《两个变量的线性相关》教学设计2
两个变量的线性相关 优秀教案

变量间的相关关系【教学内容】本节课的主要内容为用最小二乘法思想求线性回归方程。
本节课内容作为上节课线性回归方程探究的知识发展,在知识上有很强的联系,所以,核心概念还是回归直线。
在“经历用不同估算方法描述两个变量线性相关关系”的过程后,解决好用数学方法刻画“从整体上看,各点与此直线的距离最小”,让学生在此基础上了解更为科学的数据处理方式——最小二乘法,有助于更好的理解核心概念“回归直线”,并最终体现回归方法的应用价值。
就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽,而后者是统计学学科研究的另一重要领域。
了解“最小二乘法思想”,比较各种“估算方法”,体会它的相对科学性,既是统计学教学发展的需要,又是“在体会此思想的过程中促进了学生对核心概念的进一步理解”的需要。
“最小二乘法思想”作为本节课的核心思想,由此得以体现,而回归思想和贯穿统计学科中的随机思想,也在本节课中需有所渗透。
所以,在内容重点的侧重上,本节课与上节课有较大的区别:上节课侧重于估算方法设计,在不同的数据处理过程中,体会回归直线作为变量相关关系代表这一概念特征;本节课侧重于估算方法评价与实际应用,在评价中使学生体会核心思想,理解核心概念。
考虑到本节课的教学侧重点与新课程标准的要求,对线性回归方程系数的计算公式,可直接给出。
由于公式的复杂性,一方面,既要通过教学设计合理体现知识发生过程,不搞“割裂”;另一方面,要充分利用计算机或计算器,简化繁琐的求解系数过程,简化过于形式化的证明说理过程。
【教学重点】知道最小二乘法思想,并能根据给出的线性回归方程的系数公式建立线性回归方程。
【教学难点】如何通过数学方法刻画“从整体上看,各点与此直线的距离最小”并在此过程中了解最小二乘法思想。
回归方程中的斜率b和截距a的计算公式,用计算器求出线性回归方程。
通过大量的回归直线比较分析,体会回归思想和随机思想。
【教学目标】本节课要求学生了解最小二乘法思想,掌握根据给出的线性回归方程系数公式建立线性回归方程,理解线性回归方程概念和回归思想,在以上过程中体会随机思想:1.能用数学符号刻画出“从整体上看,各点与此直线的点的偏差”的表达方式;2.通过减少样本点个数,经历对表达式的展开,把“偏差最小”简化为“二次多项式”最小值问题,通过逻辑推理,使学生接受最小二乘法思想,体会到它的科学性,在此过程中了解最小二乘法思想;3.能结合具体案例,经历数据处理步骤,根据回归方程系数公式建立回归方程;4.通过改变同一问题下样本点的选择进而对照回归方程的差异,体会随机思想;5.利用回归方程预测,体现用“确定关系研究相关关系”的回归思想。
高中数学 (2.3.2 两个变量的线性相关 第2课时)教案 新人教A版必修3

高考数学高中数学(2.3.2 两个变量的线性相关第2课时)示范教案新人教A版必修3导入新课思路1客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说.事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度.所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系.为表示这种相关关系,我们接着学习两个变量的线性相关——回归直线及其方程.思路2某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/℃26 18 13 10 4 -1 杯数20 24 34 38 50 64 如果某天的气温是-5 ℃,你能根据这些数据预测这天小卖部卖出热茶的杯数吗?为解决这个问题我们接着学习两个变量的线性相关——回归直线及其方程.推进新课新知探究提出问题(1)作散点图的步骤和方法?(2)正、负相关的概念?(3)什么是线性相关?(4)看人体的脂肪百分比和年龄的散点图,当人的年龄增加时,体内脂肪含量到底是以什么方式增加的呢?(5)什么叫做回归直线?(6)如何求回归直线的方程?什么是最小二乘法?它有什么样的思想?(7)利用计算机如何求回归直线的方程?(8)利用计算器如何求回归直线的方程?活动:学生回顾,再思考或讨论,教师及时提示指导.讨论结果:(1)建立相应的平面直角坐标系,将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)(2)如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(3)如果所有的样本点都落在某一直线附近,变量之间就有线性相关的关系.(4)大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加,呈正相关的趋势,我们可以从散点图上来进一步分析.(5)如下图:从散点图上可以看出,这些点大致分布在通过散点图中心的一条直线附近.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线(regression line).如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚地了解年龄与体内脂肪含量的相关性.就像平均数可以作为一个变量的数据的代表一样,这条直线可以作为两个变量具有线性相关关系的代表.(6)从散点图上可以发现,人体的脂肪百分比和年龄的散点图,大致分布在通过散点图中心的一条直线.那么,我们应当如何具体求出这个回归方程呢?有的同学可能会想,我可以采用测量的方法,先画出一条直线,测量出各点与它的距离,然后移动直线,到达一个使距离的和最小的位置,测量出此时的斜率和截距,就可得到回归方程了.但是,这样做可靠吗?有的同学可能还会想,在图中选择这样的两点画直线,使得直线两侧的点的个数基本相同.同样地,这样做能保证各点与此直线在整体上是最接近的吗?还有的同学会想,在散点图中多取几组点,确定出几条直线的方程,再分别求出各条直线的斜率、截距的平均数,将这两个平均数当成回归方程的斜率和截距.同学们不妨去实践一下,看看这些方法是不是真的可行?(学生讨论:1.选择能反映直线变化的两个点.2.在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.3.多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.)教师:分别分析各方法的可靠性.如下图:上面这些方法虽然有一定的道理,但总让人感到可靠性不强.实际上,求回归方程的关键是如何用数学的方法来刻画“从整体上看,各点与此直线的距离最小”.人们经过长期的实践与研究,已经得出了计算回归方程的斜率与截距的一般公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====.)1(,)())((2121121x b y a x n x yx n yx x x y y x x b n i i ni ii n i i ni i i其中,b 是回归方程的斜率,a 是截距.推导公式①的计算比较复杂,这里不作推导.但是,我们可以解释一下得出它的原理.假设我们已经得到两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ), 且所求回归方程是^y =bx+a,其中a 、b 是待定参数.当变量x 取x i (i=1,2,…,n)时可以得到^y =bx i +a(i=1,2,…,n), 它与实际收集到的y i 之间的偏差是y i -^y =y i -(bx i +a)(i=1,2,…,n).这样,用这n 个偏差的和来刻画“各点与此直线的整体偏差”是比较合适的.由于(y i -^y )可正可负,为了避免相互抵消,可以考虑用∑=-ni i iy y1^||来代替,但由于它含有绝对值,运算不太方便,所以改用Q=(y 1-bx 1-a)2+(y 2-bx 2-a)2+…+(y n -bx n -a)2②来刻画n 个点与回归直线在整体上的偏差. 这样,问题就归结为:当a,b 取什么值时Q 最小,即总体偏差最小.经过数学上求最小值的运算,a,b 的值由公式①给出.通过求②式的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和最小,这一方法叫做最小二乘法(method of least square ).(7)利用计算机求回归直线的方程.根据最小二乘法的思想和公式①,利用计算器或计算机,可以方便地求出回归方程. 以Excel 软件为例,用散点图来建立表示人体的脂肪含量与年龄的相关关系的线性回归方程,具体步骤如下:①在Excel 中选定表示人体的脂肪含量与年龄的相关关系的散点图(如下图),在菜单中选定“图表”中的“添加趋势线”选项,弹出“添加趋势线”对话框.②单击“类型”标签,选定“趋势预测/回归分析类型”中的“线性”选项,单击“确定”按钮,得到回归直线.③双击回归直线,弹出“趋势线格式”对话框.单击“选项”标签,选定“显示公式”,最后单击“确定”按钮,得到回归直线的回归方程^y =0.577x-0.448.(8)利用计算器求回归直线的方程.用计算器求这个回归方程的过程如下:所以回归方程为^y =0.577x-0.448.正像本节开头所说的,我们从人体脂肪含量与年龄这两个变量的一组随机样本数据中,找到了它们之间关系的一个规律,这个规律是由回归直线来反映的. 直线回归方程的应用:①描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系.②利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间.③利用回归方程进行统计控制规定Y 值的变化,通过控制x 的范围来实现统计控制的目标.如已经得到了空气中NO 2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO 2的浓度. 应用示例思路1例1 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 摄氏温度/℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654(1)画出散点图;(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律; (3)求回归方程;(4)如果某天的气温是2 ℃,预测这天卖出的热饮杯数. 解:(1)散点图如下图所示:(2)从上图看到,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间呈负相关,即气温越高,卖出去的热饮杯数越少.(3)从散点图可以看出,这些点大致分布在一条直线的附近,因此,可用公式①求出回归方程的系数.利用计算器容易求得回归方程^y =-2.352x+147.767.(4)当x=2时,^y =143.063.因此,某天的气温为2 ℃时,这天大约可以卖出143杯热饮. 思考气温为2 ℃时,小卖部一定能够卖出143杯左右热饮吗?为什么? 这里的答案是小卖部不一定能够卖出143杯左右热饮,原因如下: 1.线性回归方程中的截距和斜率都是通过样本估计出来的,存在随机误差,这种误差可以导致预测结果的偏差.2.即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x 的预报值,能够与实际值y 很接近.我们不能保证点(x,y )落在回归直线上,甚至不能百分之百地保证它落在回归直线的附近,事实上,y=bx+a+e=^y +e.这里e 是随机变量,预报值^y 与实际值y 的接近程度由随机变量e 的标准差所决定.一些学生可能会提出问题:既然不一定能够卖出143杯左右热饮,那么为什么我们还以“这天大约可以卖出143杯热饮”作为结论呢?这是因为这个结论出现的可能性最大.具体地说,假如我们规定可以选择连续的3个非负整数作为可能的预测结果,则我们选择142,143和144能够保证预测成功(即实际卖出的杯数是这3个数之一)的概率最大. 例2 下表为某地近几年机动车辆数与交通事故数的统计资料. 机动车辆数x /千台 95 110 112 120 129 135 150180 交通事故数y /千件6.27.57.78.58.79.810.213(1)请判断机动车辆数与交通事故数之间是否有线性相关关系,如果不具有线性相关关系,说明理由;(2)如果具有线性相关关系,求出线性回归方程. 解:(1)在直角坐标系中画出数据的散点图,如下图.直观判断散点在一条直线附近,故具有线性相关关系. (2)计算相应的数据之和:∑=81i ix=1 031,∑=81i iy=71.6,∑=812i ix=137 835,∑=81i ii yx =9 611.7.将它们代入公式计算得b≈0.077 4,a=-1.024 1, 所以,所求线性回归方程为=0.077 4x-1.024 1.思路2例1 给出施化肥量对水稻产量影响的试验数据: 施化肥量x 15 20 25 30 35 40 45 水稻产量y330345365405445450455(1)画出上表的散点图; (2)求出回归直线的方程. 解:(1)散点图如下图.(2)表中的数据进行具体计算,列成以下表格:i 1 2 3 4 5 6 7 x i 15 20 25 30 35 40 45 y i 330 345 365 405 445 450 455 x i y i4 9506 9009 12512 15015 57518 00020 47587175,1132725,7000,3.399,3071712712=====∑∑∑===i i i i iiiy x y x y x故可得到 b=230770003.39930787175⨯-⨯⨯-≈4.75,a=399.3-4.75×30≈257.从而得回归直线方程是^y =4.75x+257.例2 一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得数据如下: 零件个数x (个) 10 20 30 40 50 60 70 80 90 100 加工时间y (分)626875818995102108115122请判断y 与x 是否具有线性相关关系,如果y 与x 具有线性相关关系,求线性回归方程. 解:在直角坐标系中画出数据的散点图,如下图.直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:∑===1012,7.91,55i ix y x =38 500,∑=1012i iy =87 777,∑=101i i i y x =55 950.b=2210121015510385007.915510559501010⨯-⨯⨯-=--∑∑==x x yx yx i i i ii≈0.668. a=x b y -=91.7-0.668×55≈54.96.因此,所求线性回归方程为^y =bx+a=0.668x+54.96. 例3 已知10条狗的血球体积及红血球数的测量值如下: 血球体积x(mL)45424648423558403950红血球数y(百万) 6.53 6.30 9.52 7.50 6.99 5.90 9.49 6.20 6.55 8.72 (1)画出上表的散点图; (2)求出回归直线的方程.解:(1)散点图如下.(2)101=x (45+42+46+48+42+35+58+40+39+50)=44.50, 101=y (6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+8.72)=7.37. 设回归直线方程为^y =bx+a,则b=210121011010x x yx yx i ii ii --∑∑===0.175,a=x b y -=-0.418,所以所求回归直线的方程为^y =0.175x-0.148.点评:对一组数据进行线性回归分析时,应先画出其散点图,看其是否呈直线形,再依系数a,b 的计算公式,算出a,b .由于计算量较大,所以在计算时应借助技术手段,认真细致,谨防计算中产生错误,求线性回归方程的步骤:计算平均数y x ,;计算x i 与y i 的积,求∑x i y i ;计算∑x i 2;将结果代入公式求b ;用a=x b y -求a ;写出回归直线方程. 知能训练1.下列两个变量之间的关系哪个不是函数关系( )A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和它的内角和D.人的年龄和身高 答案:D2.三点(3,10),(7,20),(11,24)的线性回归方程是( ) A.^y =5.75-1.75x B.^y =1.75+5.75x C.^y =1.75-5.75x D.^y =5.75+1.75x答案:D3.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料: 使用年限x 2 3 4 5 6 维修费用y2.23.85.56.57.0设y 对x 呈线性相关关系.试求: (1)线性回归方程^y =bx+a 的回归系数a,b ; (2)估计使用年限为10年时,维修费用是多少? 答案:(1)b=1.23,a=0.08;(2)12.38.4.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:y=6+4x ;模型2:y=6+4x+e .(1)如果x=3,e=1,分别求两个模型中y 的值;(2)分别说明以上两个模型是确定性模型还是随机模型. 解:(1)模型1:y=6+4x=6+4×3=18; 模型2:y=6+4x+e=6+4×3+1=19.(2)模型1中相同的x 值一定得到相同的y 值,所以是确定性模型;模型2中相同的x 值,因δ的不同,所得y 值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型. 5.以下是收集到的新房屋销售价格y 与房屋大小x 的数据: 房屋大小x (m 2) 80 105 110 115135 销售价格y (万元)18.42221.624.829.2(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程. 解:(1)散点图如下图.(2)n=5,∑=51i ix=545,x =109,∑=51i iy=116,y =23.2,∑=512i ix=60 952,∑=51i ii yx =12 952,b=2545609525116545129525-⨯⨯-⨯≈0.199,a=23.2-0.199×109≈1.509, 所以,线性回归方程为y=0.199x+1.509. 拓展提升某调查者从调查中获知某公司近年来科研费用支出(X i )与公司所获得利润(Y i )的统计资料如下表:科研费用支出(X i )与利润(Y i )统计表 单位:万元年份 科研费用支出利润 1998 1999 2000 2001 2002 2003 5 11 4 5 3 2 31 40 30 34 25 20 合计30180要求估计利润(Y i )对科研费用支出(X i )的线性回归模型.解:设线性回归模型直线方程为:i i X Y 1^0^^ββ+=,因为:630==∑nX x i=5,6180==∑nYY i=30, 根据资料列表计算如下表:年份 X i Y i X i Y i X i 2X i -X Y i -Y(X i -X )2(X i -X )(Y i -Y )1998 1999 2000 2001 2002 2003 5 11 4 5 3 2 31 40 30 34 25 20 155 440 120 170 75 40 25 121 16 25 9 4 0 6 -1 0 -2 -3 1 10 0 4 -5 -10 0 36 1 0 4 9 0 60 0 0 10 30 合计301801 00020050100现求解参数β0、β1的估计值: 方法一:3006009001200540060003020061803010006)(2221^=--=-⨯⨯-⨯=--=∑∑∑∑i i ii i X X n Y Y X n β=2, x Y 1^0^ββ-==30-2×5=20.方法二:501005620030561000)(2221^=⨯-⨯⨯-=--=∑∑x n X Y x n Y X ii i β=2, x Y 1^0^ββ-==30-2×5=20.方法三:50100)())((21^=---=∑∑x X Y Y x X ii iβ=2, x Y 1^0^ββ-==30-2×5=20.所以利润(Y i )对科研费用支出(X i )的线性回归模型直线方程为:i Y ^=20+2X i . 课堂小结1.求线性回归方程的步骤: (1)计算平均数y x ,; (2)计算x i 与y i 的积,求∑x i y i ;(3)计算∑x i 2,∑y i 2,11 (4)将上述有关结果代入公式⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====x b y a x n x y x n y x x x y y x x b n i i n i i i n i i n i i i ,)())((1221121 求b,a,写出回归直线方程.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.作业习题2.3A 组3、4,B 组1、2.设计感想本节课在上节课的基础上,利用实例分析了散点图的分布规律,推导出了线性回归直线的方程的求法,并利用回归直线的方程估计可能的结果,本节课讲得较为详细,实例较多,便于同学们分析比较.思路1和思路2的例题对知识进行了巩固和加强,另外,本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育和增强学生的自信心,养成良好的学习态度,树立时间观,培养勤奋、刻苦的精神.。
两个变量的线性相关教案

两个变量的线性相关教案第一章:引言1.1 学习目标了解两个变量线性相关的概念掌握散点图在表示两个变量关系中的应用1.2 教学内容介绍两个变量线性相关的概念解释散点图在表示两个变量关系中的应用1.3 教学活动引入两个变量线性相关的概念,让学生初步了解通过实际例子,展示散点图在表示两个变量关系中的应用1.4 作业完成练习题,让学生巩固两个变量线性相关的概念第二章:线性相关性的判断2.1 学习目标学会判断两个变量之间的线性相关性掌握线性相关的判定方法2.2 教学内容介绍判断两个变量之间线性相关性的方法解释线性相关的判定方法2.3 教学活动通过实际例子,展示如何判断两个变量之间的线性相关性解释线性相关的判定方法,让学生能够运用到实际问题中2.4 作业完成练习题,让学生巩固判断两个变量之间线性相关性的方法第三章:线性回归方程的求解3.1 学习目标学会求解线性回归方程掌握线性回归方程的求解方法3.2 教学内容介绍线性回归方程的概念解释线性回归方程的求解方法3.3 教学活动通过实际例子,展示如何求解线性回归方程解释线性回归方程的求解方法,让学生能够运用到实际问题中3.4 作业完成练习题,让学生巩固线性回归方程的求解方法第四章:线性回归方程的应用4.1 学习目标学会应用线性回归方程解决实际问题掌握线性回归方程在实际问题中的应用方法4.2 教学内容介绍线性回归方程在实际问题中的应用解释线性回归方程的应用方法4.3 教学活动通过实际例子,展示如何应用线性回归方程解决实际问题解释线性回归方程的应用方法,让学生能够运用到实际问题中4.4 作业完成练习题,让学生巩固线性回归方程在实际问题中的应用方法5.1 学习目标掌握线性回归方程的求解与应用方法5.2 教学内容提出拓展问题,引导学生深入思考5.3 教学活动提出拓展问题,引导学生深入思考线性相关知识的应用5.4 作业完成练习题,让学生巩固本章所学内容回答拓展问题,展示学生对线性相关知识的深入理解第六章:相关系数的概念与计算6.1 学习目标理解相关系数的概念学会计算线性相关系数6.2 教学内容介绍相关系数的概念及其取值范围解释如何计算线性相关系数(皮尔逊相关系数)6.3 教学活动通过实际例子,解释相关系数的概念使用计算器或软件演示如何计算线性相关系数6.4 作业完成练习题,让学生巩固相关系数的概念及计算方法第七章:非线性关系的处理7.1 学习目标理解非线性关系与线性关系的区别学会处理非线性关系7.2 教学内容解释非线性关系的概念介绍处理非线性关系的方法,如多项式回归、逻辑回归等7.3 教学活动通过实际例子,展示非线性关系的特征介绍处理非线性关系的方法和工具7.4 作业完成练习题,让学生理解非线性关系及其处理方法第八章:线性回归模型的评估8.1 学习目标学会评估线性回归模型的有效性掌握评估线性回归模型的常用方法8.2 教学内容介绍评估线性回归模型的指标,如均方误差(MSE)、决定系数(R²)等解释如何使用这些指标来评估模型的有效性8.3 教学活动通过实际例子,展示如何评估线性回归模型的有效性介绍常用的评估方法和工具8.4 作业完成练习题,让学生掌握评估线性回归模型的方法和指标第九章:多重线性回归分析9.1 学习目标理解多重线性回归的概念学会进行多重线性回归分析9.2 教学内容介绍多重线性回归的概念和应用场景解释如何进行多重线性回归分析9.3 教学活动通过实际例子,展示多重线性回归的应用使用统计软件演示如何进行多重线性回归分析9.4 作业完成练习题,让学生理解多重线性回归的概念和应用第十章:案例分析与实践10.1 学习目标能够将线性回归模型应用于实际问题学会分析实际问题中的线性关系10.2 教学内容分析实际问题,确定变量之间的关系应用线性回归模型解决实际问题10.3 教学活动分析一个实际问题,引导学生识别变量之间的线性关系指导学生应用线性回归模型解决问题10.4 作业完成案例分析报告,让学生将线性回归模型应用于实际问题讨论案例中的发现和解决方法,展示学生对线性回归模型的深入理解重点和难点解析一、线性相关性的判断学生可能难以理解如何准确判断两个变量之间的线性相关性。
两个变量的线性相关教案

两个变量的线性相关教案第一章:引言1.1 教学目标使学生理解什么是两个变量的线性相关性。
使学生掌握散点图的绘制和解读。
使学生了解线性相关的概念和特点。
1.2 教学内容介绍两个变量的概念。
解释线性相关性的概念。
介绍散点图的概念和绘制方法。
介绍线性相关的特点和判定方法。
1.3 教学方法使用案例和实际数据引出两个变量的线性相关性概念。
通过绘制和解读散点图来展示线性相关性的可视化。
引导学生进行小组讨论和思考,探索线性相关的特点和判定方法。
第二章:散点图的绘制和解读2.1 教学目标使学生能够熟练地绘制散点图。
使学生能够正确地解读散点图中的信息。
2.2 教学内容介绍散点图的绘制方法。
介绍散点图中的坐标轴表示的意义。
介绍散点图中点的含义和解读方法。
2.3 教学方法演示散点图的绘制方法,并进行实践操作。
使用实际数据集进行散点图的绘制和解读练习。
引导学生进行小组讨论和分享,互相学习和交流。
第三章:线性相关的概念和特点3.1 教学目标使学生理解线性相关的概念。
使学生掌握线性相关的特点。
3.2 教学内容介绍线性相关的概念。
介绍线性相关的特点。
3.3 教学方法通过案例和实际数据引导学生理解线性相关的概念。
使用散点图来展示线性相关的特点。
引导学生进行小组讨论和思考,探索线性相关的判定方法。
第四章:线性相关的判定方法4.1 教学目标使学生掌握线性相关的判定方法。
使学生能够应用判定方法解决实际问题。
4.2 教学内容介绍线性相关的判定方法。
介绍判定方法的原理和步骤。
4.3 教学方法通过案例和实际数据引导学生理解和掌握线性相关的判定方法。
进行实践操作和练习,应用判定方法解决实际问题。
引导学生进行小组讨论和分享,互相学习和交流。
第五章:线性回归方程的建立与应用5.1 教学目标使学生理解线性回归方程的概念。
使学生掌握线性回归方程的建立方法。
使学生能够应用线性回归方程进行预测和分析。
5.2 教学内容介绍线性回归方程的概念。
介绍线性回归方程的建立方法。
高二数学两个变量的线性相关教学教案

高二数学两个变量的线性相关教学教案
数学两个变量的线性相关教学教案
教学目标:
经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
教学重点:
经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
教学过程:
1.回顾上节课的案例分析给出如下概念:
1回归直线方程
2回归系数
2.最小二乘法
3.直线回归方程的应用
1描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系
2利用回归方程进行预测;把预报因子即自变量x代入回归方程对预报量即因变量Y进行估计,即可得到个体Y值的容许区间。
3利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。
如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
4.应用直线回归的注意事项
1做回归分析要有实际意义;
2回归分析前,最好先作出散点图;
3回归直线不要外延。
感谢您的阅读,祝您生活愉快。
高中数学3必修A版《两个变量的线性相关》教案

两个变量的线性相关(第2课时)教材:普通高中课程标准实验教科书数学3(必修)人民教育出版社A版一、教学目标根据课标的要求,结合高一学生的认知特点确定本节课的教学目标如下:知识与技能:1.了解最小二乘法思想,理解线性回归方程概念和回归思想;2.能根据线性回归方程系数公式建立线性回归方程。
3.利用回归方程预测,体会用“确定关系研究相关关系”的回归思想。
过程与方法:结合具体案例,经历数据处理步骤和建立线性回归方程的过程,增强应用数学知识和运用信息技术解决实际问题的意识。
情感态度与价值观努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆猜想勇于创新氛围;通过互动探究学习,养成倾听别人意见的良好品质。
二、教学重点、难点教学重点:1.了解最小二乘法和回归分析的思想;2.能利用给出的线性回归方程系数公式求回归直线教学难点:建立回归思想三、教学方法与手段多媒体辅助、启发式和探究式相结合教学四、教学过程复习引入观察下列三个散点图,哪些表示变量间具有相关性?两个变量的线性相关----若两个变量x和y的散点图中所有点看上去都在一条直线附近波动,则称变量间是线性相关的。
复习旧知,向学生初步渗透回归分析的思想:用确定的函数关系对不确定的相关关系进行预测、估计,从而引出课题。
创设情景,探究问题互动探究一:将收集到的全班同学的身高和右手一拃长的数据,输入电脑,画出散点图,观察图形,有什么规律。
1.怎样确定回归直线?分组讨论,分组表述。
方案1:经过点最多的直线方案2:将样本数据分成两组,分别求出两组的平均数,以这两点确定的直线方案3:使得分布在直线两侧的点的个数基本相同方案4:选择两点确定几条直线方程,再分别求出各条直线的斜率、截距的平均数,将平均数当成是回归方程的斜率和截距2.以上方案哪个比较可靠?从整体上看,各点与此直线的距离最小互动探究二:1.你能用代数式来刻画“从整体上看,各点与此直线的距离最小吗?”(引导学生将距离转化为偏差∧-yyi处理))()()(2211∧∧∧-++-+-=nnyyyyyyQ =∑--=niiiabxy1)(2.偏差有正负,以下三种处理方案哪种比较好呢?方案一:∑--=niiiabxy1最小方案二:21)(∑--=niiiabxy最小因为教学中要体现以学生发展为本的理念,充分给学生思考的时间、交流的机会以及展示思维过程的舞台,分小组讨论就能使学生之间的思维产生碰撞。
2.3.两个变量的线性相关-人教A版必修三教案
2.3.两个变量的线性相关-人教A版必修三教案
一、知识点概述
本节主要介绍两个变量之间的线性相关性的概念和判断方法。
通过本节学习,学生应该能够掌握以下知识点:
1.什么是两个变量之间的线性相关性。
2.判断两个变量之间是否存在线性相关关系的方法。
3.相关系数的定义及其计算方法。
4.相关系数的含义及其应用。
二、教学重难点分析
本节主要教学重点为相关系数的定义及其计算方法,以及相关系数的含义及其应用。
教学难点在于如何理解两个变量之间的线性相关性及其判断方法。
三、教学过程设计
3.1 导入新知识
通过实验或者案例介绍两个变量之间的线性相关性的概念,引导学生思考两个变量之间的关系及其表现形式。
3.2 讲解相关系数的定义及其计算方法
介绍相关系数的定义及其计算方法,包括协方差和标准差的计算方法,以及相关系数的计算公式。
3.3 案例分析
通过案例讲解如何使用相关系数判断两个变量之间的相关性,引导学生掌握相关系数的应用方法。
3.4 思考扩展
通过问题的提出和分组讨论,引导学生思考两个变量之间的线性相关性和非线性相关性的区别,以及相关系数的局限性。
四、教学反思
通过本节课程的学习,学生应该已经掌握了相关系数的基本概念及其应用方法,并能够在实际问题中运用相关系数进行分析和判断。
教师应该及时检查学生的学习效果,针对学生掌握情况进行巩固和强化。
同时,教师还应多组织实际应用情境、案例和练习,加强学生对知识点的理解和掌握。
高中数学 2.3.2 两个变量的线性相关教案 新人教B版必
高中数学 2.3.2 两个变量的线性相关教案新人教B版必修3整体设计教学分析由于用具体的例子来解释线性回归容易理解,所以建议以实际例子引入,让学生用散点图直观认识两个变量的相关关系,让学生尝试找到最佳的近似直线.值得注意的是:求回归直线方程,通常是用计算器来完成的,在很多函数型科学计算器中,可通过直接按键得出线性回归方程的系数,教科书中给出了操作过程,而如果要用一般的科学计算器进行计算,则要先列出相应的表格.三维目标1.经历用不同估算方法描述两个变量线性相关的过程,会建立线性回归方程.2.能利用回归方程估计变量的值,提高学生解决问题的能力.3.通过对数据的分析,增强学生的社会实践能力.重点难点教学重点:会求线性回归方程,并进行线性回归分析,体会最小二乘法的思想.教学难点:用最小二乘法求线性回归方程.课时安排1课时教学过程导入新课思路1.根据一组观测到的数据确定变量x与y之间是线性相关关系,如果x取一个值,那么怎样估计变量y的值呢?教师点出课题.思路2.如果散点图中各点在一条直线附近,那么这两个变量具有线性相关关系,那么怎样求出这条直线方程呢?教师点出课题.推进新课新知探究提出问题①变量x与y的散点图如下图所示,如果近似成线性关系的话,请画出一条直线来近似地表示这种线性关系.②同学们也可以自己尝试制定标准来画出近似直线,关键在于这一标准是否合理,是否能够得到最佳的近似直线(最优拟合直线).③怎样确定a与b呢?④写出求回归直线方程的算法.讨论结果:①根据不同的标准,可以画出不同的直线来近似表示这种线性相关关系,比如可以连接最左侧点和最右侧点得到一条直线(图1),或者让画出的直线上方的点和下方的点数目相等(图2)。
图1 图2②由图可见,所有数据点都分布在一条直线附近.显然这样的直线还可以画出许多条,而我们希望找出其中的一条,它能最好地反映x 与Y 之间的关系.换言之,我们要找出一条直线,使这条直线“最贴近”已知的数据点.记此直线方程为y ^=a +bx①这里在y 的上方加记号“Y”,是为了区分Y 的实际值y ,表示当x 取值x i (i =1,2,…,6)时,Y 相应的观察值为y i ,而直线上对应于x i 的纵坐标是y ^i =a +bx i .①式叫做Y 对x 的回归直线方程,b 叫做回归系数,要确定回归直线方程①,只要确定a 与回归系数b.③下面我们来研究回归直线方程的求法,设x ,Y 的一组观察值为(x i ,y i ) i =1,2,…,n ,且回归直线方程为y ^=a +bx.当x 取值x i (i =1,2,…,n)时,Y 的观察值为y i ,差y i -y ^i (i =1,2,…,n)刻画了实际观察值y i 与回归直线上相应点纵坐标之间的偏离程度,如下图所示.我们希望这n 个离差构成的总离差越小越好,才能使所找的直线很贴近已知点.一个自然的想法是把各个离差加起来作为总离差.可是,由于离差有正有负,直接相加会相互抵消,这样就无法反映这些数据点的贴近程度,即这个总离差不能用n 个离差之和∑i =1n(y i -y ^i )来表示,通常是用离差的平方和,即Q =∑i =1n(y i -a -bx i )2作为总离差,并使之达到最小.这样,回归直线就是所有直线中Q 取最小值的那一条.由于平方又叫二乘方,所以这种使“离差平方和为最小”的方法,叫做最小二乘法.用最小二乘法求回归直线方程中的a ,b 有下面的公式:b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a ^=y -b ^x ,其中a ,b 的上方加“y”,表示是由观察值按最小二乘法求得的估计值,b ^也叫回归系数,a ^,b ^求出后,回归直线方程就建立起来了.④算法: S1S2 计算a ^,b ^的值.b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a ^=y -b ^x , S3 写出回归直线方程y ^=a ^x +b ^.应用示例思路1试用最小二乘法求出线性回归方程.解:从散点图中可以看出,表中的两个变量是线性相关的.先列表求出x =353,y =1153,其他数据如下表.进而,可以求得b ^=1 910-6×353×11531 286-6×353×353≈-1.648,a ^=y -b ^x ≈57.557.于是,线性回归方程为y ^=57.557-1.648x.点评:利用a ^=y -b ^x 求得a ^的值,则有y =b ^x +a ^,所以求得的线性回归方程y ^=b ^x +a ^必过点(x ,y ).例2在某种产品表面进行腐蚀刻线试验,得到腐蚀深度Y与腐蚀时间x之间相应的一组观察值如下表:(2)求Y对x的回归直线方程;(结果保留到小数点后3位数字)(3)试预测腐蚀时间为100 s时腐蚀深度是多少.分析:利用回归直线方程预测腐蚀时间为100 s时腐蚀深度.解:(1)散点图如下图.(2)根据公式②求腐蚀深度Y 对腐蚀时间x 的回归直线方程的步骤如下: Ⅰ.先把数据列成表.Ⅱ.计算a ^,b ^的值.由上表分别计算x ,y 的平均数得x =51011,y =21411.代入公式②得(注意:不必把x ,y 化为小数,以减小误差)b ^=13 910-11×51011×2141136 750-510112≈0.304 3≈0.304a ^=21411-0.304 3×51011≈5.346.Ⅲ.写出回归直线方程.腐蚀深度Y 对腐蚀时间x 的回归直线方程为 y ^=0.304x +5.346.这里的回归系数b ^=0.304,它的意义是:腐蚀时间x 每增加一个单位(s),深度Y 平均增加0.304个单位(μm).(3)根据上面求得的回归直线方程,当腐蚀时间为100 s 时,y ^=0.304×100+5.346=35.86(μm),即腐蚀深度大约是35.86 μm.点评:利用回归直线方程可以对总体进行预测,值得注意的是得出的回归直线方程并不思路2例1给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图;(2)求出回归直线的方程. 解:(1)散点图如下图.(2)计算得b ^≈4.75,a ^≈257.从而得回归直线方程是y ^=257+4.75x.直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:=b ^x +a ^=54.96+0.668x.2设对变量x ,Y 有如下观察数据:使用函数型计算器求Y 对x 的回归直线方程.(结果保留到小数点后3位数字) 解:按键MODE 3 1(进入线性回归计算状态)SHIFT CLR 1 =(将计算器存储器设置成初始状态)151, 40 DT 152 , 41 DT 153 , 41 DT 154 , 41.5 DT 156, 42 DT 157 ,42.5DT 158 , 43 DT 160 , 44 DT 160, 45 DT 162 , 45 DT 163 , 46 DT 164 , 45.5 DT 继续按下表按键即 a ^≈-27.759,b ^≈0.450.所以Y 对x 的回归直线方程为y ^=0.450x -27.759. 直观判断散点在一条直线附近,故具有线性相关关系. =-1.024 1,所以,所求线性回归方程为y ^=-1.024 1+0.077 4x.知能训练1.已知10只狗的血球体积及红血球数的测量值如下:(2)求出回归直线的方程.(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程. 参考答案:1.解:(1)散点图如下图所示.(2)x =110(45+42+46+48+42+35+58+40+39+50)=44.50, y =110(6.53+6.30+9.52+7.50+6.99+5.90+9.49+6.20+6.55+8.72)=7.37. 设回归直线方程为y ^=a ^+b ^x ,则b ^=0.175,a ^=y -b ^x =-0.418, 所以所求回归直线的方程为y ^=-0.418+0.175x. 2.解:(1)散点图如下图.(2)计算得b ^≈0.196 2,a ^≈1.816 6,所以,线性回归方程为y ^=1.816 6+0.196 2x.拓展提升某调查者从调查中获知某公司近年来科研费用支出x 与公司所获得利润Y 的统计资料如下表:科研费用支出x 与利润Y 统计表 单位:万元解:设线性回归模型直线方程为y ^=a ^+b ^x ,因为x =306=5,y =1806=30, 求解a ^、b ^的估计值:b ^=2,a ^=20.所以利润Y 对科研费用支出x 的线性回归模型直线方程为y ^=20+2x. 课堂小结1.求线性回归方程.2.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.作业 本节练习B 1、2.设计感想本节课在上节课的基础上,利用实例分析了散点图的分布规律,推导出了线性回归直线的方程的求法,并利用回归直线的方程估计可能的结果,本节课讲得较为详细,实例较多,便于同学们分析比较.本节课通过选取一些学生特别关心的身边事例,对学生进行思想情操教育、意志教育,使其养成良好的学习态度.备课资料相关关系的强与弱我们知道,两个变量x 、y 正(负)相关时,它们就有相同(反)的变化趋势,即当x 由小变大时,相应的y 有由小(大)变大(小)的趋势,因此可以用回归直线来描述这种关系.与此相关的一个问题是:如何描述x 和y 之间的这种线性关系的强弱?例如,物理成绩与数学成绩正相关,但数学成绩能够在多大程度上决定物理成绩?这就是相关强弱的问题,类似的还有吸烟与健康的负相关强度、父母身高与子女身高的正相关强度、农作物的产量与施肥量的正相关强度等.统计中用相关系数r 来衡量两个变量之间线性关系的强弱.若相应于变量x 的取值x i ,变量y 的观测值为y i (1≤i≤n),则两个变量的相关系数的计算公式为r =∑i =1ni -x i -y ∑i =1ni -x 2∑i =1n i -y 2.不相同的相关性可以从散点图上直观地反映出来.图(1)反映了变量x、y之间很强的线性相关关系,而图(2)中的两个变量的线性相关程度很弱.对于相关系数r,首先值得注意的是它的符号.当r为正时,表明变量x、y正相关;当r为负时,表明变量x、y负相关.反映在散点图上,图(1)中的变量x、y正相关,这时的r为正;图(2)中的变量x、y负相关,这时的r为负.另一个值得注意的是r的大小.统计学认为,对于变量x、y,如果r∈[-1,-0.75],那么负相关很强;如果r∈[0.75,1],那么正相关很强;如果r∈(-0.75,-0.30]或r∈[0.30,0.75),那么相关性一般;如果r∈[-0.25,0.25],那么相关性较弱.反映在散点图上,图(1)的r=0.97,这些点有明显的从左下角到右上角沿直线分布趋势,这时用线性回归模型描述两个变量之间的关系效果很好;图(2)的r=-0.85,这些点也有明显的从左上角到右下角沿直线分布趋势.这时用线性回归模型描述两个变量之间的关系也有好的效果.你能试着对自己身边的某个问题,确定两个变量,通过收集数据,计算相关系数,然后分析一下能否用线性回归模型来拟合它们之间的关系吗?图(1) 图(2)。
数学教案《两个变量的线性相关》
数学教案《两个变量的线性相关》学习目标:经历用不同估算方法描述两个变量线性相关的过程。
明白最小二乘法的思想,能依照给出的线性回来方程系数公式建立线性回来方程。
学习过程:1.回忆上节课的案例分析给出如下概念:(1)回来直线方程(2)回来系数2.最小二乘法3.直线回来方程的应用(1)描述两变量之间的依存关系;利用直线回来方程即可定量描述两个变量间依存的数量关系(2)利用回来方程进行推测;把预报因子(即自变量x)代入回来方程对预报量(即因变量Y)进行估量,即可得到个体Y值的容许区间。
(3)利用回来方程进行统计操纵规定Y值的变化,通过操纵x的范畴来实现统计操纵的目标。
如差不多得到了空气中NO2的浓度和汽车流量间的回来方程,即可通过操纵汽车流量来操纵空气中NO2的浓度。
4.应用直线回来的注意事项(1)做回来分析要有实际意义;(2)回来分析前,最好先作出散点图;(3)回来直线不要外延。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
什么缘故?依旧没有完全“记死”的缘故。
要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。
能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。
5.实例分析:某调查者从调查中获知某公司近年来科研费用支出()与公司所获得利润()的统计资料如下表:科研费用支出()与利润()统计表事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
高中数学新人教版B版精品教案《2.3.2 两个变量的线性相关》
课题:两个变量的线性相关(第一课时)教学内容分析:在此前的学习中,学生已经学习过相关关系的概念,能够根据散点图判断是否相关,是正相关还是负相关。
学情分析:学生已经学习过了方差的概念,所以有助于理解最小二乘法的思想。
对复杂的公式,大量的运算可能心存畏惧。
教学目标:经历用不同的方法描述两个变量线性相关的过程,知道最小二乘法。
根据给出的线性回归方程的系数公式建立线性回归方程。
教学重点:经历用不同的方法描述两个变量线性相关的过程,知道最小二乘法。
根据给出的线性回归方程的系数公式建立线性回归方程教学难点:最小二乘法的思想。
教学过程1.复习引入:问题1:通过什么判断两个变量是相关的。
问题2:观察屏幕上的散点图,判断是否相关,正相关还是负相关。
今天将学习两个变量相关的一种特殊相关──线性相关。
2.画出散点图,引出回归直线的概念下表是某小卖部6天卖出热茶的杯数与当天气温的对比表:(1)将上表中的数据制成散点图(2)你能从散点图中发现温度与饮料杯数近似成什么关系吗从图中可以看出温度与杯数具有相关关系,当温度由小到大变化时,杯数的值由大到小所以温度与杯数成负相关。
图中的数据大致分布在一条直线附近,因此温度与杯数成线性相关关系。
分析:这些直线的点近似的分布在一条直线的附近,根据不同的标准,可以画出不同的直线。
而我们希望找出其中的一条,它能最好地反映与Y 之间的关系。
使这条直线“最贴近”已知的数据点。
记此直线方程是上式叫做Y 对于的回归直线方程, b 叫做回归系数。
3引出回归直线方程的求法即最小二乘法。
给出离差的概念,学生自主讨论什么样的直线是最佳直线即n 个偏差的平方和 最小叫做“最小二乘法”。
,b 的公式: 说明:回归系数的意义。
(1)b>0表示两个变量正相关,b bˆ2 1.5yx =-y y y y 0,6课堂小结:1了解最小二乘法原理(2)能根据给出的回归方程系数公式建立线性回归方程ˆy bx a =+21()ni i i Q y bx a ==--∑1122211()()ˆ,()ˆ.nni i i i i i n n i ii i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑11,n i i x x n ==∑11nii y y n ==∑7作业:教材79页练习A组,B组8板书设计:课题1.线性回归方程2.最小二乘法3.(1)公式2回归系数的意义4.例题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《两个变量的线性相关》教学设计
教学要求:明确事物间的相互联系。
认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。
教学重点:利用散点图直观认识两个变量之间的线性关系.
教学难点:作散点图和理解两个变量的正相关和负相关。
教学过程:
一、复习准备:
1. 人的身高和体重之间的关系?
2. 学生设计一个统计问题,并指出问题涉及的总体是什么,所涉及的变量是什么.
二、讲授新课:
1. 教学散点图
①出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员
获得了一组样本数据:
年龄23 27 38 41 45 49 50
脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄53 54 56 57 58 60 61
脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6 分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加。
我们可以作散点图来进一步分析。
②散点图的概念:将各数据在平面直角坐标中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图。
(1.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系.2.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系。
3. 如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)
③正相关与负相关概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关。
如果散点图中的点散布在从左上角到右下角的区域内,称为负相关。
(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)
④讨论:你能举出一些生活中的变量成正相关或负相关的例子吗?(比如高学历高收入现象)
⑤练习:一个工厂为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次调查,收集数据如下:
零件
10 20 30 40 50 60 70 80 90 100
数
62 68 75 81 89 95 102 108 115 122
加工
时间
1.画出散点图。
2.指出是正相关还是负相关。
3.关于加工零件的个数与加工时间,你能得出什么结论?
⑥小结:1.散点图的画法。
2.正相关与负相关的概念。
三.练习
1.教材P86 A组 2题
四.作业
教材P87 B组 1题(1)
找生活中一些实例数据,自己分析。