行测数学秒杀技巧资料分析排列组合
2020宁德国家公务员行测答题技巧:巧解排列组合问题

2020宁德国家公务员行测答题技巧:巧解排列组合问题排列组合作为数学运算当中的难点,知识点较多,不好理解,但作为重点,各位考生还是要多加学习,下面和福建中公一起来学习一下排列组合的相关知识:一、排列与组合1.排列与排列数:从n个不同的元素中任取m个元素排成一列,叫做从n个元素中取出m个元素的一个排列;所有排列的方法叫做排列数,用表示。
2.组合与组合数:从n个不同的元素中任取m个元素组成一组,叫做从n个元素中取出m个元素的一个组合;所有组合的方法叫做组合数,用表示。
3.区别排列本质上是先取后排,组合本质上是只取不排;排列的结果与元素的顺序有关,组合的结果与元素的顺序无关。
例1.从福州到厦门的动车有7个站点,则铁路公司应该为该路线准备多少种不同的车票?有多少种不同的价格?【中公解析】任意两个车站确定一张车票,往返的票价是一样的,票价与车站顺序无关是组合,则票价有种;由于调换起始站点是不同的车票,则车票的种类与车站顺序有关,则有种车票。
二、四种常用方法1.优限法:有些元素(位置)有限制条件,优先考虑这些元素(位置),再考虑其它元素(位置)。
例2.乒乓球队的10名队员中有3名主力队员,现要派5名队员参加比赛,其中3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有多少种?【中公解析】第一、三、五位置上必须是主力队员,有特殊的需求,那我们优先满足,再考虑第二、四位置上的元素,这是一个分步计数,用乘法原理,总的方法数为:。
2.捆绑法:有些元素必须相邻,将需要相邻的元素捆绑在一起看成一个大的元素,与剩下其它元素进行排列,需要注意的是捆绑元素内部也有顺序需要考虑。
例3.有5对情侣去排队买票,问每一对情侣都相邻的排队方法有多少种?【中公解析】:把5对情侣捆绑在一起,看成5个大的元素,这5个大元素进行全排列,每一个大元素内部都有一个全排列,这是一个分步计数,用乘法原理,总的方法数为:。
公务员考试行政能力测试数学运算解题方法之排列组合问题

公务员考试行政能力测试数学运算解题方法之排列组合问题排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。
那首先什么排列、组合呢?排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。
下面介绍几种常用的解题方法和策略。
解决排列组合问题有几种相对比较特殊的方法。
下面通过例题逐个掌握:一、相邻问题---捆绑法不邻问题---插空法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4【答案】A。
【解析】首先,从题中之3个节目固定,固有四个空。
所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。
二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。
综上所述,共有12+8=20种。
二、插板法一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。
【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?A.190B.171C.153D.19【答案】B。
行测排列组合技巧

行测排列组合技巧在行测中,排列组合是一个重要的数学知识点,也是考生们经常会遇到的题型。
掌握好排列组合技巧,可以帮助我们更快更准确地解题,提高做题效率。
下面将介绍一些行测中常用的排列组合技巧,希望对大家备考有所帮助。
首先,我们来了解一下排列和组合的概念。
在数学中,排列是指从n个不同元素中取出m个元素,按照一定顺序排列的方式。
排列通常用P(n,m)来表示。
组合是指从n个不同元素中取出m个元素,不考虑顺序的方式。
组合通常用C(n,m)来表示。
在行测中,排列组合常用的技巧有以下几点:1. 确定排列组合的题目类型:在做题时,首先要明确题目中是考察排列还是组合,根据题目要求来确定解题思路。
排列题目一般要求考生考虑元素的顺序,组合题目则不考虑元素的顺序。
2. 排列的计算方法:在排列中,当元素没有重复时,排列的计算方法为P(n,m) = n!/(n-m)!,其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。
如果元素有重复的情况,需要根据重复元素的个数进行调整。
3. 组合的计算方法:在组合中,组合的计算方法为C(n,m) = n!/(m!(n-m)!),其中n表示总的元素个数,m表示取出的元素个数,!表示阶乘。
组合题目中一般要求考生不考虑元素的排列顺序。
4. 排列组合的应用:在实际题目中,排列组合常常和概率、数列等知识点结合,需要考生综合运用多种技巧来解题。
在做题时,要注意题目中的条件,灵活运用排列组合知识,找到合适的解题方法。
5. 多做练习:排列组合是一个需要大量练习的知识点,只有通过不断的练习,才能熟练掌握排列组合的技巧。
建议考生多做排列组合的题目,提高解题能力。
总的来说,排列组合是行测中常见的数学题型,掌握好排列组合的技巧,可以帮助我们更好地解题,提高解题效率。
希望以上介绍的排列组合技巧对大家有所帮助,祝大家在行测中取得好成绩!。
公务员行政能力考试测验:排列组合之解题方法精要

公务员行政能力考试测验排列组合之解题方法精要在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。
这三种方法有特定的应用环境,华图公务员录用考试研究中心行政职业能力测验研究专家沈栋老师通过本文以实例来说明三种方法之间的差异及应用方法。
一、捆绑法精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。
提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。
【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种。
解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。
为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,外语书排序方法数为。
而三者之间是分步过程,故而用乘法原理得。
【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙两个人也有顺序要求,方法数为,因此站队方法数为。
【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。
如下面的例题。
【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。
行测答题技巧:巧解排列组合题

行测答题技巧:巧解排列组合题排列:排列的字母表示是A(m,n),表达的意思是从n个元素中取出m个元素,进行全排列(对m个元素进行排序)。
组合:组合的字母表示是C(m,n),表达的意思是从n个元素中取m个元素,不进行排列(对m个元素不进行排序)。
排列与元素的顺序有关,组合与顺序无关。
如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。
一、捆绑法与插空法【例1】某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?【分析】连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。
另外没有命中的之间没有区别,不必计数。
即在四发空枪之间形成的5个空中选出2个的排列,即A(5,2)。
【例2】马路上有编号为l,2,3,……10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?【分析】即关掉的灯不能相邻,也不能在两端。
又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。
共C(3,6)=20种方法。
二、特殊优先法特殊元素,优先处理;特殊位置,优先考虑。
【例】六人站成一排,求:(1)甲不在排头,乙不在排尾的排列数;(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数。
【分析】(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。
第一类:乙在排头,有A(5,5)种站法;第二类:乙不在排头,当然他也不能在排尾,有44A(4,4)种站法;更多信息关注内蒙古人事考试信息网。
行政职业能力测试答题技巧:排列组合题解题宝典

行政职业能力测试答题技巧:排列组合题解题宝典
秘籍一:乘法原理
完成一件事需要两个步骤(第1步方法的选取不会影响第2步方法的选取)。
做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有m×n种不同的方法。
【例】从A到B有3条不同的道路,从B到C有2条不同的道路,则从A经B到C的道路数n=3×2=6。
秘籍二:加法原理
完成一件事有两类不同方案(其中的方法互不相同)。
在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有m+n种不同的方法。
【例】小华正准备出国留学,不是去A国,就是去B国。
其中A国有4所大学向他发出了录取通知,而B国则有5所大学向他发出了入学邀请。
故小华共有9所大学可以选择,即共有9种留学方案。
P.S:排列组合题公式
排列公式:
组合公式:。
行测数学运算:排列组合四大“法宝”

⾏测数学运算:排列组合四⼤“法宝” 今天⼩编为⼤家提供⾏测数学运算:排列组合四⼤“法宝”,请⼤家总结这些常考题型及解题⽅法,把它运⽤到平时的练习和考试中去! ⾏测数学运算:排列组合四⼤“法宝” 排列组合是⾏测数量关系⾥⾯⽐较特殊的题型,它的研究对象独特,知识系统也相对⽐较独⽴,在每年的国考、省考、事业单位及⼤型企业招聘考试中经常出现,考试难度也有上升的趋势,⽽且越来越灵活。
往往会在基本排列组合问题的基础上添加⼀些限定条件,根据限定条件的不同,我们思考、分析问题的顺序也有不同。
通过总结这些常考题型及解题⽅法,就形成了接下来⼩编要跟⼤家⼀起学习的排列组合的四⼤“法宝”。
⼀、优限法 对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。
【例1】某单位安排五位⼯作⼈员在星期⼀⾄星期五值班,每⼈⼀天且不重复。
若甲、⼄两⼈都不能安排星期五值班,则不同的排班⽅法共有( )种? A.6 B.36 C.72 D.120 ⾏测数学运算技巧:⼩“抽签”⼤⽤处 在⽣活中,我们有时要⽤抽签的⽅法来决定⼀件事情,或是商场活动的抽奖形式,亦或是关乎我们每⼀个考⽣的⾯试顺序抽签,抽签在我们的⽣活中常会发⽣,⽽在抽签过程中最终抽中的概率和抽取的顺序有什么关系呢?接下来⼩编跟⼤家⼀起来探讨⼀下。
例如现在有5张票,⽽其中有⼀张为奖票,5个⼈按照顺序从中各抽1张以决定谁得到其中的奖票,那么,先抽还是后抽对他们来说公平吗?也就是说,每⼈抽到奖票的概率相等吗? 来源:中公教育 ⾏测数量关系模拟题及答案 1. 某场⽻⽑球单打⽐赛采取三局两胜制。
假设甲选⼿在每局都有80%的概率赢⼄选⼿,那么这场单打⽐赛甲有多⼤的概率战胜⼄选⼿?A.0.768B.0.800C.0.896D.0.924 2. ⼀学⽣在期末考试中6门课成绩的平均分是92.5分,且6门课的成绩是互不相同的整数,最⾼分是99分,最低分是76分,则按分数从⾼到低居第三的那门课得分⾄少为:A.93B.95C.96D.97 3. ⼯程队每个⼩组都分发了甲⼄丙三台设备,⼯作时,三台设备都要参与⼯作。
行测排列组合七大解题方法精解

行测排列组合七大解题方法精解行测中的排列组合问题是历年务员考试中必考题型,并且随着近年公务员考试越来越热门,公考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。
解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。
一、排列和组合的概念排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。
二、七大解题策略1.间接法即部分符合条件排除法,采用正难则反,等价转换的策略。
为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?A.240B.310C.720D.1080正确答案【B】解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。
2.科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。
对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行 科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。
同时明确分类后的各种情况符合加法原理,要做相加运算。
例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有( )种。
A.84B.98C.112D.140正确答案【D】解析:按要求:甲、乙不能同时参加分成以下几类:a.甲参加,乙不参加,那么从剩下的8位教师中选出5位,有C(8,5)=56种;b.乙参加,甲不参加,同(a)有56种;c.甲、乙都不参加,那么从剩下的8位教师中选出6位,有C(8,6)=28种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合基本知识点回顾:1、排列:从N不同元素中,任取M个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从N个不同元素中取出M个元素的一个排列。
2、组合:从N个不同元素中取出M个元素并成一组,叫做从N个不同元素中取出M个元素的一个组合(不考虑元素顺序)3、分步计数原理(也称乘法原理):完成一件事,需要分成n个步骤,做第1步有ml种不同的方法,做第2步有m2种不同的方法… 做第n步有mn种不同的方法。
那么完成这件事共有N二m1*m2*…*mn种不同的方法。
4、分类计数原理:完成一件事有n类办法,在第一类办法中有ml种不同的方法,在第二类办法中有m2种不同的方法…… 在第n类办法中有mn种不同的方法,那么完成这件事共有N二ml + m2 +・・・+mn 种不同的方法。
解题技巧:首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下儿种常用的解题方法: 一、特殊兀素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般米取特殊兀素(位置)优先安排的方法。
例1 . 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
元素分析法:因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上, 有120种站法,故站法共有:480 (种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有6 * 5 * 4 * 3 * 2种,然后女生内部再进行排列,有6种,所以排法共有:4320 (种)。
三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入己排好的元素位置之间和两端的空中。
例3 . 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有4 * 3 * 2 * 1种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有5 * 4 * 3种,所以排法共有:1440 (种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有种排列方法。
例4.由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?解:不考虑限制条件,组成的六位数有C(l,5)*P(5,5)种,其中个位与十位上的数字一定,所以所求的六位数有:C(1,5 )*P (5,5)/2(个)五. 分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。
例5 . 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有P( 9,9)种。
六. 复杂问题用排除法对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。
在应用此法时要注意做到不重不漏。
例6 •四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有()A . 150 种B . 147 种C . 144 种D . 141 种解:从10个点中任取4个点有C ( 4 , 10 )种取法,其中4点共面的情况有三类。
第一类,取出的4个点位于四面体的同一个面内,有4 * C ( 4 , 6 )种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。
以上三类情况不合要求应减掉,所以不同的取法共有:C ( 10 , 4 ) - 4 * c ( 6 , 4 ) 一6 一3 = 141 种。
只l七. 排列、组合综合问题用先选后排的策略处理排列、组合综合性问题一般是先选元素,后排列。
例7 .将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?解:可分两步进行:第一步先将4名教师分为三组(1 , 1 , 2 ), (么1 , l ) , ( 1 , 2 , l ),分成三组之后在排列共有:6 (种),第二步将这三组教师分派到3种中学任教有p ( 3 , 3 )种方法。
由分步计数原理得不同的分派方案共有:36 (种)。
因此共有36种八. 隔板模型法常用于解决整数分解型排列、组合的问题。
例8有10个三好学生名额,分配到6个班,每班至少1个名额,共有多少种不同的分配方案?解:6个班,可用5个隔板,将10个名额并排成一排,名额之间有9个空,将5个隔板插入9个空,每一种插法,对应一种分配方案,故方案有:C ( 5 , 9 )种习题:1 ,2 ,3 , 4作成数字不同的三位数,试求其总和?但数字不重复。
解析:组成3位数,我们以其中一个位置(百位,十位,个位)为研究对象就会发现当某个位置固定比如是1,那么其他的2个位置上有多少种组合?这个大家都知道是剩下的3个数字的全排列P32,我们研究的位置上每个数字都会出现P32次。
所以每个位置上的数字之和就可以求出来了个位是:P32 * ( l + 2 + 3 + 4 )二 60十位是:P32 * ( l + 2 十 3 + 4 )* 10 = 600百位是:P32 * ( l + 2 + 3 + 4 ) * 1 00 = 6000所以总和是66602将“ PROBABILrrY " H个字母排成一列,排列数有一种,若保持P , R , o次序,则排列数有种。
解析:这个题目是直线全排列出现相同元素的问题,(1)我们首先把相同元素找出来,B有2个,I有2个我们先看作都是不同的11个元素全排列这样就简单的多是Pll , 11然后把相同的元素能够形成的排列剔除即可Pll / ( PZ , 2 * PZ , 2 )= 9979200 。
(2 )第2个小问题因要保持PRO的顺序,就将PRO视为相同元素 (跟B , I类似的性质),则其排列数有11 ! / ( 2 ! xZ ! x3 !)=166320 种。
3.李先生与其太太有一天邀请邻家四对夫妇共10人围坐一圆桌聊天,试求下列各情形之排列数:(l )男女间隔而坐。
(2)主人夫妇相对而坐。
(3)每对夫妇相对而坐。
(4)男女间隔且夫妇相邻。
(5 )夫妇相邻。
(6)男的坐在一起,女的坐在一起。
解析:(l)先简单介绍一下环形排列的特征,环形排列相对于直线排列缺少的就是参照物.第一个坐下来的人是没有参照物的,所以无论做哪个位置都是一样的所以从这里我们就可以看出环形排列的特征是第一个人是做参照物,不参与排列.下面就来解答6个小问题:(1 )先让5个男的或5个女的先坐下来全排列应该是P44,空出来的位置他们的妻子(丈夫),妻子(丈夫)的全排列这个时候有了参照物所以排列是P55答案就是P44 * P55 = 2880种(2 )先让主人夫妇找一组相对座位入座其排列就是Pil (记住不是P22 ),这个时候其他8个人再入座,就是P88,所以此题答案是P88(3 )每对夫妇相对而坐,就是捆绑的问题.5组相对位置有一组位置是作为参照位置给第一个入座的夫妇的乘」下的4组位置就是 P44,考虑到剩下来的4组位置夫妇可以互换位置即P44 * 2呵二 384 (4)夫妇相邻,且间隔而坐我们先将每对夫妇捆绑那么就是5个元素做环形全排列即P44这里在从性别上区分男女看作2个元素可以互换位置即答案是P科*2科8种(值得注意的是,这里不是*2 呵因为要互换位置,必须5对夫妇都得换要不然就不能保持男女间隔)(5)夫妇相邻这个问题显然比第4个问题简单多了,即看作捆绑答案就是P44但是这里却是每对夫妇呼唤位置都可以算一种方法的即最后答案是P44 * 2八5(6)先从大方向上确定男女分开座,那么我们可以通过性别确定为2个元素做环形全排列.即Pl , 1,剩下的5个男生私15个女生单独做直线全排列所以答案是PI , l * P55 * P554.三边长均为整数,且最大边长为n的三角形的个数为()(A ) 25 个尹)26 个(C ) 36 个(p ) 37 个解析:根据三角形边的原理,两边之和大于第三边,两边之差小于第三边可见最大的边是H,则两外两边之和不能超过22因为当三边都为n时是两边之和最大的时候。
因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11 , 10 , 9 ,8 , 7,6,oooooo l RS如果为10则另外一个边的长度是10 , 9 , 8 ooo‘。
o2 ,(不能为1否则两者之和会小于n , 10的组合)如果为9,则另外一个边的长度是9 ,不能为11 ,因为第一种情况包含了 n ,(理由同上,可见规律出现)规律出现总数是11 + 9 + 7 +。
1 = ( l + 11 )又6令2 = 365.将4封信投入3个邮筒,有多少种不同的投法?解析:每封信都有3个选择。
信与信之间是分步关系。
比如说我先放第1封信,有3种可能性。
接着再放第2封,也有3种可能性,直到第4封,所以分步属于乘法原则即3x3x3x3 = 3A4。
6. 3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?解析:跟上述情况类似对于每个旅客我们都有4种选择。
彼此之间选择没有关系不够成分类关系。
属于分步关系。
女口:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。
知道最后一个旅客也是4种可能。
根据分步原则属于乘法关系即4X4X4 二 4勺7. 8本不同的书,任选3本粥宕3个同学,每人一本,有多少种不同的分法?角军析:分步来做第一步:我们先选出3本书即多少种可能性CS取3 = 56种第二步:分配给3个同学。
P33 = 6种这里稍微介绍一下为什么是P33,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择。
即3 xZxl这是分步选择符合乘法原则。