追及和相遇问题专题教案

合集下载

2.9追及相遇问题2教案

2.9追及相遇问题2教案

备课人授课时间课题课题:追及相遇(2)教学目标知识与技能掌握追及、相遇问题的研究方法和解题思路,了解多解形成原因,细致分析运动过程,比较归类,应是有效解决此类问题途径。

过程与方法掌握追及、相遇问题的研究方法和解题思路情感态度与价值观体会科学推理的重要性,提高学生的科学推理能力重点掌握追及、相遇问题的研究方法和解题思路难点掌握追及、相遇问题的研究方法和解题思路教学设计教学内容教学环节与活动设计“追及和相遇”问题解题的关键是:准确分析两个物体的运动过程,找出两个物体运动的三个关系:(1)时间关系(大多数情况下,两个物体的运动时间相同,有时运动时间也有先后)。

(2)位移关系。

(3)速度关系。

在“追及和相遇”问题中,要抓住临界状态:速度相同....。

速度相同时,两物体间距离最小或最大。

如果开始前面物体速度大,后面物体速度小,则两个物体间距离越来越大,当速度相同时,距离最大;如果开始前面物体速度小,后面物体速度大,则两个物体间距离越来越小,当速度相同时,距离最小。

例1.A、B两物体相距s=7m时,A正以V A=4m/s的速度向右匀速运动,而物体B此时以初速度V B=10m/s向右匀减速运动,加速度a=-2m/s2,(B速度减为零后保持静止状态)则经过多长时间A追上B?追上前两者最大距离是多大?A BS教学设计例2.甲乙两车同时同向从同一地点出发,甲车以v1=16m/s的初速度,a1=-2m/s2的加速度作匀减速直线运动,乙车以v2=4m/s的速度,a2=1m /s2的加速度作匀加速直线运动,求两车再次相遇前两车相距最大距离和再次相遇时两车运动的时间。

练习1:一辆汽车从静止开始以1m/s2的加速度匀加速直线前进,汽车后面25m处有一自行车,以6m/s的速度匀速追赶汽车,问能否追上?若追不上,求自行车与汽车间的最小距离?教学设计练习2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为,若前车突然以恒定加速度刹车,在它刚停止时,后车以前车刹车时的加速度开始刹车,已知前车在刹车过程中行驶距离S,在上述过程中要使两车不相撞,则两车在匀速运动时,保持的距离至少应为:A. SB. 2SC. 3SD. 4S教学小结课后反思。

追及相遇教案

追及相遇教案

追及和相遇问题教学目标:1.能灵活运用匀变速直线运动的位移速度公式2.能处理追及相遇问题。

判断追上的条件,及相距最近,最远时的条件。

教学重点:常见的几种相遇问题教学难点:判断能否被追上教学方法:分析法推理法一、新课教学一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。

甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。

若甲的速度小于乙的速度,则两者之间的距离。

若一段时间内两者速度相等,则两者之间的距离。

例:一小汽车从静止开始以3m/s2的加速度启动,恰有一自行车以6m/s的速度从车边匀速驶过,(1)试定性分析汽车从开动后至追上自行车前两车间的距离随时间变化的情况。

(2)汽车在追上自行车前经过多长时间后两者距离最远?此时距离是多少?分析:汽车追自行车先距离越来越大后距离越来越小直到追上汽车在追上自行车前经过2S钟两者距离最远。

解法一、利用二次函数极值法求解设经过时间t 汽车和自行车之间的距离Δx,Δx=x自-x汽=v自t-at2/2=6t-3t2/2二次函数求极值的条件可知:当t=-b/2a=6/3=2s 时,两车之间的距离有极大值,且Δx m=6×2-3×22/2=6m解法二、利用分析法求解当汽车的速度与自行车的速度相等时,两车之间的距离最大。

由上述分析可知当两车之间的距离最大时有v汽=at=v自∴ t=v自 /a=6/3=2s∵Δx m=x自-x汽∴Δx m=v自t-at2/2=6×2-3×22/2=6m解法三、利用图象求解当t=t0 时矩形与三角形的面积之差最大。

Δx m=6t0/2 (1)因为汽车的速度图线的斜率等于汽车的加速度大小∴a=6/t0∴ t0=6/a=6/3=2s(2)由上面(1)、(2)两式可得Δx m=6m(3)什么时候追上自行车?此时汽车的速度是多少?v自t =at2/26×t=3×t2/2t=4sv汽=at=3×4 =12m/s例2.车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,某人同时开始以6m/s的速度匀速追车,能否追上?如追不上,求人、车间的最小距离。

相遇、追及问题教学设计

相遇、追及问题教学设计

相遇、追及问题教学设计教学目标1.知识与能力会画物体运动图,能分析不同类型的相遇、追及问题中的位移和速度关系,列出方程,解决问题。

2.过程与方法通过活动引导学生积极参与、合作探究,使学生进一步掌握解决追及与相遇问题的方法步骤。

3.情感态度与价值观让学生感受到物理与生活息息相关,增加其对物理学习的兴趣,并通过小组合作,加强学生之间的交流以及团结互助的精神。

教学重点找到相遇、追及问题中的等量关系,列出方程。

教学难点寻找相遇、追及问题中的等量关系。

教学过程师生活动设计意图一.观看猎豹追羚羊和汽车追尾视频,导入新课。

观看视频提出问题思考问题激发学生学习兴趣二.例题分析,掌握新知(一)追及问题1、追及问题中两者速度大小与两者距离变化的关系。

思考1.匀加速追匀速,追上的条件是什么?观看图片总结结论:当两物体在同一时刻到达同一位置时,则表示追上。

思考2.在追赶的过程中,两者之间的距离如何变化?结合V-t图像,总结:在匀加速直线运动追赶匀速直线运动中,当两物体速度相等时,有最大距离。

学生思考,教师点拨培养学生分析问题解决问题的能力例1:一辆执勤的警车停在公路边。

当警员发现从他旁边以v0=8m/s的速度匀速行驶的货车有违章行为时,立即前去追赶。

警车以加速度a=2m/s2做匀加速运动。

试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?总结解追及、相遇问题的思路:1.根据对两物体运动过程的分析,画出两物体运动的示意图;2.根据两物体的运动性质,分别列出两个物体的速度和位移方程,注意要将两物体运动时间的关系反映在方程中;3.由运动示意图找出两物体位移间的关联方程,这是关键;4.联立方程求解,并对结果进行简单分析.三、变式练习,巩固新知1.一辆值勤的警车停在公路边,当警员发现从他旁边以v0=8 m/s的速度匀速行驶的货车有违章行为时,决定前去追赶,经t0=2.5 s,警车发动起来,以加速度a=2 m/s2做匀加速运动.试问:(1)警车要多长时间才能追上违章的货车?(2)在警车追上货车之前,两车间的最大距离是多大?(二)避免相撞问题思考1:在躲避的过程中,两者之间的距离如何变化?思考2:在躲避的过程中,如何保证两者不相撞?安排学生讲解教师总结点拨。

(完整版)相遇问题与追及问题

(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。

专题4 追及与相遇问题-2024年高考物理一轮复习专题讲义(教案)

专题4  追及与相遇问题-2024年高考物理一轮复习专题讲义(教案)

专题4 追及与相遇问题-2024年高考物理一轮复习专题讲义(教案)追及与相遇问题考点一速度大追速度小1.分析思路: 可概括为“一个临界条件”“两个等量关系”。

一个临界条件:速度大者追速度小者:二者速度相等是判断能否追上的临界条件,若此时追不上,二者距离最小。

两个等量关系: 时间等量关系和位移等量关系,通过画草图找出两物体的时间关系和位移关系是解题的突破口。

2.常见情况解析:典型示例图像说明匀减速追匀速开始追时,两物体间距离为x0,之后两物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;②若Δxx0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇(t2-t0=t0-t1)匀速追匀加速匀减速追匀加速题型一匀减速追匀加速在水平轨道上有两列火车A和B,相距x,A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动,而B车同时做初速度为零、加速度大小为a的匀加速直线运动,两车运动方向相同。

要使两车不相撞,求A车的初速度v0满足什么条件?v0≤两车不相撞的临界条件:A车追上B车时其速度与B车相等。

设A、B两车从相距x到A车追上B车时,A车的位移为xA、末速度为vA、所用时间为t′,B车的位移为xB、末速度为vB,运动过程如图甲所示。

现用三种方法解答如下:法一情境分析法对A车有xA=v0t′+(-2a)×t′2,vA=v0+(-2a)×t′对B车有xB=at′2,vB=at′两车位移关系有x=xA-xB追上时,两车不相撞的临界条件是vA=vB联立以上各式解得v0=故要使两车不相撞,A车的初速度v0应满足的条件是v0≤。

法二函数判断法利用判别式求解,由题意可知xA=x+xB,即v0t′+×(-2a)×t′2=x+at′2整理得3at′2-2v0t′+2x=0这是一个关于时间t′的一元二次方程,当根的判别式Δ=(-2v0)2-4·3a·2x=0时,两车刚好不相撞,解得v0=,所以要使两车不相撞,A车的初速度v0应满足的条件是v0≤。

高中三年级上学期物理《追击和相遇问题》教学设计

高中三年级上学期物理《追击和相遇问题》教学设计

追击和相遇问题一.教学目标1.能熟练应用“一个条件,两个关系”来处理追及相遇问题中的常见问题;2.能描述追及相遇问题中的运动变化过程及速度相等时的关键状态;3.了解初始条件对所研究问题的影响,体会量变引起质变的哲学思想。

二.教学重难点1.应用“一个条件,两个关系”来处理追及相遇问题;2.能抓住速度相等时的关键状态来突破问题。

三.教学过程1.解决追击和相遇问题的基本思路(1)分析物体的运动过程(2)作出运动示意图(3)找出两物体的位移关系和时间关系(4)列出对应方程求解2.两类常见的问题(1)求临界:距离最大、距离最小、是否追上例题1:一辆值勤的警车停在公路边,当警员发现从他旁边以8m/s 的速度匀速行驶的货车有违章行为时,决定前去追赶,经2.5s ,警车发动起来,以加速度2m/s 2做匀加速运动,试问:警车追上货车之前两车之间的最大距离是多少。

总结:若A 物体追B 物体,假设每一个物体有三种运动状态:匀速、匀加速、匀减速,则共有9种组合。

其中有三种是一定能追上(例如:匀加速追匀速、匀减速;匀速追匀减速):假设A 物体的速度较小,速度相等时会出现最大距离差最大距离。

警车 货车 2.5s t 解析:设从警车开始启动到与货车速度相等所用时间为。

4s j h a t v t ==由:,可得:;20h 136m 2j x x v t a t x ∆=∆=由:+-,得:AS 0 t t Ba.两物体速度相等列方程b.由位置关系求相差的距离剩下6种不一定能追上:以匀速的A 物体追匀加速的B 物体为例,a 、开始若v A< v B ,距离越来越大,一定追不上b 、开始若v A> v B ,当速度相等时可能出现三种位置关系(如图): 追不上,但是此时是最小距离差;刚好不想撞的临界;在速度相等前已经相遇。

2.求何时相遇例题2:A 、B 两物体在同一直线上运动,当它们相距 S 0=7m 时,A 以v A =16m/s 的速度向右做匀速运动,而物体B 此时速度v B =10m/s 向右,以加速度a =-2m/s 2做匀减速运动,则经过多长时间A 追上B ?变式:A 、B 两物体在同一直线下运动,当它们相距 S 0=7m 时,A 以v A =4m/s 的速度向右做匀速运动,而物体B 此时速度v B =10m/s 向右,以加速度a =-2m/s 2做匀减速运动,则经过多长时间A 追上B ?A S 0B A B S 0 t tA t 解析:设B 两物体相遇所用时间为,2A 0B A 0B 1,21sx S x v t S v t at t ==+-=由:+,即 得:2A 0B A 0B 1,27s x S x v t S v t at t ==+-=由:+,即 得:7s >5st =A t 解析:设B 两物体相遇所用时间为,B B B s v t a 解析:物体停止运动所需要时间==5,B s B 25m,2B v x t ==在5内物体运动的距离为A A B 0A A B ,8s v t x S t =+=则物体追上物体可得。

教案 追及和相遇问题

教案 追及和相遇问题
知 识 教 学 能 目 标 思 想 力
习题三: 习题三:两个物理 A、B 从同一地点同时出发,沿同一直线运 动,其速度图像如图所示,由图像可知,A、B 出发后将相遇 几次?除此之外,你还能由图像提出什么问题?你能解决这 些问题吗?

相遇问题

解:追 、相遇的 : 解追 、相遇问题的 路 : 追 、相遇问题时 的几个问题
在匀变速运动的位移表达式中有时间的二次方, 我们可列出位移方程,利用二次函数求极值的方 法求解,有时也可借助 v-t 图象求解。 习题一: 习题一:两辆完全相同的汽车,沿水平平直路一前一 后匀速行驶,速度均为 v0,若前车突然以恒定的加速 度刹车,在它刚停住时,后车以前车刹车时的加速度 开始刹车,已知前车在刹车过程中所行的距离为 x, 若要保证两辆车在上述情况中不相撞,则两车在匀速 行驶时保持的距离至少应为( ) A.x B.2x C.3x D.4x
3. 分析追及、相遇问题时要注意 分析追及、 ⑴分析问题时,一定要注意抓住一个条件两个关系。 一个条件是:两物体速度相等时满足临界条 件,如两物体的距离是最大还是最小及是否恰好 追上等。 两个关系是:时间关系和位移关系。 时间关系是指两物体运动时间是否相等,两 物体是同时运动还是一先一后等;而位移关系是 指两物体同地运动还是一前一后运动等,其中通 过画运动示意图找到两物体间位移关系就是解题 的突破口,因此在学习中一定要养成画草图分析 问题的良好习惯,对帮助我们理解题意,启迪思 维大有裨益。 ⑵若被追赶的物体做匀减速运动,一定要注意,追上 前该物体是否停止运动。 ⑶仔细审题,注意抓住题目中的关键字眼,充分挖掘 题目中的隐含条件,如“刚好”“恰好”“最多”“至 、 、 、 少”等,往往对应一个临界状态,满足相应的临界条 件。

追及和相遇问题(教案与练习)

追及和相遇问题(教案与练习)

追及和相遇问题(教案与练习)追击与相遇专题(1).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变⼤;v1= v2时,两者距离最⼤;v1>v2时,两者距离变⼩,相遇时满⾜x1= x2+Δx,全程只相遇(即追上)⼀次。

【例1】⼀⼩汽车从静⽌开始以3m/s2的加速度⾏驶,恰有⼀⾃⾏车以6m/s的速度从车边匀速驶过.求:(1)⼩汽车从开动到追上⾃⾏车之前经过多长时间两者相距最远?此时距离是多少?(2)⼩汽车什么时候追上⾃⾏车,此时⼩汽车的速度是多少?(2).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变⼩;v1= v2时,①若满⾜x1 x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例2】⼀个步⾏者以6m/s的最⼤速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s2的加速度匀加速启动前进,问:⼈能否追上汽车?若能追上,则追车过程中⼈共跑了多少距离?若不能追上,⼈和车最近距离为多少?(3).匀减速运动追匀速运动的情况(开始时v1> v2):v1> v2时,两者距离变⼩;v1= v2时,①若满⾜x1 x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

【例3】汽车正以10m/s的速度在平直公路上前进,突然发现正前⽅有⼀辆⾃⾏车以4m/s 的速度做同⽅向的匀速直线运动,汽车⽴即关闭油门做加速度⼤⼩为6 m/s2的匀减速运动,汽车恰好不碰上⾃⾏车。

求关闭油门时汽车离⾃⾏车多远?(4).匀速运动追匀减速运动的情况(开始时v1v2时,两者距离变⼩,相遇时满⾜x1= x2+Δx,全程只相遇⼀次。

注意:若被追赶的物体做匀减速运动,⼀定要注意追上前该物体是否停⽌运动.【例4】当汽车B在汽车A前⽅7m时,A正以v A=4m/s的速度向前做匀速直线运动,⽽汽车B此时速度v B=10m/s,并关闭油门向前做匀减速直线运动,加速度⼤⼩为a=2m/s2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追及问题和相遇问题专题
学习目标:
1.知道两种问题的各种处理方法
2.能归纳两种问题的临界条件
3.理解数学方法和图象法在处理物体问题中的重要性
课时安排:1课时
教学过程
追及问题的实质就是:当两物体在同一直线上运动,分析讨论两物体在同一时刻是否能达到同一空间位置的问题.在分析追及问题时,必须明确以下几点:一个条件,两个关系,三种解题方法.
1. 一个条件即两物体的速度相等,它往往是追上追不上(两物体间距离有极值(最大值,最小值))的的临界条件,也是分析判断此类问题的切入点.
2.两个关系即两物体运动的时间关系和位移关系.
(1)若两物体同时开始运动则运动时间相等,若不同时开始运动则应找出时间关系.
(2)若两物体从同一位置开始运动则追上的位移关系是s1=s2;若开始运动时两物体相距s0,则追上的位移关系是s1-s2=s0
3.三种解题方法
解这类问题一般可用物理分析法,数学极值法,图象法.
(1)物理分析法 基本的解题思路是:
①分别对两物体研究
②画出运动过程示意图
③列出位移方程
④找出时间关系速度关系,位移关系
⑤解出结果,必要时进行讨论.
例1. 甲物体作匀速直线运动的速度是5m/s ,经过乙物体时,乙物体从静止开始以1m/s 2的加速
度追赶甲物体,求:①乙在追上甲之前,经过多长时间甲乙相距最远?此距离是多少?②什么时候乙追上甲?此时乙物体的速度是多少?
解析:①乙物体运动后速度由零逐渐增大,而甲的速度不变,在乙的速度小于甲物体的速度前,二者间的距离将越来越大,一旦乙的速度超过甲物体的速度时两物体间的距离就将缩小,因此当两物体的速度相等时,两物体相距最远.
因此有:甲乙乙v t a v == ∴s 5s 1
5a v t ===乙

t v x 甲甲= 2at 21x =乙 由位移关系:乙甲x x x -=∆ 带入数据得Δx =12.5m
②设经过t1时间乙追上甲,此时甲乙的位移相等. 则121t v at 2
1甲= s 10a v 2t 1==∴甲s /m 10at v 1==乙 (2)数学极值法
运用物理规律将物理问题转化成数学问题,通过函数运算得出结果.上题也可以用数学极值法求解.
解析:①设乙在追上甲之前经t时间两物体相距最远.
乙甲x x x -=∆=2at 2
1t v -甲=5t-0.5t2 由二次函数求极值公式知:当s 5a
2b t ==时Δs最大,代入数据得Δx =12.5m ②同物理分析法②
(3)图象法
①甲乙的v-t图像如图所示,根据速度图像的物理意义,图像与坐标轴所围面积表示位移的大小由图像可看出:在乙追上甲之前的t 时刻,两物体的速度相等,甲的位移(矩形面积)与乙的位移(三角形的面积)之差(画斜线部分)达最大,所以:甲乙乙v t a v == ∴s 5s 1
5a v t ===乙甲
乙甲s s x -=∆=S 矩形-S 三角形 =12.5m
②由图像可知:在t 时刻后,由甲与乙的速度图线所围三角形的面积
与阴影三角形的面积相等时,两物体的位移相等(即追上),所以由
图可得:乙追上甲时,t '=2t=10s , 10v 2v ==甲乙m/s 点评:
(1)追和被追两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。

(2)同向运动的物体追及即相遇,相向运动的物体,当各自的位移的绝对值之和等于开始时两者之间的距离时即相遇。

(3)不管用哪一种方法来处理追及和相遇问题,关键是要建立正确的运动图景,搞清楚两个物体之间的速度、位移和时间关系。

例2.车从静止开始以1m/s 2的加速度前进,车后相距x o =25m 处,与车运动方向相同的某人同时开始以6m/s 的速度匀速追车,能否追上?若追不上,则人、车间的最小距离为多少?
作业:
1。

火车以速度v 1匀速行驶,司机发现前方同轨道上相距x 处有另一火车沿同方向以速度v 2(对地,且v 1>v 2做匀速运动,司机立即以加速度a 紧急刹车。

要使两车不相撞,a 应满足什么条件?
2.甲、乙两车同时、同地、同向出发,甲以初速度16m/s 、加速度2m/s 2做匀减速运动,乙以4m/s 初速度、加速度1m/s 2做匀加速运动,求:(1)两车再次相遇前二者间的最大距离?(2)两车两次再次相遇所需时间?。

相关文档
最新文档