镍催化的偶联反应

合集下载

可见光氧化还原与金属镍协同催化偶联反应研究

可见光氧化还原与金属镍协同催化偶联反应研究

可见光氧化还原与金属镍协同催化偶联反应研究李蕾;宫清嵩;王贺【摘要】可见光催化反应已经成为有机合成化学的重要工具之一.可见光氧化还原与金属镍协同催化偶联反应由于具有反应能垒低、条件温和以及选择性高等优点得到人们广泛关注.综述了近年来光氧化还原与金属镍协同催化碳-碳和碳-杂键形成反应的最新进展,另外,对光氧化还原催化C-X(X=C、N、O、P、S)键形成反应中涉及到的机理进行了详细的探讨.【期刊名称】《石油化工高等学校学报》【年(卷),期】2018(031)006【总页数】10页(P1-10)【关键词】可见光氧化还原;镍催化;交叉偶联反应;碳-碳键;碳-杂键【作者】李蕾;宫清嵩;王贺【作者单位】辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001;辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001;辽宁石油化工大学化学化工与环境学部,辽宁抚顺 113001【正文语种】中文【中图分类】O621.3随着现代经济的高速发展,能源消耗日益增大,传统的化石资源也接近枯竭。

与此同时,环境污染以及生态恶化等问题日渐严重。

探索并合理使用绿色、可持续能源去发展温和、绿色、高效的化学反应,一直是有机化学家所追求的目标和前进的方向。

可见光是清洁绿色可再生的自然资源,直接利用可见光作为能源实现有机反应在一定程度上可减少环境的污染以及能源的消耗。

由于有机化合物的结构特征,大部分有机化合物对可见光的吸收非常少,但是通过引入光催化剂(光敏剂)和光催化循环,为可见光诱导的有机反应带来了新的研究契机[1⁃2]。

光催化剂(以[Ru(bpy)3]2+络合物为例[3⁃4])受到光照激发形成不稳定的三重激发态,再通过得失电子的形式进行能量的转移,从而实现可见光在有机合成中的应用(如图1所示)。

在可见光促进的有机反应中,光催化过程在十分温和的条件下产生了自由基阳离子或自由基阴离子。

这些中间体它们不仅可以自身发生反应,而且还可以通过其他方式转化为反应性的自由基或离子。

Suzuki反应

Suzuki反应

反应中Pd(0)作为催化剂,在其中循环。

Heck反应优点在于其区域选择性和立体专一性,缺点为Pd过于昂贵。

铃木反应铃木反应,也称作Suzuki偶联反应、Suzuki-Miyaura反应(铃木-宫浦反应),是一个较新的有机偶联反应,零价钯配合物催化下,芳基或烯基硼酸或硼酸酯与氯、溴、碘代芳烃或烯烃发生交叉偶联。

该反应由铃木章在1979年首先报道,在有机合成中的用途很广,具强的底物适应性及官能团容忍性,常用于合成多烯烃、苯乙烯和联苯的衍生物,从而应用于众多天然产物、有机材料的合成中。

目录经还原消除,得到目标产物9以及催化剂1。

氧化加成一步,用乙烯基卤反应时生成构型保持的产物,但用烯丙基和苄基卤反应则生成构型翻转的产物。

这一步首先生成的是顺式的钯配合物,而后立即转变为反式的异构体。

还原消除得到的是构型保持的产物。

基本因素SUZUKI cross coupling reaction 的基本因素总的来说可以分为下面几个部分,底物的活性简单的分类可以是:ArN2+X->>ArI>ArBr>ArCl>ArOTf≥ArOTs,ArOMe这里面常用的是卤代物,其中尤其是碘代和溴代最为常见,也是反应效果较好的。

但是,ArN2+X在有些情况下,是个很好的选择。

它的制备我可以给出一个常用的方法,这里我们的重氮盐,是氟硼盐.碱的参与2.SUZUKI cross coupling reaction 在没有碱的参与下,是很难反应的,甚至不反应!反应中碱的影响不仅取决于碱(负离子)的强弱,而且要兼顾阳离子的性质。

阳离子如果太小不利于生成中间的过渡态ylide(Pd)中间体,如果要弄清楚这个问题简单的机理介绍是必不可少的,下面化学式可以明了的解释这个原理。

通常来说,大的阳离子的碱,如Ba,Cs,会加速反应,当阳离子太小而被屏蔽反应的速率和效率将显著下降。

溶剂选择常用的溶剂分为质子,非质子,极性和非极性,当然他们是互相交叉的,我这里再一次强调一下,溶剂和碱要综合考虑选择,这里只简单的给出一些常用的二者间的配合:Ba(OH)2/95%EtOH, Na2CO3,K2CO3,CsCO3/dioxane,DMF,CsF,K3PO4/toluene......当然,具体到实际的应用上还要考虑你底物在这些溶剂中的溶解性。

金属催化偶联反应小结

金属催化偶联反应小结

金属催化偶联反应小结一、Buchwald_Hartwig反应,布赫瓦尔德-哈特维希偶联反应(Buchwald-Hartwig cross coupling)Buchwald–Hartwig芳胺化反应是非常常用的由芳基卤代物或芳基磺酸酯制备芳胺的反应。

此反应的主要特点是利用催化量的钯和富电子配体进行催化反应。

另外强碱(如叔丁醇钠)对于催化循环是至关重要的。

二、Cadiot-Chodkiewicz偶联反应一价铜作为催化剂,端基炔和炔基卤化物反应生成非对称性二炔的反应三、羰基化偶联反应 Carbonylative Cross Coupling利用一氧化碳能插入碳-金属键这一特性,在偶联反应中同时引入羰基,生成酯,酰胺,酮,醇等产物。

在有机合成中是一个非常有效率的反应。

常用于钯催化偶联反应。

我们知道一氧化碳很容易插入碳-金属键之间。

用钯催化剂,有基卤化物,一氧化碳,醇一起反应会生成酯。

用胺代替其中的醇会得到酰胺,用氢源替代醇会得到醛,换成有机金属试剂就会得到酮。

四、Castro–Stephens偶联反应(Castro-Stephens Coupling)炔化亚铜与芳卤发生交叉偶联,生成二取代炔及卤化亚铜。

这个反应由 C. E. Castro 和 R. D. Stephens 在 1963 年发现。

现在被大家所熟知的是其改良法Sonogashira偶联.五、Chan–Lam C–X偶联反应,Chan-Lam-Evans偶联反应(Chan-Lam-Evans Coupling)含有NH/OH/SH基团的底物在弱碱条件下,在空气中通过醋酸铜催化,与有机硼酸化合物氧化交叉偶联进行芳基,烯基和烷基化的反应。

六、交叉脱氢偶联反应(Cross Dehydrogenative Coupling (CDC))在两个底物的C-H被活化的情况下,利用氢acceptor(氧化剂)的作用,进行的交叉型C-C偶联反应。

如果氧化剂是分子状的氧气的话,理论上生成的副产物就是水而已,这样这样的反应就是非常优秀的绿色化学。

镍催化偶联反应机理研究进展

镍催化偶联反应机理研究进展

镍催化偶联反应机理研究进展李哲;刘磊【期刊名称】《催化学报》【年(卷),期】2015(000)001【摘要】近期发展了很多镍催化的偶联反应作为在有机合成中高效构建C–C键的方法,同时开展了很多关于控制镍催化反应活性和选择性的机理研究。

这些研究发现,镍催化反应机理往往和相应的钯催化反应机理不同,因为镍催化偶联经常包括自由基和双金属机理。

本文总结了镍催化偶联反应机理的最新进展。

对于这些反应机理的理解为发展具有更高效率和选择性的镍催化偶联反应提供了帮助。

%A variety of Ni catalyzed cross‐coupling reactions have emerged as efficient new methods for the construction of C–C bonds, and many mechanistic studies have been conducted to understand the factors controlling the reactivity and selectivity of Ni catalyzed reactions. The mechanisms of Ni catalyzed reactions are often very different from the corresponding Pd catalyzed processes because radical or bimetallic pathways are frequently involved in Ni catalyzed cross‐coupling reactions. This review summarized recent advances in the mechanism of Ni catalyzed cross‐coupling reactions. These are important for the development of new Ni catalyzed cross‐coupling reactions with im‐proved efficiency and selectivity.【总页数】12页(P3-14)【作者】李哲;刘磊【作者单位】清华大学化学系,北京100084;清华大学化学系,北京100084【正文语种】中文【相关文献】1.镍催化的多组分炔-醛烷基化偶联反应研究进展 [J], 韩柏秋;马娇;顾翠平;徐歆;樊保敏;周永云2.镍催化芳烃卤化物还原性交叉偶联的反应机理 [J], 蒋峰;任清华3.镍催化下有机锌试剂与一卤代烃的交叉偶联反应研究进展 [J], 方迎春4.基于密度泛函理论及实验揭示pincer钯催化偶联反应机理 [J], 王明胜;王玺梁5.甲烷氧化偶联制C_2烃催化剂及催化反应机理研究进展 [J], 颜其洁因版权原因,仅展示原文概要,查看原文内容请购买。

有机合成中的金属催化偶联反应

有机合成中的金属催化偶联反应

有机合成中的金属催化偶联反应金属催化偶联反应是有机合成领域中的重要方法之一。

它能够有效地构建碳-碳和碳-氮键,提供了合成复杂分子的可靠途径。

金属催化偶联反应的发展使得有机化学的研究和应用领域得到了极大的拓展。

本文将在分子结构、催化剂、反应机理和应用领域等方面探讨金属催化偶联反应的重要性和最新研究进展。

一、金属催化偶联反应的分子结构在金属催化偶联反应中,参与反应的有机分子通常包含活性基团(如芳基、烷基、酰基等)和功能基团(如羟基、氨基、卤素基等)。

这些有机分子可以通过碳-金属键与金属催化剂发生作用,从而实现活性基团和功能基团之间的偶联反应。

例如,苯基锂和卤代烷基在钯催化下发生交叉偶联反应,生成具有新的碳-碳键的化合物。

金属催化偶联反应的分子结构多样且灵活,为有机化学合成提供了广阔的可能性。

二、金属催化剂的选择金属催化偶联反应中的金属催化剂是实现反应的关键。

常用的金属催化剂包括钯、铂、铜、镍等。

选择合适的金属催化剂可以提高反应的效率和选择性。

例如,钯催化剂在烯烃和卤代烷基之间的偶联反应中具有广泛的应用,能够产生高收率和高选择性的产物。

此外,金属催化剂的配体也对反应的结果起到重要的影响。

合适的配体可以调节金属催化剂的活性和选择性,实现复杂分子的高效构建。

三、金属催化偶联反应的机理金属催化偶联反应的机理是该领域的研究热点之一。

虽然各种金属催化偶联反应的具体机理有所不同,但一般可以分为两个步骤:金属催化剂的活化和有机底物的偶联。

在活化步骤中,金属催化剂与配体形成配合物,激活金属中心,为下一步的反应做准备;在偶联步骤中,有机底物经过反应与激活的金属中心发生偶联反应,形成新的碳-碳或碳-氮键。

具体的反应机理可能涉及到还原消除、配体交换、烯烃与过渡态中心的配位等多个步骤。

四、金属催化偶联反应的应用领域金属催化偶联反应在药物合成、材料科学、天然产物合成等领域都有广泛的应用。

在药物合成中,金属催化偶联反应可用于合成活性分子和药物的关键中间体,提高药物的制备效率和选择性。

金属催化偶联反应

金属催化偶联反应
采用连续流动反应技术
利用连续流动反应技术,实现反应物的高效混合和传质,提高反应 速率和选择性。
优化反应动力学参数
通过调整反应物浓度、催化剂用量等反应动力学参数,实现反应的 高选择性和高效率。
06
金属催化偶联反应的挑战与 未来发展
面临的挑战和问题
选择性问题
金属催化偶联反应中,如何实现高选择性地合成目标产物是一个重要挑战。不同底物和反应条件下,选择性控制需要 更加精细的策略。
过渡金属催化偶联反应
随着过渡金属催化剂的发展,金属催化偶联反应取得了重大突破。过渡金属(如铜、镍、 铁等)具有较低的毒性和成本,且可在较温和的条件下实现高效催化。这些催化剂可通过 均相或多相体系进行反应,具有广泛的应用前景。
金属有机框架(MOFs)在偶联反应中的应用
近年来,金属有机框架(MOFs)作为一类新型多孔材料,在金属催化偶联反应中展现出独 特的优势。MOFs具有高的比表面积、可调的孔径和化学功能性,可作为催化剂载体或直接 作为催化剂参与反应,提高反应的效率和选择性。
04
金属催化偶联反应在有机合 成中的应用
构建碳-碳键的方法
01
02
03
交叉偶联反应
利用不同的有机金属试剂 进行交叉偶联,构建碳-碳 键,如Suzuki偶联、 Heck偶联等。
自身偶联反应
相同的有机金属试剂在金 属催化剂作用下进行自身 偶联,生成对称与亲核试剂发生烯丙基化 反应,构建碳-碳键。
感谢您的观看
THANKS
绿色溶剂与试剂
开发可生物降解、低毒性的绿色溶剂和试剂,替代传统有毒有害的 溶剂和试剂,降低金属催化偶联反应的环境负担。
原子经济性
通过优化反应路径和提高原子利用率,实现金属催化偶联反应的高 原子经济性,减少资源浪费。

镍催化氟代烯基硼酯与烷基卤化物suzuki偶联反应

镍催化氟代烯基硼酯与烷基卤化物suzuki偶联反应

镍催化氟代烯基硼酯与烷基卤化物suzuki偶联反应【原创版】目录1.镍催化氟代烯基硼酯与烷基卤化物 Suzuki 偶联反应的背景和意义2.反应的机理和步骤3.反应的条件和影响因素4.反应的应用和前景正文一、镍催化氟代烯基硼酯与烷基卤化物 Suzuki 偶联反应的背景和意义镍催化氟代烯基硼酯与烷基卤化物 Suzuki 偶联反应是一种新型的偶联反应,这种反应有效地将氟原子引入到有机化合物中,从而赋予这些化合物以新的物理和化学性质。

这种反应的背景和意义在于,氟原子是自然界中最活泼的元素之一,它在有机化合物中的引入,可以增加化合物的稳定性、亲水性、亲油性等性质,从而扩大有机化合物的应用范围。

二、反应的机理和步骤镍催化氟代烯基硼酯与烷基卤化物 Suzuki 偶联反应的机理尚未完全清楚,但根据实验结果和理论计算,反应大致可以分为以下三个步骤:1.镍催化剂与氟代烯基硼酯的配位,形成活性中间体;2.活性中间体与烷基卤化物发生亲核取代反应,生成新的活性中间体;3.新的活性中间体失去氟离子,形成最终的偶联产物。

三、反应的条件和影响因素镍催化氟代烯基硼酯与烷基卤化物 Suzuki 偶联反应需要在一定的条件下进行,这些条件包括:1.合适的镍催化剂,如镍粉、镍盐等;2.适当的反应溶剂,如甲苯、乙醇等;3.适当的反应温度和压力;4.适当的氟代烯基硼酯和烷基卤化物的浓度。

影响反应的因素主要有:1.镍催化剂的种类和含量;2.反应溶剂的种类和极性;3.反应温度和压力;4.反应物浓度和比例。

四、反应的应用和前景镍催化氟代烯基硼酯与烷基卤化物 Suzuki 偶联反应在有机合成中有广泛的应用,特别是在制药、材料科学和生物学等领域。

Kumada偶联反应

Kumada偶联反应

应用
• 格氏试剂发生的自偶联反应很早就已知道。
关于格氏试剂与卤代烃之间偶联反应的研 究最早是在1971年,当时 Tamura 和 Kochi 发展了用银铜、和铁催化剂催化的 交叉偶联反应。
• 1972年,Kumada 等ቤተ መጻሕፍቲ ባይዱ道了格氏试剂(苯基
溴化镁)与芳卤或乙烯基卤在镍催化剂 NiCl2(dppe)2 作用之下交叉偶联为苯乙烯 的反应。
• 同年,Corriu 等发现苯基溴化镁与β-溴
苯乙烯在乙醚溶剂中和另一镍催化剂—— 乙酰丙酮合镍(II)催化之下,可得反-二苯 乙烯。
• 此后,1975年 Murahashi 等将此反应拓展
至钯催化。
Kumada偶联反应
• Kumada(交叉)偶联反应(熊田偶联;
Kumada coupling),又称Kumada-Corriu (交叉)偶联反应
• 烷基或芳基格氏试剂与芳卤或乙烯基卤在
镍或钯催化下的交叉偶联反应。反应产物 为苯乙烯衍生物。
反应机理
从右上顺时针旋转依次为:氧化加成、转金属、顺反异构化、还原消除。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镍催化的偶联反应
镍催化的偶联反应是有机合成领域中一种重要的化学反应,它能够将两个有机化合物通过共价键连接起来,形成新的分子。

这种反应具有高效、选择性、原子经济性等优点,已经成为有机合成中不可或缺的重要工具。

镍催化的偶联反应一般分为两类:一类是以有机锌或有机锂化合物为反应底物的反应,另一类是以芳香族碘化物或烯烃为反应底物的反应。

其中,最具代表性的反应是Kumada偶联反应和Suzuki偶联反应。

Kumada偶联反应以有机镁或有机锌化合物和卤代芳烃或卤代烯
烃为反应底物,通过镍催化在反应中形成碳碳键。

这种反应可以实现对不同官能团的偶联,如醇、酚、醛、酮等官能团的偶联。

Suzuki偶联反应以芳香族碘化物或芳香族卤代烯烃和芳香族硼
酸酯为反应底物,通过镍催化在反应中形成碳碳键。

这种反应可以实现对芳香族化合物的偶联,具有高效、选择性和原子经济性等优点。

近年来,随着对可持续合成的要求越来越高,镍催化的偶联反应在合成领域中的应用也越来越广泛。

在绿色合成方面,采用可再生资源替代传统有机物催化剂,通过反应条件的优化来改善反应过程中的环境和经济效益,使得该反应在工业和实验室中的应用前景更加广阔。

- 1 -。

相关文档
最新文档