七年级数学42 线段、射线、直线 (2)

合集下载

七年级数学(上册)直线,射线,线段

七年级数学(上册)直线,射线,线段

七年级数学(上册)(第四章)第二节:直线,射线,线段1:概念:直线射线线段图形端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB 延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA 2:区别与联系:(1):(2):已知线段,你能得到射线和直线吗?将线段向一个方向无限延长就得到了射线。

将线段向两个方向无限延长就得到了直线。

线段、射线是直线的一部分。

3:直线的性质:(1):过一点有无数条直线(2):经过两点有且只有一条直线(或两点确定一条直线)。

(有体现了直线的存在性,只有体现了直线的唯一性,两者说明了数学语言的严密性。

并且这种将实际问题转化为数学问题的过程,体现了数学建模的思想。

)4:直线、射线和线段的表示方法:5:点与直线、直线与直线的位置关系:习题:1:下列说法中正确的个数有()①经过一点有且只有一条直线;②连接两点的线段叫做两点之间的距离;③射线比直线短;④ABC三点在同一直线上且AB=BC,则B是线段AC的中点;⑤在同一平面内,两条直线的位置关系有两种:平行与相交;⑥在8:30时,时钟上时针和分针的夹角是75∘.A. 1个B. 2个C. 3个D. 4个解:①经过两点有且只有一条直线,故本小题错误;②应为连接两点的线段的长度叫做两点的距离,故本小题错误;③射线与直线不能比较长短,故本小题错误;④因为A、B、C三点在同一直线上,且AB=BC,所以点B是线段AC的中点,故本小题正确;⑤在同一平面内,两条直线的位置关系有两种:平行,相交,故本小题正确;⑥在8:30时,时钟上时针和分针的夹角是75∘,正确.综上所述,正确的有④⑤⑥共3个.故选C.2:下列说法中正确的是()A. 画一条长3cm的射线B. 直线、线段、射线中直线最长C. 延长线段BA到C,使AC=BAD. 延长射线OA到点C解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OA到点C,错误,可以反向延长射线.故选:C.3:在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。

北师大版七年级上册数学4.1《线段、射线、直线》【课件】 (共17张PPT)

北师大版七年级上册数学4.1《线段、射线、直线》【课件】  (共17张PPT)

a
表示2:直线 a
线段、射线、直线之间的区别与联系
名称 线段 射线 直线
图形
A a
表示方法
B
端点 延伸方向 个数
线段AB 不能延伸 两个
线段 a
O C
A D
m
射线OA
直线CD 直线 m
一方延伸 一个 两方延伸 无
长度可否 度量
可以
不可以
不可以
1、以下表达正确的选项是〔(3)

〔1〕线段AB可表示为BA;〔2〕射线AB可表示为射线BA;


绷紧的琴弦、鸟巢的钢梁都可以近似地看做线段
线段
线段有两个端点,不能延伸。
将线段向一个方向无限延长就形成了射线 手电筒、探照灯发出的光线可以近似向无限延伸
将线段向两个方向无限延长就形成了直线 笔直的铁路、公路都可以近似地看做直线
直线
没有端点,可以向两个方向无限延伸
〔1〕线段有两个端点, 射线有一个端点, 直线没有端点。( ) 〔2〕线段AB长2000米,射线AB长2000米。 〔 〕 〔3〕射线比直线短一半。( ) 〔4〕线段,射线可以度量长度,直线不能。〔 〕 〔5〕射线AB与射线BA是同一条射线。( )
思考: (1) 过一点 A 可以画几条直线? (2) 过两点A、B可以画几条直线?
第四单元 · 课题一
线段、射线、直线
【学习目标】
1.在现实情境中了解线段、射线、直线的描述性定义和表示方法 ,理解直线的性质,充分感受生活中所蕴含的丰富多彩的几何图 形。 2.通过识图、辨析、观察、猜测、验证等数学探究过程,开展几 何意识、合情推理和探究意识。
观察下面三幅图片,你能观察到哪些根本图形?
美图欣赏

2024年湘教版七年级数学上册 4.2 第2课时 线段的长短比较(课件)

2024年湘教版七年级数学上册 4.2 第2课时 线段的长短比较(课件)
连接两点的线段的长度,叫作这两点的距离.
生活实例
1. 如图,这是 A,B 两地之间的公路,在公路工程 改造计划时,为使 A,B 两地行程最短,应如何 设计线路?请在图中画出,并说明理由.
B. A.
两点之间,线段最短
知识点3: 线段的和、差、倍、分
在直线上画出线段 AB = a,再在 AB 的延长线 上画线段 BC = b,线段 AC 就是 a 与 b 的和,记作 AC = a + b. 如果在 AB 上画线段 BD = b,那么线段 AD 就是 a 与 b 的差,记作 AD = a - b .
第4章 图形的认识
4.2 线段、射线、直线
第 2 课时 线段的长短比较
教学目标
1. 会用度量法与叠合法来比较线段的长短. 2. 知道两点之间线段最短这一基本事实,并能简单运
用,感受数学与生活的联系. 3. 知道两点间的距离、线段的中点等概念,会按要求
画线段. 重点:掌握比较线段长短的方法,线段中点的概念及表
叠合法 实际 如何在线段 CD 上画出线段 AB,并且一端端
点重合,另一个端点要放在公共端点的同侧?
A
B
C(A)
BD
归纳总结 叠合法比较线段的大小:
AB C
A C A C
图形
线段AB 与CD的关系 记作
D B D
B D
AB 小于 CD
AB<CD
AB 等于 CD AB 大于 CD
AB = CD AB>CD
a
AC 分成相等的两条线段 AB 与 BC, A 这时 B 叫作 AC 的中点.
B
C
几何语言:因为 B 是线段 AC 的中点,
所以 AB = BC = 1 AC (或 AC = 2AB = 2BC ).

人教版七年级数学上册几何图形初步《直线、射线、线段(第2课时)》示范教学设计

人教版七年级数学上册几何图形初步《直线、射线、线段(第2课时)》示范教学设计

直线、射线、线段(第2课时)教学目标1.知道比较线段长短的方法,并会比较线段的长短.2.会用尺规画一条线段等于已知线段,会用尺规画出线段的和与差.3.知道线段中点、三等分点、四等分点的定义,会用数学符号语言表示.4.能够用线段中点的性质和数量关系解决问题.教学重点探究比较线段长短的方法,尺规作图的操作,线段中点及其分成的各线段间的数量关系.教学难点运用线段的和与差、线段的中点解决问题.教学准备直尺、圆规、透明纸.教学过程知识回顾1.线段、射线和直线的区别2.直线的性质(1)基本事实:经过两点有一条直线,并且只有一条直线.①它包含两层含义:一是“肯定有”,二是“只有一条”,不会有两条、三条……;②它可简单地说成“两点确定一条直线”.(2)直线的其他性质:①经过一点的直线有无数条;②不同的两条直线最多有一个公共点.3.直线、射线、线段的表示线段:(1)线段AB(或线段BA);(2)线段a.射线:(1)射线AB;(2)射线m.直线:(1)直线AB(或直线BA);(2)直线l.4.线段和射线都是直线的一部分.5.一个点在一条直线上,也可以说这条直线经过这个点;一个点在直线外,也可以说直线不经过这个点.6.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.7.一条直线上有n个点,则这条直线上共有2n条射线,有112n n()条线段.新知探究一、探究学习【问题】我们是如何比较物体的高度或者长度的?【师生活动】小组探讨后给出结论,教师给出正确答案.【答案】1.目测(直接比较法)2.测量(数据比较法)【设计意图】通过生活中比较高度或长度的实例引入线段长短比较的知识.【问题】已知线段AB与线段CD,如何比较这两条线段的长短?【师生活动】教师引导,学生作答,然后教师讲解新知.【新知】第一种:度量法结论:AB<CD.第二种:叠合法把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较.注意:起点对齐,看终点.点A与点C重合,点D与点B重合结论:AB=CD点A与点C重合,点D落在B,C之间结论:AB>CD点A与点C重合,点B落在C,D之间结论:AB<CD【设计意图】让学生在探究学习中掌握两种比较线段长短的方法.二、新知精讲【问题】怎么画一条线段使它等于已知线段呢?如图,已知线段AB,用尺规作一条线段等于已知线段AB.【师生活动】教师提出问题,学生思考并用自己的语言描述自己的想法.然后教师组织学生讨论,并引导学生尝试用圆规作图.最后教师做适当的总结归纳,并用课件展示尺规作法.【答案】解:作图步骤如下:(1)作射线A'C';(2)用圆规在射线A'C'上截取A'B'=AB.线段A'B'就是所求线段.【新知】画一条线段等于已知线段a,可以先量出线段a的长度,再画一条等于这个长度的线段.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.【设计意图】作一条线段等于已知线段是几何的基本作图,也是本课后续知识学习的基础,要让学生准确掌握;向学生渗透几何研究中有“数”与“形”两种不同的方法.【问题】你知道如何画线段的和与差吗?如图,已知线段m,n,用尺规作一条线段AC,使AC=m+n.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图步骤如下:(1)作射线AM;(2)在射线AM上截取AB=m;(3)在射线BM上截取BC=n.线段AC就是所求线段.【设计意图】让学生掌握线段和的作图方法,将用图形表示线段和与用符号表示线段和结合起来.【问题】如图,已知线段m,n,用尺规作一条线段AC,使AC=m-n.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图步骤如下:(1)作射线AM;(2)在射线AM上截取AB=m;(3)在线段AB上截取BC=n.线段AC就是所求线段.【设计意图】让学生掌握线段差的作图方法,将用图形表示线段差与用符号表示线段差结合起来.【问题】如图,已知线段a,求作线段AB=2a.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图如下:AB=2a,即为所求作的线段.【新知】点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.数学符号语言:AM=MB=12AB(或AB=2AM=2BM)类似地,还有线段的三等分点、四等分点等.AM=MN=NB=13 ABAM=MN=NP=PB=14 AB【设计意图】层层递进地对等分点进行学习,既让学生掌握等分点的概念,更让学生理解等分点是怎样产生的,掌握由等分点产生的数量关系.【问题】在一张透明的纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点就是线段的中点.动手试一试.【师生活动】学生先作图,然后教师用课件展示动画效果.【答案】【设计意图】通过动手操作,让学生更加形象地理解和掌握线段的中点的性质.三、典例精讲【例】如图,若线段AB=20 cm,点C是线段AB上一点,M,N分别是线段AC,BC 的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其他条件不变,你能猜出MN的长度吗?请用简洁的语言表达你发现的规律.【师生活动】学生作答,然后教师给出分析和正确答案.【分析】(1)先根据M,N分别是线段AC,BC的中点得出MC=12AC,CN=12BC,再由线段AB=20 cm即可求出结果.(2)由(1)即可得到结论.【答案】解:(1)因为M,N分别是线段AC,BC的中点,所以MC=12AC,CN=12BC.因为线段AB=20 cm,所以MN=MC+CN=12(AC+BC)=12AB=10(cm).(2)由(1)得,MN=MC+CN=12(AC+BC)=12AB=12a.即MN始终等于AB的一半.【设计意图】检验学生对线段的中点的性质的掌握程度,同时使学生能够进行线段的相关运算.课堂小结板书设计一、比较线段的长短二、尺规作图三、中点、三等分点、四等分点四、线段的运算课后任务完成教材第128页练习第1~3题.。

七年级上学期数学知识点:直线、射线、线段

七年级上学期数学知识点:直线、射线、线段

七年级上学期数学知识点:直线、射线、线段鉴于数学知识点的重要性,小编为您提供了这篇七年级上学期数学知识点:直线、射线、线段,希望对同学们的数学有所帮助。

1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA) 射线AB 线段a线段AB(BA)作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

8、点与直线的位置关系(1)点在直线上 (2)点在直线外.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

沪科版七年级上册 4.2直线、射线、线段(共26张PPT)

沪科版七年级上册 4.2直线、射线、线段(共26张PPT)
1、植树时,只要定出两个树坑的位置, 就能确定同一行的树坑所在的直线。
2、建筑工人在砌墙时,这样拉出的参照线就 是直的;木工师傅用墨盒弹出的墨线也是直的,你 能用刚才学过的知识来解释他们这样做的道理吗?
探究与思考
图中直线 l与直线m相交,得到一个交点A,
它们会不会还有另外的交点?为什么?
l
m
A
直线的性质:
注意:
O
A
射线OA
其中一个是射线的端点,另一 个是射线上的任意一点
(1)表示端点的字母要写在前面;
(2)同一条射线有不同的表示方法;
(3)端点相同的射线不一定是同一条射线,端点不同的射 线一定不是同一条射线。
(4)两条射线为同一条射线必须具备的条件:
a.端点相同; b.延伸的方向相同。
直线的表示:
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
直线、射线、线段的联系和区别:
名称
线段
射线
直线
概念
连结两个端点之 将线段向一个方向无 将线段向两个方向无
间的笔直的线
限延长就得到了射线 限延长就形成了直线
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/272021/8/27Friday, August 27, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/8/272021/8/272021/8/278/27/2021 12:12:21 AM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/272021/8/272021/8/27Aug-2127-Aug-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/272021/8/272021/8/27Friday, August 27, 2021

4.2.2线段、射线、直线(二)——尺规作图

4.2.2线段、射线、直线(二)——尺规作图
目测法; 直接观察,目测判断。 (不准确,也不十分可靠,不建议采用)
度量法; 用刻度尺分别量出线段AB、线段CD的长度,再比较线段AB、
线段CD的长短(大小)。 (近似值)
叠合法。 将一条线段放在另一条线段上,使它们的一个端点重合,观
察另一个端点的位置关系。
基本作图1:作一条线段等于已 知线段
a 已知:线段a, 作一条线段AB,使AB=a
怎样的点是线段的中点?
操作:把纸条对折,找出它的中点。
定义:把线段分成相等的两条线段的点,叫做这条 线段的中点。
A
M
B
因为点M是线段AB的中点,
所以 AM=BM= 1 AB 2
说明:
线段的中点必须在线段上。 把线段分成相等的三条线段的点,叫做这条线段的三等分点。
1、已知线段AB = 4cm,延长AB到C,使BC = 2AB,若D为
让两个同学站在同一平地上脚底平齐观看两让两个同学站在同一平地上脚底平齐观看两人的头顶直接比出高矮
直线性质1 经过两点有一条直线,并且只有一条直线。
(两点确定一条直线。)
直线、线段、射线的表示 用两个大写字母表示; 用一个小写字母表示。
直线的表示
A
B
直线AB
线段的表示
A
B
线段AB
射线的表示
O
A
射线OA
1.若点A与点C重 2.若点A与点C重 3.若点A与点C
合,点B落在C、D之 合,点B与点D重__合_,那 重合,点B落在CD
间,那么AB_<__CD. 么AB=CD.
的延长线上,那么
AB _>__ CD.
比较线段长短的两种方法
叠合法——从“形”的角度比较. 度量法——从“数值”的角度比较.

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

人教版数学七年级上《4.2直线、射线、线段》同步练习(含答案)

4.2 直线射线线段2一、单选题1.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为( )A.3 B.7 C.3或7 D.以上都不对2.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A.在A的左侧B.在AB之间C.在BC之间D.B处3.如果线段AB=5cm,BC=4cm,且A、B、C在同一条直线上,那么A、C两点的距离是( )A.1cm B.9cmC.1cm或9cm D.以上答案都不正确4.如果一条直线上得到10条不同的线段,那么在这条直线上至少有点( )A.20个B.10个C.7个D.5个5.下列说法错误的是( )A.两点之间的所有连线中,线段最短B.经过一点有且只有一条直线与已知直线平行C.如果两条直线都与第三条直线平行,那么这两条直线也互相平行D.经过一点有且只有一条直线与已知直线垂直6.在图中,线段的条数为( )A.9B.10 C.13D.157.如图,C是AB的中点,D是BC的中点,则下列等式不成立的是()A . CD =AD-ACB . CD =AB -BDC . CD =AB D . CD=AB 2141318.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A . 171B . 190C . 210D . 3809.如图,从A 地到B 地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A . 两点确定一条直线B . 垂线段最短C . 两点之间,线段最短D . 两点之间,直线最短 10.如图所示的图形表示正确的有( )A . 3个B . 4个C . 5个D . 6个11.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB 和射线BA 是同一条射线;⑤若AC=BC ,则点C 是线段AB 的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有( )A . 2个B . 3个C . 4个D . 5个二、填空题12.点C 在线段AB 上,下列条件中:①AC=BC②AC=2AB③AB=2BC④AC=0.5AB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2 线段、射线、直线
剖析直线、射线、线段的错误说法
在学习直线、射线、线段时,由于概念混淆不清,考虑问题欠周密,常会出现许多错误的说法,现将一些常见的错误说法举例剖析如下,希望能对同学们有所帮助.
例1 连接两点的线段叫做这两点间的距离.
剖析:错!“线段”是图形,而“距离”是数量,两者本质属性不同;两点间的距离是连接这两点的线段的长度,这“长度”是关键词,千万不可遗漏.
例2 直线AB 比射线CD 长.
剖析:错!直线、射线都是不能度量长度的,因此在直线之间或直线与射线之间不存在长、短或相等的数量关系.
例3 延长射线OA 到B.
剖析:错!因射线OA 本身就是沿OA 方向无限延伸的,但反向延长射线OA 是可以的. 例4 如图1,射线OM 与射线MN 是同一条射线.
剖析:错!这两条射线的端点不同,所以不是同一条射线.
例5 如果线段AC 和CB 的长度相等,且点C 是它们的公共端点,则点C 是线段AB 的中点.
剖析:错!当点C 在线段AB 上,且线段AC 和CB 的长度相等时,点C 才是线段AB 的中点.而当点C 不在线段AB 上时,尽管线段AB 和C B 的长度相等,点C 也不是线段AB 的中点,如图2所示.
例6 已知线段AB=8cm,直线AB 上有一点C ,且BC=3cm,则AC 的长为5cm.
剖析:错!应分两种情形讨论.
(1)如图3(1),当点C 在线段AB 上时,AC 的长为5cm.
(2)如图3(2),当点C 在线段AB 的延长线上时,AC 的长为11cm.
例7三条直线两两相交,共有3个交点.
剖析:错!“两两相交”可以是每两条直线相交,这时有3个交点(如图4(1)),也可以是3条直线交于同一点,这时只有1个交点(如图4(2)).
图 1图 2B A
C
图 3(2)(1)C
例8 如图5,可用图中字母表示的射线共有6条.
剖析:错!以点A 为端点向左延伸的射线不能用图中的字母表示,同样,以点C 为端点的向右延伸的射线也不能用图中的字母表示,因此能用图中字母表示的射线只有AB (或AC )、BA 、BC 、CB(或CA)4条.
例9 经过A 、B 、C 三点中的任意两点画直线,一定可画出3条直线.
剖析:错!当A 、B 、C 三点不在同一条直线上时,可画出3条直线,如图6(1);当A 、B 、C 三点在同一条直线上时,只能画出1条直线,如图6(2).
例10 三条直线可将一个平面分成6个部分.
剖析:错!应分类讨论.如图7:(1)三条直线互相平行,可将平面分成4个部分;
(2)两条直线互相平行,与第三条直线相交,可将平面分成6个部分;(3)三条直线交于一点,可将平面分成6个部分;(4)三条直线,每两条直线相交,可将平面分成7个部分.
(2)
(1)图 4O c b a C
B
A
图 5C B A
图6(2)C B A (1)C
B A
图7(4)(3)(2)
(1)c b a
c b a c b a c
b
a。

相关文档
最新文档