42线段射线直线

合集下载

4.2 线段、射线、直线 能力培优训练(含答案)

4.2 线段、射线、直线 能力培优训练(含答案)

4.2 线段、射线、直线专题一与线段、射线、直线有关的操作问题1. 如图,把一条绳子折成3折,用剪刀从中剪断,得到绳子的条数是()A.3 B.4 C.5 D.62. 一根绳子弯曲成如图1所示的形状,当用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b平行a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+53. 由河源到广州的某一次列车,运行途中停靠的车站依次是:河源-惠州-东莞-广州,那么要为这次列车制作的火车票有()A.3种B.4种C.6种D.12种专题二线段、射线、直线有关的探究问题4.平面内有三点A、B、C,过其中任意两点画直线,有如下两种情况:(1)若平面内有四个点A、B、C、D,过其中任意两点画直线,有多少种情况?请画图说明;(2)若平面内有6个点,过其中任意两点画直线,最多可以画多少条直线?(3)若平面内有n个点,过其中任意两点画直线,最多可以画多少条直线?(直接写出结果)5.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…;把上述探究的结果进行整理,列表分析:(1)当直线条数为5时,把平面最多分成部分,写成和的形式;(2)当直线为10条时,把平面最多分成几部分?(3)当直线为n条时,把平面最多分成几部分?(不必说明理由)状元笔记【知识要点】1.像长方体的棱、长方形的边,这些图形都是线段;将线段向一个方向无限延长就得到了射线;将线段向两个方向无限延长就形成了直线.射线和线段都是直线的一部分. 2.经过两点有一条直线,并且只有一条直线,即两点确定一条直线.3.两条直线相交只有一个交点.【方法技巧】1. (1)从端点的个数看,直线没有端点,射线有一个端点,线段有两个端点.(2)从长度来讲,线段有确定的长度,可以度量,而直线、射线却不能度量其长度. (3)从表示方法上来说,尽管三者都可以用两个大写字母表示,但表示射线时表示端点的大写字母必须写在前面.2. “经过两点有一条直线,并且只有一条直线”包含两层意思:○1过两点存在一条直线;○2过两点的直线虽然存在,但只有唯一的一条.参考答案1. B解析:把一条绳子从中剪断,得到两条;折一次,从中剪断,得到三条,折两次,从中剪断得到四条.故选B.2.A解析:设段数为x,则依题意得:n=0时,x=1;n=1,x=5;n=2,x=9;n=3,x=13;…所以当n=n时,x=4n+1.故选A.3. D解析:画线段,动手操作,由河源要经过3个地方,所以要制作3种车票;由惠州要经过2个地方,所以要制作2种车票;由东莞要经过1个地方,所要制作1种车票,这次列车制作的火车票的总数=3+2+1=6(种).故选C.4. 解:(1)如图:(2)最多可画:1+2+3+4+5=15(条).(3)最多可画:1+2+3+…+n=(1)2n n-(条).5. 解:(1)根据表中规律,当直线条数为5时,把平面最多分成16部分,1+1+2+3+4+5=16;(2)根据表中规律,当直线为10条时,把平面最多分成56部分,为1+1+2+3+----+10=56;(3)设直线条数有n条,分成的平面最多有m个.有以下规律:n m2 13 1+1+24 1+1+2+3::n m=1+1+…+(n-1)+n=(1)12n n++.。

4.2 直线、射线、线段同步练习测试卷

4.2  直线、射线、线段同步练习测试卷

4.2 直线、射线、线段第1课时直线、射线、线段【课前预习】1.直线的性质:经过两点有条直线,并且只有条直线.即两点确定条直线.2.当两条不同的直线有一个公共点时,我们就称这两条直线,这个公共点叫做它们的.线段射线直线图例端点个端点个端点个端点字母表示的位置个端点个端点和射线上任一点直线上任意点读法线段AB,线段BA,线段a射线(端点字母放前面)直线AB,直线BA,直线l延伸方向没有延伸向方无限延伸向方无限延伸【当堂演练】1.手电筒射出的光线,给我们的形象是()A.直线B.射线C.点D.折线2.如图,能相交的图形是()3.如图,图中线段和射线的条数分别为()A.一条,两条B.两条,三条C.三条,六条D.四条,三条4.如图,下列语句表达错误的是()A.直线l经过点A、点BB.点A、点B在直线l上C.点C在直线l外D.直线AB和直线l不是同一条直线5.下列说法正确的是()A.直线AB和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB和直线a不可能是同一条直线6.经过一点可以画条直线,经过两点可以画条直线.7.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为同学的说法是正确的.8.如图,已知A,B,C,D是正方形网格纸上的四个格点,根据要求在网格中画图并标注相关字母.(1)画线段AB;(2)画直线AC;(3)过点D画AC的垂线,垂足为E;(4)在直线AC上找一点P,使得PB+PD最小.【课后巩固】一、选择题1.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线2.下列叙述不正确的是()A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线3.下列有关作图的叙述中正确的是()A.延长射线OAB.延长直线ABC.画直线AB=3 cmD.以上都不对4.在碧波荡漾的湖面上,有三只美丽的天鹅正在水中嬉戏,这三只天鹅可以确定的直线有()A.3条B.0条或1条C.1条或3条D.0条5.平面上不重合的两个点确定一条直线,不同的三个点最多可确定3条直线,若平面上不同的n个点最多可确定28条直线,则n的值是()A.6B.7C.8D.9二、填空题6.如图,线段AB上有C,D两点,则图中共有线段条,分别是___________________.7.如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段条.三、解答题8.在如图的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?试写出来.9.如图,已知平面内有四个点A,B,C,D,根据下列语句画图:(1)画直线AB;(2)画射线DC;(3)直线AD,BC相交于点E;(4)连接AC,BD相交于点F.10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”应写在射线上;(2)请任意写出三条射线上数字的排列规律;(3)“2 017”在哪条射线上?第2课时比较线段的长短【课前预习】1.在数学中,我们常限定用和作图,这就是尺规作图.2.比较线段的长短的方法:(1)直接观察法;(2);(3).3.把一条线段分成的两条线段的点叫做线段的中点.4.线段的性质:两点的所有连线中,线段.简单说成:两点之间,线段.连接两点间的线段的长度,叫做这两点的.【当堂演练】1.如图,小张和小李同时以相同的速度从A村庄到B村庄办事,不过小张是从A村庄直接到B村庄,小李则从A村庄经过C村庄到B村庄,则()A.小张先到B.小李先到C.他们同时到D.不能确定谁先到2.如图,下列各式中错误的是()A.AB=AD+DBB.CB=AB-ACC.CB-DB=CDD.CB-DB=AC3.A,B,C三点在同一条直线上,M,N分别为AB,BC的中点,且AB=60,BC=40,则MN的长为()A.30B.30或10C.50D.50或104.两根木条,一根长6 cm,一根长8 cm,将它们的一端重合,放在同一条直线上,此时两根木条的中点间的距离是cm.5.某公司员工分别住在A,B,C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示.该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,停靠点的位置应设在区.6.如图,已知线段a,b,用圆规和直尺作线段,使它等于2a-2b.7.已知A,B,C三点在同一直线上,若线段AB=60,其中点为M;线段BC=20,其中点为N,求MN的长.【课后巩固】一、选择题1.如图,若B 是AC 的中点,C 是AD 的中点,则下列说法错误的是( )A.AB =BCB.AC =CDC.AB =12CDD.AB =13AD2.已知线段AB ,延长AB 到C ,使BC =2AB ,又延长BA 到D ,使DA =12AB ,那么( )A.BD =34BCB.DC =52ABC.DA =12BCD.BD =43AB3.如图,一根长12 cm 的木棒,棒上有两个刻度,把它作为尺子,量一次要量出一个长度,能量出的长度有( )A.7个B.6个C.5个D.4个 二、填空题4.如图,点C 分AB 为2∶3,点D 分AB 为1∶4,若AB 为5 cm ,则AC = cm ,BD = cm ,CD = cm.5.已知线段AB =8 cm ,C 是AB 上任意一点,其中M 是BC 的中点,N 是AC 的中点,则AN +BM = cm.6.在数轴上,点A 表示-16,线段AB 在数轴上,点B 表示数 时,使得线段AB =2 017.三、解答题7.当一条铁路铺设到崇山峻岭之中,往往是开凿隧道,而不是从山的旁边绕过去,你知道这是什么原因吗?请你用所学的数学知识解释一下.8.如图,已知线段a ,b ,c ,用圆规和直尺作线段,使它等于2a +b -c.9.如图,已知线段AB=8 cm,延长AB到点C,使AC=15 cm,D是AB的中点,E是AC 的中点,求DE.10.已知:A,B,C三点在同一直线上,点M,N分别是线段AC,BC的中点.(1)如图,点C是线段AB上一点,①当AC=8 cm,CB=6 cm时,则线段MN的长度为cm;②当AB=a cm时,求线段MN的长度,并用一句简洁的话描述你的发现;(2)若C为线段AB延长线上的一点,则第(1)题第②小题中的结论是否仍然成立?请你画出图形,并说明理由.。

4.2 直线、射线、线段(第2课时) 教案

4.2 直线、射线、线段(第2课时) 教案

4.2 直线、射线、线段(第二课时)课型新授单位主备人教学目标:1.知识与技能:(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)会画线段的和与差2.过程与方法:(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感、价值观:积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重点、难点:教学重点:比较两条线段的长短,画一条线段等于已知线段,会画线段的和与差教学难点:根据语言描述画出图形,理解画图语言,建立图形与语言之间的联系.教学准备:PPT课件和微课等。

教学过程一、创设情景、引入新课你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?讨论后派一位代表上来说说你们的想法。

二、自主学习、合作探究探究(一)、如何比较两条线段的大小?学生活动设计:学生思考比较方法,可能有两种方法,一是分别用刻度尺量出线段的长度,比较长度即可(度量法),二是把其中的一条线段移到另一条线段上进行比较(叠合法).(课件:比较两条线段的大小)生讨论1、如上图,直接看出,总结第一种方法:目测法2、用刻度尺量,再比较数量大小------度量法,即用一把尺量出两条线段的长度,再进行比较。

3、利用圆规,把其中一条线段移到另一条线段上作比较------叠合法先把两条线段的一端重合,另一端落在同侧,根据另一端落下的位置,来比较总结比较线段长短的方法:1目测法 2 度量法 3 叠合法小试牛刀:观察下列三组图形,分别比较线段a、b的长短,再用刻度尺量一下,看看你的观察结果是否正确(1))(2)两条线段的关系有: AB=CD AB>CD AB<CD归纳总结:度量法数线段比较的方法叠合法形跟踪练习:教材128页1题探究(二):你能用直尺(没有刻度)和圆规画一条线段等于已知线段吗?已知线段a,作线段AB,使线段AB=a.学生活动设计:由于直尺没有刻度,因此直尺的作用是画线,不能进行度量,而圆规当半径不变时,可以把一条线段任意移动,因此圆规的作用是度量,于是有下列画法:(1)画射线AC(2)以点A为圆心,a的长为半径画弧,交射线AC于点B,线段AB就是符合条件的线段.aA B C所以 AB=a像这样仅用圆规和没有刻度的直尺作图的方法叫尺规作图.教师活动设计:在学生总结画法时,注意语言的简洁与规范,及时纠正学生的不规范的说法和表述.注意:不要求写画法,但一定要标清字母,写出有结论.也可以先量出线段a的长度,再画一条等于这个长度的线段例1 如图,已知线段a,借助圆规和直尺作一条线段使它等于2a.a A B C作业设计1、如图,已知A、B、C三点在同一条直线上,则(1)AB+BC=(2)AC-BC=(3)AC-AB=2、已知线段AB=5cm,(1)在线段AB上画线段BC=3 cm,并求线段AC的长(2)在直线AB上画线段BC=3 cm,并求线段AC的长3、如下图,四条线段AB、BC、CD、DA,且,用圆规比较图中的线段大小,确定出A、B、C、D四点的准确位置,再用刻度尺量出这四条线段的长度.最佳解决方案个课下学生独立完成教学设计反思:本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心。

沪科版七年级上册 4.2直线、射线、线段(共26张PPT)

沪科版七年级上册 4.2直线、射线、线段(共26张PPT)
1、植树时,只要定出两个树坑的位置, 就能确定同一行的树坑所在的直线。
2、建筑工人在砌墙时,这样拉出的参照线就 是直的;木工师傅用墨盒弹出的墨线也是直的,你 能用刚才学过的知识来解释他们这样做的道理吗?
探究与思考
图中直线 l与直线m相交,得到一个交点A,
它们会不会还有另外的交点?为什么?
l
m
A
直线的性质:
注意:
O
A
射线OA
其中一个是射线的端点,另一 个是射线上的任意一点
(1)表示端点的字母要写在前面;
(2)同一条射线有不同的表示方法;
(3)端点相同的射线不一定是同一条射线,端点不同的射 线一定不是同一条射线。
(4)两条射线为同一条射线必须具备的条件:
a.端点相同; b.延伸的方向相同。
直线的表示:
You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
直线、射线、线段的联系和区别:
名称
线段
射线
直线
概念
连结两个端点之 将线段向一个方向无 将线段向两个方向无
间的笔直的线
限延长就得到了射线 限延长就形成了直线
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/8/272021/8/27Friday, August 27, 2021 10、阅读一切好书如同和过去最杰出的人谈话。2021/8/272021/8/272021/8/278/27/2021 12:12:21 AM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/8/272021/8/272021/8/27Aug-2127-Aug-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/8/272021/8/272021/8/27Friday, August 27, 2021

人教版数学七年级上册《4.2 直线、射线、线段》练习

人教版数学七年级上册《4.2 直线、射线、线段》练习

故答案为:=.
18.【答案】4; 【解析】解:如图折成 3 折,有两个拐点,而不是折叠三次, 故能得到 4 条绳子.
19.【答案】7cm; 【解析】解:∵D 是 BC 的中点,BC=6cm, ∴CD=3cm, ∴AD=AC+CD=7cm. 故答案为:7cm.
20.【答案】解:∵N 是 BP 中点,M 是 AB 中点 ∴PB=2NB=2×14=28cm ∴AP=AB-BP=80-28=52cm.; 【解析】N 为 PB 的中点,则有 PB=2NB,故 AP=AB-BP 可求.
1 2 CB=0.5cm. 故选 A.
14.【答案】C; 【解析】解:∵BC=2AB,AD=3AB ∴DC=AD+AB+BC=3AB+AB+2AB=6AB, 故选 C.
15.【答案】6;5; 【解析】解:线段:OA、OB、AB、OC、AC、BC 共 6 条, 射线:以 O 为端点的有 2 条, 以 A、B、C 为端点的射线分别有 1 条, 所以,共有射线 2+1+1+1=5 条. 故答案为:6;5.
为( )
A. 4,2
B. 10,10
C. 10,2
D. 10,5
12.如果线段 AB=5cm,BC=3cm,那么 A、C 两点间的距离是( )
A. 8cm
B. 2cm
C. 4cm
D. 不能确定
13.如图,线段 AB 长 4cm,C 为 AB 上一点,M 为 AC 中点,N 为 BC 中点,已知
AM=1.5cm,则 CN 的长为( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
2.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨

4.2 直线射线线段(一)

4.2 直线射线线段(一)

4.2直线、射线、线段(一)一、教学目标(一)知识与能力1、在现实情境中理解线段、直线、射线等简单的平面图形。

2、理解两点确定一条直线的事实。

3、掌握直线、射线、线段的表示方法。

4、理解直线、射线、线段的联系和区别(二)过程与方法1、通过学习直线、射线、线段的表示方法,使学生建立初步的符号感。

2、通过对直线、射线、线段性质的研究,体会它所在解决实际问题中的作用,并能用它们解释生活中的一些现象。

3、运用对比法、归纳法总结差异。

(三)情感、态度、价值观通过对直线、射线、线段的性质的探究,使学生初步认识到数学与现实生活的密切联系,感受数学的严谨性以及数学结论的确性。

二、教学重难点重点:线段、射线与直线的概念及表示方法,两点确定一条直线的性质。

难点:直线性质的发现,理解及应用及不同几何语言的相互转化。

三、教学过程:活动1:(1)点、线、面、体是构成几何图形的元素。

从运动的观点来看,可以说是点动成线,线动成面,面动成体。

因此对几何图形的学习我们也可以按点、线、面、体的顺序展开。

(2)点是用来表示物体的位置的。

点无大小之分。

如何表一个点呢?图形语言文字语言活动2:(1)在以前的学习中我们学过哪些线?直线、射线、线段(2)生活中有哪些关于直线、射线、线段的形象,试举例说明?(3)请分别画出一条直线、射线、线段?学生画图,教师在黑板上示范,给出规范的表示方法.(教师关注:学生是否注意到用两个大写字母表示射线时,端点的字母写在前面)(4)如何表示一条直线、射线、线段? 图形语言 文字语言(教师关注:学生是否注意到直线、射线、线段都有两种表示方法.) 活动3:(1)你能结合自已所画图形寻找出直线、射线、线段的特征吗?你能发现它们之间的区别与联系吗?(2)已知线段AB ,你能由线段AB 得到直线AB 和射线AB 吗?(3)从一条直线上如何得到射线和线段?归纳:线段和射线都是直线的一部分 活动4:(1)过一点可画出多少条直线?让学生动手画,结合图形描述点和直线的位置关系 (2)过两点可画出多少条直线?结合图形得出两直线相交及交点的概念。

初中数学人教版七年级上学期_第四章_42直线、射线、线段

初中数学人教版七年级上学期_第四章_42直线、射线、线段

初中数学人教版七年级上学期第四章 4.2直线、射线、线段一、单选题(共10题;共20分)1. 下列四个生产生活现象,可以用“两点之间线段最短”来解释的现象有()A.用两个钉子将木条固定在墙上B.打靶时,眼睛要与准星、靶心在同一条直线上C.架设A,B两地的电线时,总是尽可能沿着线段AB架设D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线2. 下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.画线段CD=2cm3. 现实生活中“为何有人宁可违反交通规则翻越隔离带乱穿马路,也不愿从天桥或斑马线通过?”,请用数学知识解释这一现象,其原因为( )A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短4. 如图,从点A到点B有3条路,其中走ADB最近,其数学依据是()A.经过两点有且只有一条直线B.两条直线相交只有一个交点C.两点之间的所有连线中,线段最短D.直线比曲线短5. 如图,点B为线段AC上一点,AB=11cm,BC=7cm,D、E分别是AB、AC的中点,则DE的长为()A.3.5cmB.4cmC.4.5cmD.5cm 6. 如图,数轴的单位长度为1,点A,B表示的数互为相反数,若数轴上有一点C到点B的距离为2个单位,则点C表示的数是( )A.−1或2B.−1或5C.1或2D.1或57. 在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cmB.8cmC.5cm或8cmD.5cm或11cm8. A、B、C中三个不同的点,则()A.AB+BC=ACB.AB+BC>ACC.BC≥AB−ACD.BC=AB−AC9. 如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cmB.2cmC.4cm或2cmD.小于或等于4cm,且大于或等于2cm10. 平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于( )A.36B.37C.38D.39二、填空题(共5题;共7分)下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________ .(填序号)建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后在两个木桩之间拉一条线,建筑工人沿着拉紧的这条直线砌墙,这个事实说明的原理是________.如图,点A、B、C、D在同一条直线上,则图中共有线段________条;直线有________条;射线有________条.点A、B、C在直线l上,AB=2BC,M、N分别为线段AB、BC的三等分点,BM=13AB,BN=13BC,则MNBC=________.一条一条直街上有5栋楼,按从左至右顺序编号为1、2、3、4、5,第k号楼恰好有k(k=1、2、3、4、5)个A厂的职工,相邻两楼之间的距离为50米.A厂打算在直街上建一车站,为使这5栋楼所有A厂职工去车站所走的路程之和最小,车站应建在距1号楼________米处.三、解答题(共5题;共26分)如图,AB=2,AC=6,延长BC到点D,使BD=4BC,求AD的长.如图,已知线段AB,请用尺规按照下列要求作图:①延长线段AB到C,使得BC=2AB;②连接PC;③作射线AP.如果AB=2cm,求AC的值如图所示,比较这两组线段的长短.已知线段AB=14,在线段AB上有点C,D,M,N四个点,且满足AC:CD:DB=1:2:4,AM=12AC,且DN=14BD,求MN的长.如图,数轴上A点表示的数是−2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:________. (2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;参考答案与试题解析初中数学人教版七年级上学期第四章 4.2直线、射线、线段一、单选题(共10题;共20分)1.【答案】C【考点】线段的性质:两点之间线段最短直线的性质:两点确定一条直线【解析】根据线段的性质“两点确定一条直线和两点之间线段最短”逐项进行分析.【解答】解:A、B、D用“两点确定一条直线”进行解释;C可用“两点之间线段最短”进行解释.故答案为:C.2.【答案】D【考点】作图—尺规作图的定义直线、射线、线段两点间的距离【解析】A.错误.直线没有长度;B.错误.射线没有长度;C.错误.射线有无限延伸性,不需要延长;D.正确.故选D.【解答】此题暂无解答3.【答案】D【考点】线段的性质:两点之间线段最短【解析】解答此题的关键在于理解线段的基本性质的相关知识,掌握线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的.【解答】解:现实生活中有人乱穿马路,不愿从天桥或斑马线通过,其原因是两点之间,线段最短,故选D.4.【答案】C【考点】相交线直线的性质:两点确定一条直线线段的性质:两点之间线段最短【解析】根据两点之间线段最短的性质解答.【解答】从点A到点B有3条路,其中走ADB最近,其数学依据是两点之间的所有连线中,线段最短.5.【答案】A【考点】两点间的距离【解析】首先根据:AB=11cm,D是AB的中点,求出AD的长是多少;然后根据:AB=11cm,BC=7cm,求出AC的长是多少,再根据E是AC的中点,求出AE的长是多少,再用它减去AD的长,求出DE的长为多少即可.【解答】∵AB=11cm,D是AB的中点,∴AD=12AB=12×11=5.5(cm);∵AB=11cm,BC=7cm,∴AC=AB+BC=11+7=18(cm),∵E是AC的中点,∴AE=12AC=12×18=9(cm),∴DE=AE−AD=9−5.5=3.5(cm).6.【答案】D【考点】数轴相反数【解析】如图,根据点A、B表示的数互为相反数可确定原点,即可得出点B表示的数,根据两点间的距离公式即可得答案.【解答】解:如图,∵点A,B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3.∵点C到点B的距离为2个单位,∴点C表示的数为C1=1或C2=5.故选D.7.【答案】D【考点】两点间的距离【解析】分两种情况:点C在线段AB上,点C在线段AB的延长线上.再根据线段的和差,可得线段BC的长.【解答】当点C在线段AB上时,BC=AB−AC=8−3=5(cm);当点C在线段AB的延长线上时,BC=AB+AC=8+3=11(cm),所以线段AC的长为5cm或11cm.8.【答案】C【考点】比例线段比较线段的长短【解析】本题主要考查了线段长短的计量的相关知识点,需要掌握度量法:即用一把刻度量出两条线段的长度再比较;叠合法:从“形”的角度比较,观察点的位置才能正确解答此题.【解答】解:此题分两种情况:①当A, B, C三点没在同一条直线上时,根据三角形任意两边之和大于第三边,任意两边差小于第三边,即可排除A, D两个两个选项,②当A, B, C三点位于同一条直线上的时候,则可得出最长线段与其中一条线段的差等于第三条线段,从而排除B,得出答案,所以答案是:C。

人教版七年级数学上册4.2:直线、射线、线段

人教版七年级数学上册4.2:直线、射线、线段
(1)画直线AB;
(2)连接线段AC,并将其延长;
(3)连接线段AD,并将其反向延长; (4)作射线BC.
练习
1.下列给线段取名正确的是( C)
A.线段M B.线段Mm
C.线段m D.线段mn
2.用适当的语句表述图中 点与直线的关系
P A
l B
3.下面图形的表示方法是否正确?
若错误,请改正.
①a
在同一平面内有三个点 A,B,C,过其中任意两个点画直线,可以画出
条直线.
(3)点与直线的位置关系
②要准备多少种车票? 如图,其中线段有 条,
线段向一端无限延长形成射线,向两端无限延长形成直线
下面图形的表示方法是否正确?
解:画出示意图如下: 例2 如图,平面上有四个点A,B,C,D,根据下列语句画图:
直线、射线、线段的区别与联系:
射线、线段都是直线的一部分.
类型 端点数 延伸
度量
线段 2个
可度量
射线 直线
1个 无端点
向一个方 向无限延
不可度量
向两个伸方向无 限延伸
不可度量
联系:线段向一端无限延长形成射线,向两端无限延长形成直线
想一想
生活中有哪些物体可以近似 地看成线段、射线、直线?
直线
线段
掌握“两点确定一条直线”的基本事实,了解点和直线的位置关系. (4)直线与直线的位置关系
联系与区别吗? (2)如何由一条线段得到一条射线或一条直线?
认真看课本第125页、126页. (3)点与直线的位置关系 联系:
理解直线、射线、线段的区别与联系. 经过一个点能画几条直线?经过两个点呢?动手试一试. 认真看课本第125页、126页. 记作:射线PO ( ) (2)连接线段AC,并将其延长; 记作:线段BA ( ) 怎么样能保证我种的树都在一条直线上?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档