前应用广泛的MIPI高清CCD采集,并提供LCD屏、USB两路输出,数据传输稳定可靠,把MIPI接口摄像头应用到更广泛的其他电路系统中,加快系统开发,节省成本。

【期刊名称】《价值工程》【年(卷),期】2015(000)029【总页数】2页(P84-85)【关键词】MIPI;CSI-2;图像采集;FPGA【作者】赵清壮【作者单位】广州飒特红外特股份有限公司,广州510000【正文语种】中文【中图分类】TP302.10 引言CSI(Camera Serial Interface)是由MIPI(Mobile Industry Processor Interface)联盟下Camera工作组制定的接口标准,是MIPI联盟发起的为移动应用处理器制定的开放标准,MIPI联盟由ARM、诺基亚、意法半导体和德州仪器发起成立,作为移动行业领导者的合作组织,MIPI联盟旨在确定并推动移动应用处理器接口的开放性标准。

用FPGA实现高速大图像采集系统

用FPGA实现高速大图像采集系统

刘斌兵刘云海汪燮彬中国船级社规定从2004年开始,在国内和国际航行的船舶中都必须安装船载航行数据记录仪,其中船载雷达图像记录仪是很重要的一部分。

船载雷达图像按VGA图像标准输出,其分辨率在640×480~1280×1024之间,刷新率在60~85Hz之间。

目前常见的图像采集系统多是针对复合视频信号的采集,或者是针对CCD图像信号的采集。

这些图像采集系统并不能满足雷达图像采集的要求。

即使少数针对高分辨率高刷新率图像的采集系统也是以计算机板卡的形式出现,运行时需要一台计算机。

目前一些速度高达1GSPS的基于VME总线的数据采集系统,通过4路,每路采集速度高达250MHz的系统实现1GSPS速度的数据采集。

但由于该类系统中没有大容量的数据缓存,因此并不能实现高速长时间的数据采集。

另外一些系统采用一种基于FPGA,使用多SDRAM作为数据缓存的采集系统。

该类系统解决了长时间高速采集的问题,可以对频率为100MHz,16bit位宽的数据进行采集。

但是由于它采用了多个FIFO来降低SDRAM的工作频率,使得该类系统应用在需要严格的数据同步的高速图像采集系统中会出现一些数据难以同步的问题。

还有一种PC板卡形式的高分辨率图像采集卡,该系统直接对图像进行压缩后存储,并通过PCI接口提供给PC,但这种形式既不适合船舶上狭小的空间,也不能满足船舶失事时对数据的保护要求。

本文提出一种高分辨率高刷新率图像采集系统。

该系统使用于嵌入式系统中,不仅体积小,还解决了数据保护的问题,可用于船载雷达图像记录系统。

该系统可支持对多达4路8bit位宽最高采样率达120MHz的数据通道,或者一路VGA图像信号,可对采集数据进行长时间采集存储。

具体的连续采集时间根据系统所采用的SDRAM容量大小有所变化。

该系统还为数据的后续处理提供了ASRAM接口,使得用于缓存数据的SDRAM也可作为后续处理CPU的系统内存。

这样既可以提高速据的处理速度,方便后续针对雷达图像的压缩或者识别处理,也节省了资源。

基于FPGA的高速数据采集系统设计与实现的开题报告

基于FPGA的高速数据采集系统设计与实现的开题报告

基于FPGA的高速数据采集系统设计与实现的开题报告一、选题背景与意义在现代工业领域,高速数据采集是必不可少的环节,对于某些应用场景,如医学图像、通信信号和自然界信号的采集等,必须保证采样率高、抗噪性强的特点。

面对如此巨大的数据采集挑战,传统基于PC机的采集系统已经难以满足实时性和高速性的要求,而基于FPGA的高速数据采集系统从其高速、高精度、低功耗、灵活可靠等诸多特点上来看,成为了实现高速数据采集的首选方案。

因此,本文将对基于FPGA的高速数据采集系统设计与实现开题进行研究。

二、研究内容本课题旨在通过对基于FPGA的高速数据采集系统设计与实现开题进行深入研究,侧重于以下几个方面:1. 基于FPGA芯片架构的深入研究,尤其是在高速、可靠、低功耗等方面的性能表现。

2. 研究采样率、信噪比、滤波器等方面在数据采集系统中的应用。

3. 设计高速数据采集控制系统,探究其在高速数据采集系统中的作用和设计原理。

4. 进行基于FPGA的高速数据采集系统硬件电路设计、软件编码及实现,并通过实验验证其性能。

三、研究方法本文采用计算机仿真分析和实验研究相结合的方法,首先通过软件工具对系统进行模拟,了解系统设计的基本原理和方法,然后进行硬件电路设计和软件编码,实现实际的高速数据采集系统,最后对实验结果进行分析和总结。

四、预期成果1. 实现一套基于FPGA的高速数据采集系统,该系统具有高速性、稳定性、可靠性、低功耗等优点。

2. 对该系统进行了性能测试,并分析系统在数据采集过程中的表现及优劣。

3. 从系统设计、电路设计、软件编写三个角度,对基于FPGA的高速数据采集系统设计与实现开题进行了研究,并提出了可供参考的经验和具体指导意见。

五、可能面临的问题及解决方案1. FPGA硬件电路设计难度大。

解决方案:参考多数学者的研究成果,针对不同应用,找出符合实际需要的电路设计。

2. 信号处理算法的开发。

解决方案:充分利用智能算法,设计高效低延迟的算法并进行实际验证。

基于FPGA和USB3.0的高速视频图像采集处理系统设计

基于FPGA和USB3.0的高速视频图像采集处理系统设计

摘要随着机器视觉的广泛应用,以及工业4.0和“中国制造2025”的提出,在数字图像的采集、传输、处理等领域也提出了越来越高的要求。

传统的基于ISA接口、PCI接口、串行和并行等接口的图像采集卡已经不能满足人们对于高分辨率、实时性的图像采集的需求了。

一种基于FPGA和USB3.0高速接口,进行实时高速图像采集传输的研究越来越成为国内外在高速图像采集研究领域的一个新的热点。

针对高速传输和实时传输这两点要求,通过采用FPGA作为核心控制芯片与USB3.0高速接口协调工作的架构,实现高帧率、高分辨率、实时性的高速图像的采集和传输,并由上位机进行可视化操作和数据的保存。

整体系统采用先硬件后软件的设计方式进行设计,并对系统各模块进行了测试和仿真验证。

通过在FPGA 内部实现滤波和边缘检测等图像预处理操作,验证了FPGA独特的并行数据处理方式在信号及图像处理方面的巨大优势。

在系统硬件设计部分,采用OV5640传感器作为采集前端,选用Altera的Cyclone IV E系列FPGA作为系统控制芯片,由DDR2存储芯片进行数据缓存,采用Cypress公司的USB3.0集成型USB3.0芯片作为数据高速接口,完成了各模块的电路设计和采集卡PCB实物制作。

系统软件设计,主要分为FPGA逻辑程序部分、USB3.0固件程序部分和上位机应用软件部分。

通过在FPGA上搭建“软核”的方式,由Qsys系统完成OV5640的配置和初始化工作。

由GPIF II接口完成FPGA和FX3之间的数据通路。

通过编写状态机完成Slave FIFO的时序控制,在Eclipse中完成USB3.0固件程序的设计和开发。

上位机采用VS2013软件通过MFC方式设计,从而完成整体图像采集数据通路,并在上位机中显示和保存。

整体设计实现预期要求,各模块功能正常,USB3.0传输速度稳定在320MB/s,通过上位机保存至PC机硬盘的图像分辨率大小为1920*1080,与传感器寄存器设置一致,采集卡图像采集帧率为30fps,滤波及边缘检测预处理符合要求,采集系统具有实际应用价值和研究意义。

基于FPGA的新型高速CCD图像数据采集系统

基于FPGA的新型高速CCD图像数据采集系统
摘 要 :介 绍 一 种 基 于 A tl 司 F s n Sat i F G 的 线 阵 C D 图 像 数 据 采 集 系 统 。 以 F G ce 公 ui t K t P A o r C PA
作 为 图 像 数 据 的 控 制 和 处 理 核 心 , 过 采 用 高速 A/ 异 步 FF U R 以 及 电 平 转 换 、 大 滤 波 、 通 D、 IO、 A T 放 二 值 化 电 路 和 光 学 系 统 实 现 对 图 像 数 据 的 信 号 处 理 , 运 用 V s a Su i + 和 Mirsf 公 司 的 基 本 类 并 i l tdo C + u coot 库 MF 实现 对 采 集 数 据 的 显 示 、 图 、 输 控 制 等 。 利 用 搭 建 的 系统 平 台 实 现 对 物 体 尺 寸 的 测 量 , C 绘 传 通
Ue s Vi a t d o s l ui u S C + + a d n Mir s f Co a y F u d t n l s MF t a he e h d s ly coot mp n o n a i C a s o C o c i v t e ip a .ma p n a d r n miso o t l p ig n t s s in c n r a o
W EI Ch n W e ,YUAN Zo g ag i n He g,ZHANG W e Ta n n o,W ANG i e ,XI Pe P i NG Da Ya n
( e a m n o lc o i E gneig u i U i r t o Eet ncT c nlg,G in 5 10 ,C ia D p r e t fEet nc nier ,G in nv sy f lc o i eh o y ul 4 0 4 hn ) t r n l e i r o i

一种基于FPGA的高速图像采集及显示电路设计

一种基于FPGA的高速图像采集及显示电路设计
《 业 控 制计 算 机 ) 0 0年 第 2 工 21 3卷第 1 期 1
1 9

种基于 F G P A的高速图像采集及显示电路设计
De i f Hi —s e d Vi o Ac ust n An Dip a r utBa e o P sgn o gh— p e de q iio d i s ly Ci i c s d n F GA
选 用 的 接 收 芯 片是 DS 0 R 8 , 最 高 数 据 传输 速 率 可 以达 到 9 C 2 6其
该 F G 进 行 配 置和 验 证 , 试 表 明该 设 计 不仅 实现 了 图像 高 速 采 集和 显 示 , 使 图像 清 晰 、 PA 测 且 系统 稳 定 可 靠 。
关 键 词 :P F GA, Cl CP 总线 , 图像 采 集
Ab ta t s rc
Th si u e Ca Ln nera e nd e de gn s d m ik it f c a DVI o r al e i -s ed i a qust d t e i hgh pe vdeo c iion an diply.hi z i s a T s pap itodu es er nr c t e y tm of i a quiion nd h s se vdeo c st a diply a d i s a b se on PGA,h ws o F s o h w t s m pl m o e he a e dul ba ed s on Cam Lnk n e ce i it da an DVI s a o e d diply m dul wor d. d de An ba ed n s o CP bu ,i Cl shgh- ee i a da a ex h ge et e c sp d m ge t c an b we n ompu e an i tr d mag e ci ui wa r aied. EP 30 7 4 FP r t c s el z 2S F6 21 GA o t m p y i u e t n i d ery h de i . e es manfses h fAl Co an s s d o co fg an v i te er f sgnTh t t i t te e de i n tonl eaied i sgn o y r l z hgh—s ee vdeo a p d i cqust a d iion n diply, talo m a de ea ,y tm r i l i s a bu s de vi o cl rs se el e ab Ke wo d : P y r s F GA. Cl s, de a quiion CP bu vi o c st i

基于FPGA的图像采集处理系统

基于FPGA的图像采集处理系统

基于FPGA的图像采集处理系统在现代科技领域,特别是计算机视觉和机器学习领域,图像采集和处理已经成为一项至关重要的任务。

在许多应用中,需要快速、准确地对图像进行处理,这推动了图像采集和处理系统的研究和发展。

现场可编程门阵列(FPGA)作为一种可编程逻辑器件,具有并行处理能力强、功耗低、可重构等优点,使其成为构建高性能图像采集处理系统的理想选择。

FPGA是一种可通过编程来配置其硬件资源的集成电路,它由大量的可配置逻辑块、内存块和输入/输出块组成。

这些逻辑块和内存块可以在FPGA上被重新配置,以实现不同的逻辑功能和算法。

输入/输出块可以用于与外部设备进行通信。

基于FPGA的图像采集处理系统通常包括图像采集、预处理、传输、主处理和输出等几个主要环节。

这个阶段主要通过相机等设备获取图像数据。

相机与FPGA之间的接口可以是并行的,也可以是串行的。

并行接口通常传输速度更快,但需要更多的线缆;串行接口则使用更少的线缆,但传输速度可能较慢。

这个阶段主要是对采集到的原始图像数据进行初步处理,如去噪、灰度化、彩色化等。

这些处理任务可以在FPGA上并行进行,以提高处理速度。

经过预处理的图像数据需要通过接口或总线传输到主处理单元(通常是CPU或GPU)进行处理。

在传输过程中,可以使用DMA(直接内存访问)技术,以减少CPU的负载。

在这个阶段,主处理单元(通常是CPU或GPU)会对传输过来的图像数据进行复杂处理,如特征提取、目标检测、图像识别等。

这些处理任务需要大量的计算资源和算法支持。

处理后的图像数据可以通过接口或总线传输到显示设备或用于进一步的处理。

基于FPGA的图像采集处理系统具有处理速度快、可重构性强、功耗低等优点,使其在许多领域都有广泛的应用前景。

特别是在需要实时图像处理的场景中,如无人驾驶、机器视觉等,基于FPGA的图像采集处理系统将具有更高的性能和效率。

随着FPGA技术和相关算法的发展,我们可以预见,基于FPGA的图像采集处理系统将在未来得到更广泛的应用和推广。

基于FPGA的高速图像采集处理系统设计与实现

基于FPGA的高速图像采集处理系统设计与实现

基于FPGA的高速图像采集处理系统设计与实现近年来,随着科技的不断进步,数字图像采集技术也迎来了一次腾飞。

作为一种高效、稳定的图像采集技术,基于FPGA的高速图像采集处理系统被广泛应用于视频监控、医学影像、工业检测等领域。

本文将详细介绍基于FPGA的高速图像采集处理系统的设计与实现过程,包括硬件平台的搭建、图像采集核心模块的设计与实现,以及数据传输与存储等相关内容。

一、硬件平台搭建硬件平台是基于FPGA进行设计的核心环节,同时也是决定整个系统性能的重要因素。

我们选用了Xilinx公司的Zynq系列SoC(System on Chip)作为硬件平台,该芯片结合了高性能的ARM Cortex-A9处理器和可编程逻辑门阵列(FPGA),能够提供很高的计算性能。

同时,该系列SoC还具备高速串行接口和DMA控制器,能够实现高速数据传输与存储。

在硬件平台搭建过程中,我们需要先将SoC与外部存储芯片、高速采集器等外设连接。

为了保证系统的稳定性和可靠性,我们还需要添加适当的电源管理模块、时钟管理模块和温度控制模块。

最后,我们将通过Vivado软件对硬件平台进行初始化和配置,以保证系统的正常运行。

二、图像采集核心模块的设计与实现图像采集核心模块是基于FPGA进行设计的重要模块,主要用于快速采集输入信号,并将其转换为数字信号进行后续的图像处理。

该模块的性能直接影响到整个系统的速度和稳定性,因此需要在设计时充分考虑系统需求和硬件资源。

我们选用了LVDS差分信号传输技术作为图像采集的接口方式,该技术具有低噪声、抗干扰性强等优点,可以保证高质量的图像采集。

同时,我们还采用了FPGA内部的片上ADC(Analog to Digital Converter)模块,能够实现快速、高精度的信号采集。

为了保证信号的稳定性和减小信号处理延迟,我们还采用了FPGA内部的DMA(Direct Memory Access)控制器,实现高速数据传输和转换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于FPGA的高速图像采集系统设计
引言
在低速的数据采集系统中,往往采用单片机或者DSP进行控制;而对于图像采集这种高速数据采集的场合,这种方案就不能满足需要。

因此这种方案极大浪费了单片机或DSP的端口资源且灵活性差;若改用串口方式收集数据,则一方面降低了数据采集的速度,另一方面极大地耗费CPU的资源。

本系统采用FPGA作为数据采集的主控单元,全部控制逻辑由硬件完成,速度快、成本低、灵活性强。

为了增加缓冲功能,系统在FPGA外扩展了256Mb的RAM,不仅增大了缓冲区容量,而且极大地降低了读写频率,有效地减轻了上位机CPU的负担。

在图像数据接口中,比较常见的是VGA、PCI—Express,而这些接口扩展性差、成本高。

本系统采用高速的USB接口作为与上位机通信的端口,速度快、易安装、灵活性强。

1 系统框图
系统框图如图1所示。

FPGA控制单元采用A1tera公司Cyclone II系列的EP2C5F256C6,主要由4个部分组成——主控模块、CMOS传感器接口、RAM 控制器以及EZ—USB接口控制器。

传感器接口负责完成SCCB时序控制,RAM控制器用于实现RAM读写与刷新操作的时序,USB接口模块完成主控模块与EZ—USB之间的数据读写;而主控模块负责对从EZ—USB部分接收过来的上位机命令进行解析,解析完命令后产生相应的信号控制各个对应模块,如CMOS传感器传输的图像格式、RAM的读写方式、突发长度等。

2 OV7620模块设计
图像传感器采用OV7620,接口图如图2所示。

该传感器功能强大,提供多种数据格式的输出,自动消除白噪声,白平衡、色彩饱和度、色调控制、窗口大小等均可通过内部的SCCB控制线进行设置。

OV7620属于CMOS彩色图像传感器。

它支持连续和隔行两种扫描方式,VGA与QVGA两种图像格式;最高像素为664×492,帧速率为30fps;数据格式包括YUV、YCrCb、RGB三种。

0V7620支持SCCB设置模式和自动加载默认设置模式,其选择由SCCB控制。

本系统只需要支持SCCB模式,因此在设计的时候将SBB接地。

上电后FP—GA通过SCCB总线对OV7620进行设置,系统也可接受上位机发过来命令,设置其工作模式。

SCCB总线时序类似于I2C总线时序,SIO一O相当于SDA,SIO一1相当于SCL。

OV7620工作于从模式,在写寄存器的过程中先发送OV7620的ID地址,然后发送写数据的目的寄存器地址,最后发送要写入的数据。

OV7620功能寄存器的地址为0x00~0x7C,通过设置相应的寄存器,可以使它工作于不同的模式。

例如,设置OV7620为连续扫描、RGB原始数据16位输出方式,需要设置寄存器0x12、Oxl3、Ox20、Ox28分别为OX2D、0x01、Ox02、0x20。

另外,图像输出的关键问题是帧同步,VO7620传感器中VSYNc、
HSYNC、HREF、PCLK分别表示垂直同步、水平同步、参考信号和像素输出同步,可以通过它们之间的配合使用,定位出每帧输出图像的起始位和结束位。

相关文档
最新文档